JPS58155909A - Method of molding slurry - Google Patents

Method of molding slurry

Info

Publication number
JPS58155909A
JPS58155909A JP57037200A JP3720082A JPS58155909A JP S58155909 A JPS58155909 A JP S58155909A JP 57037200 A JP57037200 A JP 57037200A JP 3720082 A JP3720082 A JP 3720082A JP S58155909 A JPS58155909 A JP S58155909A
Authority
JP
Japan
Prior art keywords
slurry
molding
mold
pressure
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57037200A
Other languages
Japanese (ja)
Inventor
幹夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP57037200A priority Critical patent/JPS58155909A/en
Publication of JPS58155909A publication Critical patent/JPS58155909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 材料を含むスラリーの成形法に係り、特に、酸化物永久
磁石材料のスラリーを金型に充填し、脱水孔を有する・
やンチからろ過部材を通し、磁場中で加圧脱水して成形
するスラリーの成形法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method of forming a slurry containing a material, in particular a method of filling a slurry of an oxide permanent magnet material into a mold and having dehydration holes.
The present invention relates to a method of forming a slurry by passing it through a filter member through a filter, dehydrating it under pressure in a magnetic field, and forming the slurry.

従来、金型内に充填された酸化物永久磁石材料のスラリ
ーを加圧脱水成形する際に、スラリーを構成する磁粉の
粒度は、08〜1,2μm程度の微粒子であるため脱水
性が非常に悪く、成形時の加圧脱水の際金型中の圧力が
高くなり、このためダイスと・センチの間や摺動部の空
隙部やieレンチ遊びおよびスラリーケ゛一ト等からス
ラリーが漏れ、または、逆流する原因となっている。
Conventionally, when pressurizing and dehydrating a slurry of oxide permanent magnet material filled in a mold, the particle size of the magnetic powder that makes up the slurry is about 0.8 to 1.2 μm, so dehydration is extremely difficult. Unfortunately, the pressure in the mold increases during pressurized dewatering during molding, which causes slurry to leak from the space between the die and the centimeter, the gap between the sliding parts, the IE wrench play, the slurry case, etc. This causes backflow.

また、成形体では、発見が困難な程度のわずかな漏れが
あっても、焼成して得られた製品においては、部分的な
ハガレや亀裂等が生ずる欠点があり、したがって、スラ
リー漏れを防上するためには、成形速度を遅くしなけれ
ばならない欠点がある。
In addition, even if there is a slight leak in the molded product that is difficult to detect, the product obtained by firing has the disadvantage of causing partial peeling or cracking, so it is necessary to prevent slurry leakage. In order to do this, there is a drawback that the molding speed must be slowed down.

本発明は、このような欠点を解消したもので、加圧脱水
成形する際のスラリーを加熱することにより、スラリー
〇漏れを無くし、しかも、成形能率の向上を所期できる
スラリーの成形法の提供を、その目的とするものである
The present invention eliminates these drawbacks and provides a slurry molding method that eliminates slurry leakage and improves molding efficiency by heating the slurry during pressure dehydration molding. Its purpose is to

本発明の特徴は、陶磁器材料ま,たけ酸化物永久磁石材
料を含むスーラリーから液体を排除して成形する際に、
該スラリーを室温具f−.υて加熱するスラリーの成形
法にある。
A feature of the present invention is that when molding a slurry containing ceramic material or bamboo oxide permanent magnet material by removing liquid,
The slurry was transferred to room temperature tool f-. It is a method of forming slurry that is heated using υ.

一般に、変圧加圧脱水に於けるろ過速度は、次式で表現
される。
Generally, the filtration rate in variable pressure dehydration is expressed by the following formula.

υ:ろ過速度 μ:分散媒の粘性 P:実効脱水圧力 に:定数 −L式から明らかなように、ろ過速度υを上げる(スラ
リーの脱水性の向上)ためには、分散媒である水の粘性
μを小さくすることであり、この目的には、スラリーを
加熱すればよいことである。
υ: Filtration rate μ: Viscosity of the dispersion medium P: Effective dehydration pressure: Constant - L As is clear from the equation, in order to increase the filtration rate υ (improve the dehydration properties of the slurry), it is necessary to increase the The purpose is to reduce the viscosity μ, and for this purpose, it is sufficient to heat the slurry.

以下、本発明の実施例を、図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

ここで、第1図は、一定の成形条件でスラリーの加圧脱
水成形を行った際の固形分残留率とスラリ一温度の関係
を示す曲線図である。
Here, FIG. 1 is a curve diagram showing the relationship between the solid content residual rate and the slurry temperature when the slurry is subjected to pressure dehydration molding under constant molding conditions.

