JPS58155241A - Air-fuel ratio control device for internal-combustion engine - Google Patents

Air-fuel ratio control device for internal-combustion engine

Info

Publication number
JPS58155241A
JPS58155241A JP57038530A JP3853082A JPS58155241A JP S58155241 A JPS58155241 A JP S58155241A JP 57038530 A JP57038530 A JP 57038530A JP 3853082 A JP3853082 A JP 3853082A JP S58155241 A JPS58155241 A JP S58155241A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
control device
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57038530A
Other languages
Japanese (ja)
Inventor
Seishi Wataya
綿谷 晴司
Setsuhiro Shimomura
下村 節宏
Yuji Kishimoto
雄治 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57038530A priority Critical patent/JPS58155241A/en
Publication of JPS58155241A publication Critical patent/JPS58155241A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the excessive enrichment of air-fuel ratio at the time of deceleration by providing an air valve to be opened and closed in accordance with the extent of load in a bypass passage around a throttle valve in a system provided with a fuel regulating means in the upper stream of a branched part of a suction pipe connected to each cylinder. CONSTITUTION:The captioned device controls an injection valve 4 as a fuel- regulating means by a computation control device 3 in accordance with outputs of a suction amount detecting means 2 and a revolution number detecting means 11, while at the same time, controls the negative feedback of the injection valve 4 on the basis of the output of an air-fuel ratio detecting means 13. At this stage, a bypass passage around a throttle valve 5 in a suction pipe 9 is connected to the suction pipe 9, and an air valve 7 is provided in this bypass passage. This air valve 7 is opened by the computation control device 3 when the suction air amount is increased to surpass a fixed value at the time of acceleration, and controlled to close when the suction air amount is decreased to surpass another fixed value by deceleration and then a fixed time passes.

Description

【発明の詳細な説明】 本発明は知勇的に制御され、機関の減速時に仝気會供給
する空気供給手段を有する内燃機関用電気式空燃比制御
装置に関するものである1、従来、内燃機関用電気式空
燃比制御装置として、電吏的に駆動され、該駆動時間に
応じて開升する噴射升全各気筒ごとに配し、吸気量検出
手段の出力に応じて駆動6時間の制御を行う装置wが知
られている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric air-fuel ratio control device for an internal combustion engine, which is intelligently controlled and has an air supply means that supplies air during deceleration of the engine. As an electric air-fuel ratio control device, it is electrically driven, and all injection cells that open according to the driving time are arranged for each cylinder, and control is performed for 6 hours of driving according to the output of the intake air amount detection means. A device w is known.

しかるに、従来の装置では各気筒ごとに設ける”M射弁
の駆動時間に対する燃料の吐出量%@VC機差があれに
、該機差が惣筒間の空燃比のバラツキとなり機関の運転
を不良とし、しかも排気ガスを悲化させることとなる。
However, in the conventional system, even though there is a difference in the fuel discharge amount % @VC machine with respect to the driving time of the "M injector" provided for each cylinder, this machine difference causes variations in the air-fuel ratio between the cylinders, resulting in poor engine operation. Moreover, it will cause exhaust gas pollution.

更(rc 、排気管に設けた仝燃比検出手段の出力にL
9負帰還制制御性う場合においても各気筒の排気管の東
金部以前に個々に仝燃比検出手段全般けなければ精智な
負帰還制御全行うことが1゛きないため、前記1−t4
射升はh精度な特性か要求され、該噴射弁を各気筒ごと
に配する内%、ニー機関用電気式窒燃比9川御装置は必
然的に筒イ曲なものとならざる全得なかった。
Further (rc, L is applied to the output of the fuel-fuel ratio detection means installed in the exhaust pipe)
9 Negative Feedback Control Even in the case of negative feedback control, it is not possible to fully perform the sophisticated negative feedback control unless there is individual fuel-fuel ratio detection means before the exhaust pipe of each cylinder.
The injection valve is required to have highly accurate characteristics, and the electric nitrous-fuel ratio control device for the knee engine has to have a curved cylinder, since the injector is placed in each cylinder. Ta.

