JPS5815464A - Superconductive field coil - Google Patents
Superconductive field coilInfo
- Publication number
- JPS5815464A JPS5815464A JP56110703A JP11070381A JPS5815464A JP S5815464 A JPS5815464 A JP S5815464A JP 56110703 A JP56110703 A JP 56110703A JP 11070381 A JP11070381 A JP 11070381A JP S5815464 A JPS5815464 A JP S5815464A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic flux
- flux density
- conductor
- stabilized
- field winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K55/00—Dynamo-electric machines having windings operating at cryogenic temperatures
- H02K55/02—Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
- H02K55/04—Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Superconductive Dynamoelectric Machines (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は超電導界磁巻線に関するものである。[Detailed description of the invention] The present invention relates to superconducting field windings.
超電導発電機に使用される超電導界磁巻線(以下、界磁
巻線と称す)は、回転子を構成する円筒状トルクチュー
ブの外側に支持される場合は、第1図に示されるような
レーストラック状鞍形の界磁巻線1とするのが普通であ
る。この界磁巻線1に使用される安定化超電導線は、安
定化銅中に超電導フィラメントを多数埋込んで形成し、
その形状は安定化超電導線の占積率及び巻回時の作業性
を考慮して平角とし、表面にはポリイミド等の耐熱性樹
脂が被覆しである。界磁巻線1は、この安定化超電導線
を円筒状の巻型に1アーストラツク状鞍形に巻回したの
ち、エポキシ樹脂を含浸硬化して製作される。界磁が2
極の超電導発電機の回転子の場合は、第2図及び第3図
に示されているように2個の界磁巻線1a、1bが円筒
状トルクチューブ2の外側に配設され、そしてこれらの
界磁巻線1a、1bは円筒状トルクチューブ2にバイン
ド線または円筒3の焼面め等によって支持されると共に
液体ヘリウム4で極低温に冷却される。When the superconducting field winding (hereinafter referred to as field winding) used in a superconducting generator is supported outside the cylindrical torque tube that constitutes the rotor, it is as shown in Figure 1. The field winding 1 is usually racetrack-shaped and saddle-shaped. The stabilized superconducting wire used in this field winding 1 is formed by embedding a large number of superconducting filaments in stabilized copper.
Its shape is rectangular in consideration of the space factor of the stabilized superconducting wire and workability during winding, and its surface is coated with a heat-resistant resin such as polyimide. The field winding 1 is manufactured by winding this stabilized superconducting wire around a cylindrical winding former in the form of a single earth track saddle, and then impregnating and hardening the wire with an epoxy resin. The field is 2
In the case of a rotor of a polar superconducting generator, two field windings 1a, 1b are arranged outside a cylindrical torque tube 2, as shown in FIGS. 2 and 3, and These field windings 1a and 1b are supported by a cylindrical torque tube 2 by a binding wire or a burnt surface of the cylinder 3, and are cooled to an extremely low temperature with liquid helium 4.
液体ヘリウム4は円筒状トルクチューブ2の内、外側に
充填されており、界磁巻線1.a、1bの内、外側を流
通して、界磁巻線1a、1bを冷却する。Liquid helium 4 is filled inside and outside the cylindrical torque tube 2, and the field winding 1. The field windings 1a and 1b are cooled by flowing through the inner and outer sides of the field windings 1a and 1b.