図中、Aは、平均粒度0.叫μmの磁粉よりなる水分濃
度40%のスラリーを、丁・ぞンチに脱水孔をもつ40
φの金−型に1002装入し、初速度0.4w/sec
で、またBは、初速度0.8 van / secで、
それぞれ磁場中で0.34 t/’、肩で加圧脱水した
際の固形分残留率とスラリ一温度の関係を示す特性曲線
である。
In the figure, A indicates an average particle size of 0. A slurry with a water concentration of 40% made of magnetic particles of micrometer diameter was prepared using a 40 mm tube with dehydration holes in the groove.
1002 is charged into a φ mold, and the initial speed is 0.4w/sec.
And B has an initial velocity of 0.8 van/sec,
These are characteristic curves showing the relationship between solid content residual rate and slurry temperature when pressure dehydration is carried out at a shoulder pressure of 0.34 t/' in a magnetic field.

曲線A、Bにおいて、固形分残留率100%は、スラリ
ー漏れが全くなかったことを意味し、加圧速度が遅いと
スラリー漏れが減少し、また、スラリ一温度が高くなる
と、スラリー漏れが著しく少なくなり、固形残留率が高
くなってきていることがわかる。
In curves A and B, a solid content residual rate of 100% means that there was no slurry leakage; slow pressurization speeds reduce slurry leakage, and higher slurry temperatures significantly reduce slurry leakage. It can be seen that the solid residual rate is increasing.

曲線Aが示すように、室温20℃で初速度0411II
i/511cの加圧脱水した際の残留率は90%であり
、また、曲線Bが示すように、スラリ一温度を55℃に
加熱することにより約2倍の加圧速度でも固形分残留率
90%となり、同程度の残留率と々ることからも、スラ
リーの脱水性が向上されていることは、明らかである。
As curve A shows, the initial velocity is 0411II at room temperature 20°C.
The residual rate of i/511c when dehydrated under pressure is 90%, and as curve B shows, the solid content residual rate can be reduced even if the pressurization rate is approximately twice as high by heating the slurry temperature to 55°C. It is clear that the dewatering properties of the slurry are improved since the residual rate is 90% and remains at the same level.

これは、金型内部が低圧である加圧初期に、スラリーの
漏れ易い金型の摺動部や、ろ渦部材上の脱水面にいち速
くろ過層が形成され、これがパツキンの役割を果し、さ
らに加圧が進行し金型内部が高圧化した際、スラリーの
高温化により金型内部の高圧化が低減され、形成された
ろ渦部材のろ過層を破壊することなくろ過が進行し、ス
ラリー漏れを防止することによっている。なお、スラリ
ーの加熱は、加圧成形の直前に加熱することが熱効率の
面から望ましい。
This is because a filtration layer is quickly formed on the sliding parts of the mold where slurry tends to leak and on the dewatering surface of the filtration vortex member during the initial pressurization period when the pressure inside the mold is low, and this plays the role of a seal. When the pressurization progresses further and the pressure inside the mold becomes high, the high pressure inside the mold is reduced due to the high temperature of the slurry, and filtration proceeds without destroying the filtration layer of the filtration vortex member that has been formed, and the slurry By preventing leakage. Note that it is desirable to heat the slurry immediately before pressure molding in terms of thermal efficiency.

第2図は、粉砕粒度0.73μmの非熱温スラリーと、
一実施例に係る加熱スラリーの、圧搾スピードと金型内
部のスラリー圧力の関係を示す曲線図である。
Figure 2 shows a non-thermal slurry with a pulverized particle size of 0.73 μm,
It is a curve diagram showing the relationship between the compression speed of the heated slurry and the slurry pressure inside the mold according to one example.

同図において、Cは非熱温スラリー、Dは加熱スラリー
を示す曲線であり、曲線りとCとの比較から明らかなよ
うに、加熱スラリーの方が非熱温スラリーよりも、圧搾
スピードを上げても金型内部のスラリー圧力が上昇せず
、スラリーの漏れが発生しない。
In the same figure, C is a curve showing a non-thermal slurry, and D is a curve showing a heated slurry.As is clear from the comparison of the curve and C, the heated slurry has a higher compression speed than the non-thermal slurry. The slurry pressure inside the mold will not increase even if the mold is heated, and no slurry leakage will occur.

以上説明したように、実施例に係るスラリーの成形法は
、スラリーを加熱することにより、加圧脱水中のスラリ
ー漏れを防止することができ、スラリー漏れが原因で生
じる製品の部分的ハガレや亀裂を解消し、しかも、加圧
速度をはやめて成形能率を向上させることができるもの
である。
As explained above, the slurry forming method according to the example can prevent slurry leakage during pressurized dewatering by heating the slurry, and can prevent partial peeling and cracking of products caused by slurry leakage. In addition, it is possible to improve molding efficiency by reducing the pressurization speed.