上記欠点を解消するため^11記噴射弁葡、機関の各気
、筒へ混合気?分配する吸気管の分岐部上流に設けたピ
」燃機関用電気式窒燃比制御装置が知られているが、こ
の種の装置においては燃料の吻−射部位と、気筒の吸免
部位との間が長くなり、しかも噴射された燃料の一部が
成体状態のまま、空気より遅い移動速度T゛供給れるた
め、各顎部に吸入される空気量と、該空気量に応じて調
量された燃料との間に時間差を生じることとなり、機関
がダイナミックに運転されると、気筒に吸入される混合
鉋の空燃比は大きくすれることとなった。特に、機関の
減速時例えばスロットル升會全開へ急速に戻したとき吸
入される空気、か急変するのに対して既に噴射し終った
燃料が吸気管内に滞留しており、該滞留量の燃料に↓り
気筒内混合(はオーバリッチとなり失火すると共に滞留
量の影響が少なくなると着火してトルク全発生させるた
め機関発生トルクが急変し、異常な衝′s′に生じるこ
ととなった。
In order to eliminate the above drawbacks, ^11 Injector valve, each air of the engine, mixture to the cylinder? An electric nitrous fuel ratio control device for a piston combustion engine is known, which is installed upstream of the branching part of the intake pipe for distribution. Moreover, since a part of the injected fuel is supplied in an adult state at a moving speed T which is slower than air, the amount of air sucked into each jaw and the amount of air are regulated according to the amount of air. As a result, when the engine is operated dynamically, the air-fuel ratio of the air-fuel mixture sucked into the cylinder increases. In particular, when the engine decelerates, for example when the throttle is returned to full throttle, the intake air changes suddenly, but the fuel that has already been injected remains in the intake pipe, and the accumulated amount of fuel The mixture in the cylinder became overrich and misfired, and when the influence of the retention amount decreased, it ignited and generated all the torque, so the engine generated torque suddenly changed, resulting in an abnormal collision 's'.

又、未燃焼の排ガス特VC炭化水素を多量に排出すゐと
いう不具合紫も生じていた。
In addition, a problem occurred in that a large amount of unburned exhaust gas special VC hydrocarbons was emitted.

従って、本発明の目的は、紙上の如き従来装置の欠点を
除去す/)ため、機関の減速時に吸気管内に滞留してい
る燃料量に応じたで宜気を供給し、機関の減速時にオー
バリッチによる失火を生じさせない内燃機関の伊゛燃比
面i御装置ケ提供することにある。
Therefore, an object of the present invention is to supply air according to the amount of fuel remaining in the intake pipe when the engine decelerates, in order to eliminate the drawbacks of the conventional device as described in the paper. An object of the present invention is to provide a fuel ratio control device for an internal combustion engine that does not cause misfire due to richness.

以下、本発明の一実施例會下す第1図に基ついて評卸1
に説明す心。第1図は本発明による内燃(幾関用′巾勿
式窒燃比制御装置の要部を示すブロック図である。ωf
算制御装置3はエアクリーナ1の下流に設けられた吸気
量検出手段2の出力と、機関の回転数全検出すめ回転数
検出手段11の出力とに↓り機関に供給される混合気が
H[足の空燃比となゐ工うす蝦料調蓋手段例えは噴射y
f40制御盆有り。更に、演9制御装置3は機関の排気
管12の一部に設けられた空燃比検出手段13の出力全
受け、Ai+記吸嘗量検出十段2と回転数検出手段11
と…射弁4の検出誤差及び調量誤差、又機関のおかれる
魔境等(′こよる議差を補償するため負帰還制rIlI
Iケ行なう。
Hereinafter, we will discuss an embodiment of the present invention based on Figure 1 below.
A heart to explain. FIG. 1 is a block diagram showing the main parts of the internal combustion type nitride-fuel ratio control device according to the present invention.ωf
The computer control device 3 determines whether the air-fuel mixture supplied to the engine is H [ The air-fuel ratio of the legs is different from that of the engine.
Has f40 control tray. Furthermore, the control device 3 receives all the outputs of the air-fuel ratio detection means 13 provided in a part of the exhaust pipe 12 of the engine, the Ai+ suction amount detection stage 2 and the rotation speed detection means 11.
Detection error and metering error of the injection valve 4, the devilish state in which the engine is placed, etc.
I will do it.