このように界磁巻線1 (Ia、lb)はレーストラッ
ク状鞍形に巻回製作されるので、鞍形状の両端部を結ぶ
線の中心を中心として、この中心から鞍形の而の一方端
から鞍形に沿って鞍形の面の他方端に到る角度、すなわ
ち鞍形角度θを縦軸にとり、横軸には界磁巻線1の軸方
向の所定の位置からエンド部までの軸方向距離lをとっ
て界磁巻線1を展開すると第4図のようになる。同図に
示されているように界磁巻線1は鞍形角度が0°から1
80°までの間に展開され、鞍形角度90゜には鞍形の
頂部すなわちエンド部5の内径側端部e1、外径側端部
e2が形成されている。界磁巻線に通電して界磁巻線の
磁束密度を測定し、第4図に示されている部分の界磁巻
線1の磁束密度を図示すると第5図のようになる。第5
図には鞍形角度θをパラメータとして縦軸に磁束密度を
とり、横軸に第4図に示す界磁巻線1のエンド部゛まで
の所定の軸方向距離をとった場合の磁束密度と軸方向距
離との関係が示されている。同図に示されているように
、磁束密度は鞍形角度の大小にかかわらず軸方向距離が
エンド部になるに従って大きくなり、内径側端部e、部
近傍夫々最大(直を示している。まだ鞍形角度によって
は鞍形角度が90゜近傍になるほど磁束密度が大きくな
っている。これは巻回された安定化超電導線が密集して
いる部分であり、従って密集している安定化超電導線が
影響し合って磁束密度が増加するのである。In this way, the field winding 1 (Ia, lb) is wound in a racetrack-like saddle shape. The vertical axis is the angle from the end to the other end of the saddle-shaped surface along the saddle shape, that is, the saddle angle θ, and the horizontal axis is the angle from a predetermined position in the axial direction of the field winding 1 to the end. When the field winding 1 is expanded with an axial distance l, it becomes as shown in FIG. As shown in the figure, the field winding 1 has a saddle angle of 0° to 1°.
80 degrees, and a saddle-shaped top portion, that is, an inner diameter end e1 and an outer diameter end e2 of the end portion 5 are formed at the saddle angle of 90 degrees. When the field winding is energized and the magnetic flux density of the field winding is measured, the magnetic flux density of the field winding 1 in the portion shown in FIG. 4 is illustrated as shown in FIG. 5. Fifth
In the figure, the vertical axis shows the magnetic flux density with the saddle angle θ as a parameter, and the horizontal axis shows the magnetic flux density when the predetermined axial distance to the end of the field winding 1 shown in Fig. 4 is taken. The relationship with axial distance is shown. As shown in the figure, the magnetic flux density increases as the axial distance approaches the end portion, regardless of the saddle angle, and is maximum (direct) near the inner diameter end e and the end portion, respectively. However, depending on the saddle angle, the magnetic flux density increases as the saddle angle approaches 90°.This is a part where the wound stabilized superconducting wires are densely packed, and therefore the stabilized superconducting wires are tightly wound. The magnetic flux density increases as the lines interact.
ところで磁束密度が大きく、これが使用されている安定
化超電導線の臨界磁束密度近くに達すると界磁巻線がク
エンチ(超電導破壊)を惹起するので、界磁巻線の電流
密度は制限を受は余り大きくと牡ない。このため磁束密
度の大きいエンド部近傍の磁束密度の最大(直を低減す
るのにエンド部の安定化超電導線の巻回間にスペーサ、
例えば強化プラスチック(FM%P)を挿入して界磁巻
線を製造することが考えられた。スペーサを挿入すれば
安定化超電導線の密集部が緩和されて粗となり、磁束密
度の最大呟が低減するからである。ところが挿入する強
化プラスチン・りの形状の選定及びその加工が難しく、
実施するのが困難であった。このため簡単に磁束密度の
最大(直が低減できる界磁巻線の製造方法の開発が望ま
れていた。By the way, the magnetic flux density is large, and if it reaches close to the critical magnetic flux density of the stabilized superconducting wire used, the field winding will quench (destruction of the superconductor), so the current density of the field winding is not limited. If it's too big, it won't mate. Therefore, in order to reduce the maximum magnetic flux density (direction) near the end part where the magnetic flux density is high, a spacer is used between the windings of the stabilizing superconducting wire at the end part.
