JPS58153708A - Manufacture of alloy powder with fine structure - Google Patents

Manufacture of alloy powder with fine structure

Info

Publication number
JPS58153708A
JPS58153708A JP3542882A JP3542882A JPS58153708A JP S58153708 A JPS58153708 A JP S58153708A JP 3542882 A JP3542882 A JP 3542882A JP 3542882 A JP3542882 A JP 3542882A JP S58153708 A JPS58153708 A JP S58153708A
Authority
JP
Japan
Prior art keywords
molten metal
alloy powder
fine
roll
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3542882A
Other languages
Japanese (ja)
Other versions
JPS6225723B2 (en
Inventor
Hiroyoshi Ishii
石井 博義
Takeshi Masumoto
健 増本
Masaaki Naga
奈賀 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP3542882A priority Critical patent/JPS58153708A/en
Publication of JPS58153708A publication Critical patent/JPS58153708A/en
Publication of JPS6225723B2 publication Critical patent/JPS6225723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force

Abstract

PURPOSE:To obtain the alloy powder with fine structure in the wide range of chemical composition by following method in which molten metal is dropped on the rotary surface of the roll made of the material hard to be wet with molten metal and is separated into fine molten metal drops and then they are rapidly solidified by collision with the surface of the rotary body rotating at high speed. CONSTITUTION:The roll 4 with the surface hard to be wet with molten metal is rotated at the peripheral speed of above 2m/sec. Molten alloy 2 in a crucible 1 is dropped on said rotary surface through a nozzle 3 and is separated into fine molten metal drops. Then, these metal drops 6 are thrown out by centrifugal force and are caused to collide with the rotary surface of a metallic rotary body 7 which has the peripheral rotary speed of above 10m/sec and high heat conductivity, thereby rapidly solidifying and cooling said drops. The alloy powder 8 is collected in a vessel 9. By this process, the alloy powder used for sintered body having fine crystal grain is industrially obtained.

Description

【発明の詳細な説明】 本発明は合金粉の製造方法の改良に係る。[Detailed description of the invention] The present invention relates to an improvement in a method for producing alloy powder.

近年、粉末冶金の分野において、製品の特性を改善する
目的で合金元素を添加するに当って、プレアロイ粉と呼
ばれる予め配合溶融した合金の粉を原料粉中に配合する
方法が採られるようにな−ってきている。この種の合金
粉は従来から粉砕法やアトマイズ法によって製造されて
いるが、粉砕法によって製造された合金粉は溶製時に急
冷凝固していないので結晶粒度が犬きく、特に高速度工
具鋼のような炭化物を組織中に含有する合金にあっては
炭化物が網目状に生成されて焼結体の靭性を損々うとい
う問題点がある。アトマイズ法によって製造された合金
粉は急冷凝固しているので、粉砕法におけるような問題
点は解決されるものの、合金粉の粒子の大きさによって
凝固速度が異なり、粒径の大きい粉末粒子は凝固速度が
若干遅くなるために前記粉砕法による合金粉の欠点を有
しており、充分な強靭性を有する焼結体を得るためには
微粉末を篩分けして使用しなければならない。
In recent years, in the field of powder metallurgy, when adding alloying elements to improve the properties of products, a method has been adopted in which pre-mixed and melted alloy powder, called pre-alloyed powder, is blended into raw material powder. -It's coming. This type of alloy powder has traditionally been produced by the pulverization method or the atomization method, but since the alloy powder produced by the pulverization method is not rapidly solidified during melting, the grain size is very large, especially for high-speed tool steel. In alloys containing such carbides in their structure, there is a problem in that the carbides are formed in a network shape, impairing the toughness of the sintered body. Since the alloy powder produced by the atomization method is rapidly solidified, it solves the problems encountered with the pulverization method, but the solidification rate varies depending on the size of the alloy powder particles, and powder particles with large diameters are difficult to solidify. The alloy powder produced by the above-mentioned pulverization method has the drawback that the speed is somewhat slow, and in order to obtain a sintered body having sufficient toughness, the fine powder must be sieved before use.

本発明は前記のような問題点を解消し、粉末粒子の大小
に拘らず微細な結晶粒からなる組織を有する合金粉の製
造方法を提供することを目的としている。
It is an object of the present invention to solve the above-mentioned problems and to provide a method for producing an alloy powder having a structure consisting of fine crystal grains regardless of the size of the powder particles.