紙上の如く、閾9制御装置3が窒燃比制御を行なうため
、機関が定常状態で運転されている時各吏筒10に1吸
入される生気量と、該空気量に応じて1114射調普さ
れた燃料とは、一定の時間差會有しなからFQr定の空
燃比となる工うに制御することとなる。換言すれは、燃
料の滞留量は機関の回転数、吸入空気量及び空燃比で定
まる半金意味する。次に、機関ケ減速させるためスロッ
トル弁5會例えは全開から半開に急速に民すと、空燃比
の挙動會ボす第2図に示されるように吸幼量検出十模:
2に工り検出される吸免、酋は急減するが、各気筒10
に吸引される燃料ね、第2図に示されるようにtd秒の
聞達れることとなり谷気筒10の空燃比は第2図で示す
工うta秒間リッチとなる。特にリッチ度が犬となあと
、オーバリッチvCLる失火奮起して機関の発生トルク
は苓となり、リッチ歴が小となると着火することにエリ
トルクを再後帰させ、しかもリッチであるが故に大きな
トルクが生じるので機関に大きな衝撃を与えることにな
る。
As shown on paper, the threshold 9 control device 3 controls the nitrogen-fuel ratio, so when the engine is operating in a steady state, the amount of live air sucked into each cylinder 10 and the 1114 injection adjustment ratio are adjusted according to the amount of air. Since there is a constant time difference between the fuel and the fuel that has been adjusted, the air-fuel ratio is controlled to be constant at FQr. In other words, the amount of fuel retained is determined by the engine speed, intake air amount, and air-fuel ratio. Next, when the throttle valve 5 is rapidly changed from fully open to half open in order to decelerate the engine, the behavior of the air-fuel ratio is shown in Figure 2.
2, the intake and exhaust gases detected sharply decrease, but each cylinder has 10
As shown in FIG. 2, the fuel sucked in is heard for td seconds, and the air-fuel ratio in the valley cylinder 10 becomes rich for ta seconds as shown in FIG. In particular, when the richness is low, the overrich vCL will cause a misfire and the torque generated by the engine will be low, and when the rich history becomes small, the ignition will cause the elytorque to return, and because it is rich, the torque will be large. This will have a huge impact on the organization.

し7かるに、本発明においては第11ンIに示されろ工
うに、スロットル井5葡パイノやスする通路に仝鉋升7
が設けられ、この空うff7の開路によって量鉋かスロ
ットル升5を通過せずにバイパス1−る工うに構成され
ており、−ヒ述の欠点全除去している。
However, in the present invention, as shown in the 11th section I, a plane 7 is installed in the passage where the throttle well 5 is connected.
is provided, and by opening this vacant ff7, the bypass 1 is constructed without passing through the scale plane or the throttle box 5, thereby eliminating all the drawbacks mentioned above.

次に、本発明の窒燃比制御装置の動作を第31會参照し
てh9明する。
Next, the operation of the nitrous fuel ratio control device of the present invention will be explained with reference to the 31st meeting.