For example, it has been considered to manufacture field windings by inserting reinforced plastic (FM%P). This is because by inserting a spacer, the densely packed parts of the stabilized superconducting wire are relaxed and become coarse, and the maximum amplitude of the magnetic flux density is reduced. However, it was difficult to select the shape of the reinforced plastic resin to be inserted and to process it.
It was difficult to implement. Therefore, it has been desired to develop a method for manufacturing field windings that can easily reduce the maximum magnetic flux density (direction).
本発明は以」−の点に鑑みなされたものであり、その目
的とするところは、簡単に磁束密度の最大呟が低減でき
る超電導界磁巻線を提供するにある。The present invention has been made in view of the following points, and its object is to provide a superconducting field winding that can easily reduce the maximum amplitude of magnetic flux density.
すなわち本発明は、安定化超電導線の巻回時に、エンド
部を形成する安定化超電導線の所定の巻回間に安定化超
電導線と同じ大きさの平角の銅線からなるスペーサを挿
入したことを特徴とするものである。That is, the present invention includes inserting a spacer made of rectangular copper wire of the same size as the stabilized superconducting wire between predetermined turns of the stabilized superconducting wire forming the end portion when winding the stabilized superconducting wire. It is characterized by:
以上、図示した実施例に基づいて本発明を説明する。第
6図には本発明の一実施例が示されている。なお従来と
同じ部品には同じ符号を付したので説明は省略する。本
実施例では安定化超電導線6の巻回時に、エンド部5を
形成する安定化超電導線6の所定の巻回間に安定化超電
導線6と同じ大きさの平角の銅線7からなるスペーサを
挿入して巻回した。すなわち安定化超電導m6と同じ大
きさの平角導線7を、内径側端部e1近傍のエンド部5
における安定化超電導線60巻回間に数ターン毎に挿入
した。そしてこの挿入した範囲は、内径側端部e、と外
径側端部e2との間の巻回幅の約半分までとした。巻回
後はエポキシ樹脂で含浸処理した。このようにすること
により、磁束密度の最大(ifの現われる内径側端部e
1近傍の安定化超電導線6の密集部が緩和されて相とな
る。従つて密集した安定化超電導線6の影響が軽減され
、内径側端部e1近傍の磁束密度の最大呟が従来のそれ
よりも小さくなる。¥1:たスペーサとして安定化超電
導線6と同じ大きさの平角導線7を使用したので、スペ
ーサ自体の形状の選定・加工の要がなく、シかも安定化
超電導線6の巻回時には、安定化超電導線6の曲げに沿
って屈曲するので作業が容易である。The present invention will be described above based on the illustrated embodiments. FIG. 6 shows an embodiment of the invention. Note that parts that are the same as those in the conventional model are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, when the stabilized superconducting wire 6 is wound, a spacer made of a rectangular copper wire 7 having the same size as the stabilized superconducting wire 6 is placed between predetermined turns of the stabilized superconducting wire 6 forming the end portion 5. was inserted and wound. That is, the rectangular conducting wire 7 having the same size as the stabilized superconductor m6 is connected to the end portion 5 near the inner diameter end e1.
The stabilized superconducting wire was inserted every few turns between the 60 turns of the stabilized superconducting wire. The inserted range was approximately half of the winding width between the inner end e and the outer end e2. After winding, it was impregnated with epoxy resin. By doing this, the inner diameter end e where the maximum magnetic flux density (if appears)
A densely packed part of the stabilized superconducting wire 6 in the vicinity of 1 is relaxed and becomes a phase. Therefore, the influence of the densely packed stabilized superconducting wires 6 is reduced, and the maximum fluctuation of the magnetic flux density near the inner end e1 becomes smaller than that of the conventional method. ¥1: Since the rectangular conducting wire 7 of the same size as the stabilized superconducting wire 6 was used as a spacer, there is no need to select or process the shape of the spacer itself, and when winding the stabilized superconducting wire 6, it is stable. The work is easy because the wire is bent along the bending of the chemically modified superconducting wire 6.