発明者は先に非晶質金属粉を製造する方法として、溶融
金属に対して濡れ性の小さな表面層を有し2 m 7秒
以上の周速度で回転している〔コール表向に、溶融金属
をノズルを経由して落下させ、該溶融金桟を微細な溶融
金属滴に分断したのち、引続いて該沼融金属滴を10m
/抄以−Fの周速度で回転する金属製回転体に衝突させ
て急冷凝固させる非晶質金属粉の製造方法を提案してい
る(%願昭56−103369号、発明の名称非晶質金
属粉の製造方法、以下先願発明という)。先願発明は高
速回転している浴融金属に対して濡れ性の小さなIE−
ル表面に溶融金属を落下させ、その落下速度より著しく
速いロール周速度によって溶融金属を負圧にすることに
よりキャビテーションを発生させ、溶融金属を微細な溶
融金属滴に分断し、引続いてこれを高速回転している金
属製ドラムの如き回転体に衝突させて極めて速い速度で
冷却させることVCより、非晶質金属粉を得る方法であ
って、合金の化学組成としては溶融金属に対して濡れ性
の大きい金属製ロールに溶融金属を落下させ、該金属製
ロールで急冷して薄いリボン状の非晶質金属とする従来
の方法によって非晶質となるような化学組成の金属およ
び合金(以下合金という)がその対象となるのであるが
、発明者は先願発明の完成当時に一]二記対象合金μ外
の一般の合金を先願発明のようにして急速凝固させると
、極めて微細な結晶粒からなる合金粉が得られることを
見出した。
The inventor previously proposed a method for producing amorphous metal powder, in which the metal powder has a surface layer with low wettability to molten metal and rotates at a circumferential speed of 2 m 7 seconds or more. After the metal is dropped through the nozzle and the molten metal beam is broken into fine molten metal droplets, the molten metal droplets are continuously spread over a distance of 10 m.
A method for producing amorphous metal powder is proposed in which the amorphous metal powder is collided with a metal rotating body rotating at a circumferential speed of F to rapidly solidify it. (hereinafter referred to as the prior invention). The prior invention is an IE with low wettability for the molten metal rotating at high speed.
Molten metal is dropped onto the surface of the roll, and cavitation is generated by applying negative pressure to the molten metal using a roll circumferential speed that is significantly faster than the falling speed, breaking the molten metal into fine molten metal droplets, which are then VC is a method of obtaining amorphous metal powder by colliding it with a rotating body such as a high-speed rotating metal drum and cooling it at an extremely high rate. Metals and alloys (hereinafter referred to as However, at the time of completion of the earlier invention, the inventor discovered that if a general alloy other than the target alloy μ is rapidly solidified as in the earlier invention, extremely fine particles would be formed. It has been found that an alloy powder consisting of crystal grains can be obtained.

本発明はF記の知見に基づいてなされたものである。The present invention was made based on the knowledge described in F.

前i己のように極めて速い速度で溶融状1櫟から冷却さ
れ、凝固した合金粉は、粉末粒子の大小に拘らず数ミク
ロンまたはそれ以下の微細な結晶粒からなる組織を有し
、晶出相も極めて微細であるか、或いは従来法による場
合に晶出する相が基地中rc過飽和に固溶して晶出せず
、焼結時や熱処理時に析出する析出相も極めて微細であ
る。その上水粉末を用いた圧粉体は焼結時における結晶
粒の成長が微細な晶出相や析出相によって阻止されて、
結晶粒の粗大化が軽微であり、強靭な焼結体を得る仁と
ができる。
As in the previous example, the alloy powder that has been cooled from the molten state at an extremely high rate and solidified has a structure consisting of fine crystal grains of several microns or smaller, regardless of the size of the powder particles, and it is difficult to crystallize. The phases are also extremely fine, or the phases that would crystallize in the conventional method are solid dissolved in the rc supersaturated matrix and do not crystallize, and the precipitated phases that precipitate during sintering or heat treatment are also extremely fine. Moreover, the growth of crystal grains during sintering in green compacts using water powder is inhibited by fine crystallized and precipitated phases.
Coarsening of crystal grains is slight, and a tough sintered body can be obtained.

前記のロールは表向力4持1ρ’?41b難く、かつ瞬
間的に微粒子に分”’iar して放出できるためには
溶湯に対していわゆる濡れ性の小さな、換言すれば  
  □瘍れ難い材料から成るか、或いは少なくとも表面
層は濡れ性の小さな材料から成るこ吉が必要であり、黒
鉛モシクはTiN1 SI3N4.5I01A1203
等のセラミックス製のもの、または表向V(これらの層
を有するものが好適である。
The above roll has a surface force of 4 and 1ρ'? 41b In order to be able to split into fine particles instantly and release them, it is necessary to use a material that has low wettability with respect to the molten metal, in other words.
□It is necessary to use a material that is not easy to get rid of, or at least the surface layer is made of a material that has low wettability.
Those made of ceramics, such as, or those having a surface V (having these layers) are suitable.

ロールの周速度が2 m /抄J〕J下ではロール−&
面でキャビア−ジョンが生じ難いので、ロールの周速度
は2rn /秒以」二として溶融金属がLl−ル表面に
衝突したのちこまかに分断されるようVCする。
When the circumferential speed of the roll is 2 m/sho J] J, the roll-&
In order to prevent cavitation from occurring on the surface, the circumferential speed of the roll is set to 2 rn/sec or more, and VC is applied so that the molten metal is finely divided after colliding with the surface of the Ll.