機関の吸人生気佃が機関の加速によって増大してQA、
なる値會超えた時、演算制御装置3は空気弁7會開路す
る。QA+なる仝坊量は機関負荷が充分大きい時のを気
量に相当して設定されており、前記空気弁7の開路によ
って生ずる空気量の跳躍は殆ど無″+j1.″T゛きる
ものであめ。次に、機関の減速によって空気量が減少し
てQA2なる値を超えて抜、Tなる時間経過後演算制御
装置3は窒槃升7を閉路する。よって、時間Tの間、機
関はスロットル升5および柴笛升7によって矩まる窒免
量QAVIヶ吸入している。この時、吸気管に滞留して
いた燃料が過剰・燃料として櫨閑に吸入されるか、柴気
量の減少が抑制されているために空燃比のリッチ朋が緩
和されている。第3図V(−は仝気5P7’に作動させ
な(八で空気量減少させた時の模様が破トでホされ同化
されている。。
The intake air pressure of the engine increases as the engine accelerates, resulting in QA,
When the value exceeds the value, the arithmetic and control unit 3 opens the air valve 7. The air flow amount QA+ is set to correspond to the air flow when the engine load is sufficiently large, and there is almost no jump in the air flow caused by the opening of the air valve 7. . Next, due to the deceleration of the engine, the amount of air decreases and exceeds a value QA2, and after a time period T has elapsed, the arithmetic and control device 3 closes the nitrogen chamber 7. Therefore, during the time T, the engine is inhaling the nitrogen intake amount QAVI, which is determined by the throttle box 5 and the pipe whistle box 7. At this time, the richness of the air-fuel ratio is alleviated because the fuel that had accumulated in the intake pipe is inhaled as excess fuel, or because the decrease in the amount of air is suppressed. Figure 3 V (- indicates that the air should not be activated in 5P7' (the pattern when the air volume is reduced in 8 is broken and assimilated).

次に、時間Tを経過して柴幼升7ケ閉じると、Fllひ
空気量QAy、に応じた燃料の油留が吐き出され、リッ
チ化現象が生ずるが、空気量減少の厩舎が小さく、従っ
て、吐き出される過剰燃料も少くないので機関に与える
衝撃はef:微なものである。かくして、減速eこよる
リッチ化現象は大きく緩和されるが、次の点に留意する
必要がある。即ち、QAV+なる空気量は吐き出される
過剰燃料によって失火が生じない程度に大きくする心太
があり、jk、た余り大きくすると、減速操作したにも
かかわらず機関の減速が充分に行なわれなくて運転性能
葡阻沓することである。よって、空気弁7の有効口径お
よび時間Tは機関の運転性能ヲ嗣酌して決定されるべき
ものである。
Next, when time T has elapsed and the 7 cylinders are closed, a fuel oil residue corresponding to the air amount QAy is discharged, and a rich phenomenon occurs, but the stable where the air amount decreases is small, and therefore Since the amount of excess fuel generated is not small, the impact on the engine is negligible. In this way, the enrichment phenomenon caused by the deceleration e is greatly alleviated, but the following points need to be kept in mind. In other words, the amount of air that becomes QAV+ has to be made large enough to prevent misfires from occurring due to excess fuel being discharged, and if jk is made too large, the engine will not be decelerated sufficiently even though deceleration operation is performed, resulting in poor driving performance. It is to thwart. Therefore, the effective diameter of the air valve 7 and the time T should be determined in consideration of the operating performance of the engine.

第4図は?と気升7の開度全漸減して閉路すゐ〕場合の
笑施例紮示している。第4図に示される如く開贋奮漸減
すると空気弁7ケ急激に閉じる場合に比べて変化の度合
が緩和されるので、閉路時の両軍音列んどなくすことが
できる。
What about figure 4? An example is shown in which the opening of the air cell 7 is completely reduced and the circuit is closed. As shown in FIG. 4, when the opening is gradually reduced, the degree of change is less severe than when the seven air valves are suddenly closed, so it is possible to eliminate most of the sound sequences on both sides when the circuit is closed.