以上の実施例に関し、その特性を検討した結果を次に述
べる。第7図には鞍形角度θをパラメータとして縦軸に
磁束密度をとり、横軸には第6図に示す界磁巻線1のエ
ンド部捷での所定の軸方向距離をとった場合の磁束密度
と軸方向距離と、の関係が示されている。同図に示され
ているように、磁束密度は鞍形角度の大小にかかわらず
軸方向距離がエンド部になるに従って大きくなり、内周
側端部e、部近傍夫々最大直を示している。このような
特性の傾向は従来のそれと同じであるが磁束密度の最大
唾は低下しており、従来の約80%であった。The results of examining the characteristics of the above embodiments will be described below. In Fig. 7, the vertical axis shows the magnetic flux density using the saddle angle θ as a parameter, and the horizontal axis shows the magnetic flux density when the predetermined axial distance at the end of the field winding 1 shown in Fig. 6 is taken. The relationship between magnetic flux density and axial distance is shown. As shown in the figure, the magnetic flux density increases as the axial distance approaches the end portion, regardless of the size of the saddle angle, and exhibits maximum directness near the inner circumferential end e and the portion, respectively. The tendency of these characteristics is the same as that of the conventional method, but the maximum magnetic flux density has decreased, and is about 80% of that of the conventional method.
このように本実施例によれば磁束密度の最大面を低下さ
せることができたが、磁束密度の最大面が従来のものと
同じになる捷で電流を流すとすれば、安定化超電導線の
臨界電流密度と臨界磁界との関係から磁束密度が下がっ
た以−にに電流密度は大きくなるので、電流密度は約4
0%増とすることができる。従って超電導発電機の出力
増大、信頼性向上に寄与できる。In this way, according to this example, the maximum surface of the magnetic flux density was able to be lowered, but if current were to flow through a wire where the maximum surface of the magnetic flux density was the same as that of the conventional one, the stabilized superconducting wire From the relationship between the critical current density and the critical magnetic field, the current density increases as the magnetic flux density decreases, so the current density is approximately 4
It can be increased by 0%. Therefore, it can contribute to increasing the output and improving the reliability of superconducting generators.
上述のように本発明は、エンド部の所定位置に平角導線
を挿入して安定化超電導線を巻回したので、エンド部の
安定化超電導線間が簡単な作業で和となって、エンド部
の磁束密度の最大唾が低減するようになり、簡単に磁束
密度の最大1直が低減できる超電導界磁巻線を得ること
ができる。As described above, in the present invention, since the stabilized superconducting wire is wound by inserting the rectangular conductive wire into a predetermined position of the end portion, the lengths of the stabilized superconducting wires at the end portion are combined with a simple operation, and the end portion is The maximum value of the magnetic flux density is reduced, and it is possible to easily obtain a superconducting field winding in which the maximum value of the magnetic flux density is reduced by one shift.