以上述べたように、本発明は、総合して、スラリーの漏
れを無くし、しかも、成形能率を向上することができる
陶磁器材料または酸化物永久磁石材料を含むスラリーの
成形法を所期できるものであって、実用的効果に優れた
発明ということができる。
As described above, the present invention can provide a method for molding a slurry containing a ceramic material or an oxide permanent magnet material, which can eliminate slurry leakage and improve molding efficiency. Therefore, it can be said that the invention has excellent practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、一定の成形条件でスラリーの加圧脱水成形を
行った際の固形分残留率とスラリー温度の関係を示す曲
線図、第2図は、圧搾スピードと金型内部のスラリー圧
力の関係を示す曲線図である。 ゛、−ノ
Figure 1 is a curve diagram showing the relationship between solid content residual rate and slurry temperature when slurry is pressurized and dehydrated under constant molding conditions, and Figure 2 is a curve diagram showing the relationship between compression speed and slurry pressure inside the mold. It is a curve diagram showing a relationship.゛、-ノ

Claims (1)

【特許請求の範囲】[Claims] 陶磁器材料または酸化物永久磁石材料を含むスラリーか
ら液体を排除して成形する際に、該スラリーを室温以−
トに加熱することを特徴とするスラリーの成形法。
When removing liquid from a slurry containing a ceramic material or an oxide permanent magnet material and forming the slurry, the slurry is heated to a temperature above room temperature.
A slurry forming method characterized by heating to a high temperature.
JP57037200A 1982-03-11 1982-03-11 Method of molding slurry Pending JPS58155909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57037200A JPS58155909A (en) 1982-03-11 1982-03-11 Method of molding slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57037200A JPS58155909A (en) 1982-03-11 1982-03-11 Method of molding slurry

Publications (1)

Publication Number Publication Date
JPS58155909A true JPS58155909A (en) 1983-09-16

Family

ID=12490927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57037200A Pending JPS58155909A (en) 1982-03-11 1982-03-11 Method of molding slurry

Country Status (1)

Country Link
JP (1) JPS58155909A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135323A (en) * 1985-12-09 1987-06-18 日立金属株式会社 Wet type molding equipment
JPS62135321A (en) * 1985-12-09 1987-06-18 日立金属株式会社 Wet type molding equipment
JPS62135322A (en) * 1985-12-09 1987-06-18 日立金属株式会社 Wet type molding equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135323A (en) * 1985-12-09 1987-06-18 日立金属株式会社 Wet type molding equipment
JPS62135321A (en) * 1985-12-09 1987-06-18 日立金属株式会社 Wet type molding equipment
JPS62135322A (en) * 1985-12-09 1987-06-18 日立金属株式会社 Wet type molding equipment
JPH0154168B2 (en) * 1985-12-09 1989-11-17 Hitachi Metals Ltd
JPH0154167B2 (en) * 1985-12-09 1989-11-17 Hitachi Metals Ltd
JPH0155967B2 (en) * 1985-12-09 1989-11-28 Hitachi Metals Ltd

Similar Documents

Publication Publication Date Title
JPS6077171A (en) Reaction-bonded silicon carbide composite body
JPS58155909A (en) Method of molding slurry
RU96108827A (en) PRODUCTS FROM TITANIUM SUBOXIDE
KR970030376A (en) Manufacturing method of sintered ITO compact
JPS5864280A (en) Manufacture of non-oxide ceramics sintered body
JPS6081064A (en) Manufacture of silicon carbide sintered body
JPS56856A (en) Heat-resistant rubber composition
GB1425166A (en) Method of producing hot pressed components
JPS61222206A (en) Manufacture of oxide permanent magnet
RU2791957C1 (en) Method for manufacturing anisotropic barium hexaferrite
ES2009393A6 (en) Process for the preparation of a reinforced ceramic foam.
JP2823604B2 (en) Method for producing anisotropic ferrite magnet
JPS5597407A (en) Preparation of needle crystal metallic iron magnetic particulate powder
IE39632L (en) Production of high density boron nitride
JPS5353799A (en) Manufacturing process of magnetic materials
JPS61158867A (en) Enhancement for silicon nitride sintered body
JPS56121621A (en) Dispersing medium for dispersion treatment and dispersion treatment method
JPS62108768A (en) Manufacture of whisker-containing carbon composite material
Jansky et al. Behaviour of pressure vessels under thermal shock
JPH01232527A (en) Filler for magnetic recording medium
JPS6345178A (en) Boron nitride sintering raw material powder
JPS5347480A (en) Method for increasing density of coagulated particles
POCH High pressure compaction of oxides(Compaction of magnesium and aluminum oxides)
JPS623078A (en) Inorganic fiber monolithic heat-resistant refractory composition and formed body thereof
JPS61261262A (en) Manufacture of oxide permanent magnet