第5図は仝勿9′P7の開贋奮柚減する方法として、開
閉の時間tlil! 4+lil f行なう場合の実施
例ケ示(7ている。この第5図において、一定の周期1
1で仝プ升7に開閉し閉路時間’I+ ’2+ t3・
・・・全漸増させてT二ta−1・・・・と漸減して第
4図ycおける実施例と同様の効果會得ることかできろ
Figure 5 shows how to reduce the opening/closing time of 9'P7. An example of the case where 4 + lil f is carried out is shown (7).
1 opens and closes the box 7, and the closing time is 'I+'2+t3・
It is possible to obtain the same effect as the embodiment shown in FIG. 4 yc by gradually increasing T2ta-1 and then decreasing it gradually.

以上説明された実施例においては、機関の減速検出音吸
入仝鰭情會評価して行なう方法について述べたが、機関
の負担f状態會表わす他のパラメ〜り即ち吸鉋管負圧、
スロットル弁開11Lによっても同様の効果が倚られる
In the embodiments described above, a method has been described in which the deceleration detection sound of the engine is evaluated based on the intake air pressure condition, but other parameters representing the load state of the engine, such as suction pipe negative pressure,
A similar effect can be obtained by opening the throttle valve 11L.

以上の説明から明らかなように、本発明によれは、機関
の加速状態VCおいて予め開路【−2た生気升工りスロ
ットル升?倶1路した空気葡機関に与えているために機
関の急減速に際して空′;7+柑の減少を一時的に緩和
し、以って空燃比のリッチ化を緩オロして機関の衝撃音
減少させ、更に空気量減少による減速性能の悪化を極め
て軽微なものとする優れた効果を有する。
As is clear from the above explanation, according to the present invention, in the accelerating state VC of the engine, the throttle valve is opened beforehand. Since this air is given to the engine, it temporarily alleviates the decrease in air pressure when the engine suddenly decelerates, thereby gradually slowing down the enrichment of the air-fuel ratio and reducing engine impact noise. Furthermore, it has the excellent effect of minimizing deterioration of deceleration performance due to a decrease in air amount.

4 図面の簡単なh81゜明 第1図は不発明の一実施例會示す、内燃機関の空燃比制
御装置の要部會示すブロック図、第2図は空燃比の挙動
を示す図、第3〜第5図は第1図の動作を示す動作説明
図である。
4. Simple drawings at 81°C. Figure 1 is a block diagram showing the main parts of an air-fuel ratio control device for an internal combustion engine, which shows one embodiment of the invention, Figure 2 is a diagram showing the behavior of the air-fuel ratio, and Figures 3 to 4 are diagrams showing the behavior of the air-fuel ratio. FIG. 5 is an explanatory diagram showing the operation of FIG. 1.

1・・・エアクリーナ、2・・・吸気量検出手段、3・
・・演算制御装置、4・・・燃料調量手段、5・・・ス
ロットル升、6・・・スロットル弁開度検出手段、7・
・・空気弁、8,9・・・吸気管、1()・・・気筒、
11・・・N転数検出手段、12・・・排気管、13・
・・空燃比検出手段。
1...Air cleaner, 2...Intake air amount detection means, 3.
... Arithmetic control device, 4... Fuel metering means, 5... Throttle square, 6... Throttle valve opening detection means, 7.
...Air valve, 8,9...Intake pipe, 1()...Cylinder,
11... N rotation speed detection means, 12... Exhaust pipe, 13.
...Air-fuel ratio detection means.

なお、図中同一符号は同一部分又は相当部分會示す。Note that the same reference numerals in the figures indicate the same or corresponding parts.