第1図は従来の超電導界磁巻線の超電導界磁巻線の斜視
図、第2図は従来の超電導界磁巻線の超電導界磁巻線を
円筒状トルクチューブに装着した斜視図、第3図は第2
図のA、−A線に沿う断面図、第4図は従来の超電導界
磁巻線の鞍形角度と軸方向距離とによる超電導界磁巻線
の展開図、第5図は鞍形角度をパラメータとした第4図
の超電導界磁巻線の磁束密度と軸方向距離との関係を示
す特性図、第6図は本発明の超電導界磁巻線の一実施例
の鞍形角度と軸方向距離とによる超電導界磁巻線の展開
図、第7図は鞍形角度をパラメータとした第6図の超電
導界磁巻線の磁束密度と軸方向距離との関係を示す特性
図。
訃・・エンド部、6・・・安定化超電導線、7・・・平
角銅茅10 7
茅Z(2]
1コ1”
/ 竿40 乙Fig. 1 is a perspective view of a conventional superconducting field winding; Fig. 2 is a perspective view of a conventional superconducting field winding in which the superconducting field winding is attached to a cylindrical torque tube; Figure 3 is the second
4 is a cross-sectional view along lines A and -A in the figure, FIG. 4 is a development view of a superconducting field winding according to the saddle angle and axial distance of a conventional superconducting field winding, and FIG. 5 is a diagram showing the saddle angle. Fig. 4 is a characteristic diagram showing the relationship between the magnetic flux density and axial distance of the superconducting field winding as a parameter, and Fig. 6 shows the saddle angle and axial direction of an embodiment of the superconducting field winding of the present invention. FIG. 7 is a characteristic diagram showing the relationship between the magnetic flux density and axial distance of the superconducting field winding of FIG. 6 using the saddle angle as a parameter. End part, 6... Stabilized superconducting wire, 7... Flat copper grass 10 7 Kaya Z (2) 1 piece 1" / rod 40 Otsu
Claims (1)
回し、巻回後エポキシ樹脂を含浸してなる@電導界磁巻
線において、前記安定化超電導線の巻回時の、エンド部
を形成する前記安定化超電導線の所定の巻回間に前記安
定化超電導線と同じ大きさの平角の銅線からなるスペー
サを挿入したことを特徴とする超電導界磁巻線。1. In a conductive field winding made by winding a rectangular stabilized superconducting wire in a racetrack saddle shape and impregnating it with epoxy resin after winding, the end portion of the stabilized superconducting wire is A superconducting field winding characterized in that a spacer made of rectangular copper wire having the same size as the stabilized superconducting wire is inserted between predetermined turns of the stabilized superconducting wire to be formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56110703A JPS5815464A (en) | 1981-07-17 | 1981-07-17 | Superconductive field coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56110703A JPS5815464A (en) | 1981-07-17 | 1981-07-17 | Superconductive field coil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5815464A true JPS5815464A (en) | 1983-01-28 |
Family
ID=14542310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56110703A Pending JPS5815464A (en) | 1981-07-17 | 1981-07-17 | Superconductive field coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5815464A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH027784U (en) * | 1988-06-22 | 1990-01-18 |
-
1981
- 1981-07-17 JP JP56110703A patent/JPS5815464A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH027784U (en) * | 1988-06-22 | 1990-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4549042A (en) | Litz wire for degreasing skin effect at high frequency | |
US5583475A (en) | Method of manufacturing a coil on a toroidal magnetic circuit | |
JPS5815464A (en) | Superconductive field coil | |
US4093817A (en) | Superconductor | |
US2452679A (en) | Radio-frequency transformer | |
US3839913A (en) | Magnetic flowmeter | |
US6358888B1 (en) | Shielded superconducting magnet joints | |
JP2555132B2 (en) | Compound superconducting field winding | |
US3076930A (en) | Adjustable magnetic core | |
SU1039403A1 (en) | Method of manufacturing superconductive solenoid | |
JP2003518425A5 (en) | ||
JPH10144521A (en) | 360× helically rotating double-pole magnetic field generating electromagnet | |
JPS601812A (en) | Superconductive coil | |
JP3370924B2 (en) | Winding method of split type superconducting coil | |
JPS5595310A (en) | Reactor and manufacture of the same | |
JPH08181014A (en) | Superconductive magnet device and its manufacture | |
JPH0313728B2 (en) | ||
JPS58127305A (en) | Superconductive magnet | |
JP3094307B2 (en) | Superconducting coil | |
Rybakov et al. | Design and tests of UNK superconducting correction magnet models | |
JPS62229805A (en) | Superconducting coil | |
JPH0225008A (en) | Parallel magnetic field generating method | |
JPH02135713A (en) | Manufacture of superconducting coil | |
GB2165706A (en) | Alternating current sensor assembly and method of making same | |
JPS59175708A (en) | Compound superconductive coil and manufacture thereof |