代理人   葛  野  信  − 第1図 第2図Agent Kuzu Nobuo - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)電気的に駆動され、機関の作動パラメータに応じ
た燃料の調量を行なう燃料調量手段を、機関の各気筒へ
混合気全分配する吸気管の分岐部より上流に少なくとも
1つ設けて機関の空燃比制御全行なう空燃比制御装置に
おいて、スロットル弁の上流より下流へ空気でパイ・セ
スする通路に設けられた空気弁と、機関の負荷が所定値
を超えて大きくなった時に前記空1升を開路させ、機関
の負荷が所定値を超えて小さくなり所定時間ヲ飄過した
時前記空気弁奮閉路させるための制御装置と七含む内燃
機関の空燃比制御装置。 (2、特許請求の範囲第1項に記載の内燃機関の空燃比
制御装置において、°°前記制御装置が、機関の負荷が
所定値ケ超えて小さくなった時、岑全含む所定時間の後
前記空気弁の開度を漸減させることを特徴とする内燃機
関の窒燃比市制御装置。  、・
(1) At least one fuel metering means that is electrically driven and adjusts the amount of fuel according to the operating parameters of the engine is provided upstream of the branch of the intake pipe that distributes the entire air-fuel mixture to each cylinder of the engine. In an air-fuel ratio control device that performs all air-fuel ratio control of an engine, there is an air valve installed in a passage where air passes from upstream to downstream of the throttle valve, and when the engine load increases beyond a predetermined value, An air-fuel ratio control device for an internal combustion engine, comprising: a control device for opening an air tank and closing the air valve when the engine load decreases beyond a predetermined value and a predetermined time elapses; (2. In the air-fuel ratio control device for an internal combustion engine according to claim 1, when the engine load decreases by exceeding a predetermined value, after a predetermined period of time including A nitrogen-fuel ratio control device for an internal combustion engine, characterized in that the opening degree of the air valve is gradually reduced.
JP57038530A 1982-03-10 1982-03-10 Air-fuel ratio control device for internal-combustion engine Pending JPS58155241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038530A JPS58155241A (en) 1982-03-10 1982-03-10 Air-fuel ratio control device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038530A JPS58155241A (en) 1982-03-10 1982-03-10 Air-fuel ratio control device for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS58155241A true JPS58155241A (en) 1983-09-14

Family

ID=12527831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038530A Pending JPS58155241A (en) 1982-03-10 1982-03-10 Air-fuel ratio control device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58155241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466448A (en) * 1987-09-07 1989-03-13 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466448A (en) * 1987-09-07 1989-03-13 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine

Similar Documents

Publication Publication Date Title
US4809667A (en) Apparatus for controlling amount of fuel-vapor purged from canister to intake air system
JPS5832958A (en) Electric air-fuel control device for internal-combustion engine
GB2027944A (en) Electronic engine control apparatus
JPH05106481A (en) Internal combustion engine control device and method thereof
JPS58155241A (en) Air-fuel ratio control device for internal-combustion engine
US4981122A (en) Fuel injection control device of an engine
JPS58104316A (en) Secondary air control for internal-combustion engine
JPH0551776B2 (en)
JPS58214626A (en) Air-fuel ratio control method for fuel injection internal-combustion engine
JPS6041218B2 (en) Exhaust turbocharged engine
JP2005248913A (en) Control device for internal combustion engine
JPS5862325A (en) Electronic control fuel-injection engine
JPS6338622A (en) Control device for engine with supercharger
JPH0319370B2 (en)
JPS58195057A (en) Assist air control method for internal-combustion engine
JP3161248B2 (en) Air-fuel ratio control device for internal combustion engine with EGR device
JP2898858B2 (en) Gas engine fuel control system
JPH04252854A (en) Evaporative fuel controller for engine
JPS5841240A (en) Engine controlled in number of operating cylinders
JP3852633B2 (en) Engine deceleration control device
JPS5928029A (en) Electronic fuel injection controlling method of internal combustion engine
JPS6429663A (en) Exhaust gas reflux control device for engine
JPS6073025A (en) Controller for internal-combustion engine
JPS58144636A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS61201823A (en) Air intake device for engine