またロールは1個でもよく、或いは狭いロール間隔で相
対向する2個のロールでもよく、前者の場合にけ溶湯が
、落下方向へ回転するロール表面に接してその遠心力の
作用を効果的に受けると共に、融滴が広い範囲に飛散し
ないようにするため、溶湯をロール表面の接線方向に近
く落下させることが好ましく、そのためにはノズルを経
由して[j−ルに供給するのがよい。後者の場合VCは
1」−ル間隙近くに溶湯を供給してやれば狭いロール間
隙を通過する間に相対向して高速回転しているロール表
面の間で容易に負圧になってキャビテーションを生ずる
と共に、両ロールの遠心力によって容易にかつ一層微細
に分断され放出されることになる。両ロール間隔は03
關以下とすればその効果は大きい。二つのロールは同径
かつ同一周速度であれば両ロール中心を結ぶ線に直角な
方向へ放出されるので次工程の回転体へ導入するのに便
である。
Further, the number of rolls may be one, or two rolls facing each other with a narrow roll interval may be used. In the former case, the molten metal comes into contact with the surface of the roll rotating in the falling direction, and the action of the centrifugal force is effectively absorbed. In order to prevent the molten metal from scattering over a wide area, it is preferable to let the molten metal fall close to the tangential direction of the roll surface. For this purpose, it is preferable to supply the molten metal to the roll via a nozzle. In the latter case, VC is 1" - If the molten metal is supplied near the roll gap, it will easily become negative pressure between the surfaces of the rolls rotating at high speed while facing each other while passing through the narrow roll gap, causing cavitation. By the centrifugal force of both rolls, it is easily and finely divided and released. The distance between both rolls is 03
The effect is great if it is less than that. If the two rolls have the same diameter and the same circumferential speed, they will be discharged in a direction perpendicular to the line connecting the centers of both rolls, making it convenient to introduce them into the rotating body for the next process.

上記の如くに回転ロールによって分断された微細な融滴
は次にその下方にある回転体の外面または内向すなわち
回転面に衝突して急速に凝固冷却して粉末になる。この
とき前記のような微細組織にするのに必要な冷却速度は
合金の化学組成によって異なるが、その臨界冷却速度は
例えばおよそ106℃/秒のオーダーであると考えられ
る。回転ドラムの如き回転体を銅もしくは銅合金または
鋼製とし、かつ充分な熱容量を持たせておいて周速度を
1Qrn/秒以上となるように回転させておいてこれに
衝突させるとかなりの広範囲の化学組成の溶融合金を微
細組織を有する合金粉として凝固させることができる。
The fine molten droplets separated by the rotating roll as described above then collide with the outer or inward surface of the rotating body located below, that is, the rotating surface, and are rapidly solidified and cooled into powder. At this time, the cooling rate necessary to form the above-mentioned fine structure varies depending on the chemical composition of the alloy, but the critical cooling rate is considered to be, for example, on the order of about 106° C./second. If a rotating body such as a rotating drum is made of copper, copper alloy, or steel, has sufficient heat capacity, is rotated at a circumferential speed of 1 Qrn/sec or more, and collides with it, it can spread over a considerable area. A molten alloy having a chemical composition of can be solidified as an alloy powder having a fine structure.

この場合衝突面は回転ドラムの内面または外面いずれで
も同様な効果が得られ、また中空円筒体でなく円柱体で
も良い。 ′次に添付図面を参照して本発明の実施態様
について説明する。
In this case, the collision surface can be either the inner or outer surface of the rotating drum to achieve the same effect, and it may also be a cylindrical body instead of a hollow cylinder. 'Next, embodiments of the present invention will be described with reference to the accompanying drawings.

るつぼ1の中には合金溶湯2がはいっており、るつぼの
底の湯口からノズル3を通して、その下方に設けられた
1コール4に該溶湯2が供給される。
A molten alloy 2 is placed in a crucible 1, and the molten metal 2 is supplied from a sprue at the bottom of the crucible through a nozzle 3 to a call 4 provided below.

ロール4は図示しない駆動装置によって高速回転される
ようになっており、ノズル3は水冷ジャケット5によっ
て外部から水冷して溶損しないようにしておくとよい。
The roll 4 is rotated at high speed by a drive device (not shown), and the nozzle 3 is preferably externally cooled by a water cooling jacket 5 to prevent it from melting.

ロール4は前記したように1個の場合の例を第1図に、
また2個のロール4a、4bの対より成る場合の例を第
2図に示しである。
As mentioned above, an example in which there is only one roll 4 is shown in Fig. 1.
FIG. 2 shows an example of a pair of rolls 4a and 4b.

ロール40丁方に回転体7が設けられていて、ロール4
で分断された融滴6が回転体7に衝突して急速に凝固冷
却するようにしである。回転体7は第1〜2図または第
4図7 k> I/C示すように円筒体或いは第3図V
C示すような中央から左右対称に截頭円錐面を治する形
状の回転体7aでもよい。
A rotating body 7 is provided on each side of the roll 4.
The broken molten droplets 6 collide with the rotating body 7 and are rapidly solidified and cooled. The rotating body 7 is a cylindrical body as shown in Figs.
The rotating body 7a may have a shape that straightens the truncated conical surface symmetrically from the center as shown in C.

第1〜2図は円筒体の外周面を1史用する例を、第4図
は円筒体の内周面を使用する例を示している。
1 and 2 show an example in which the outer circumferential surface of the cylindrical body is used for one cycle, and FIG. 4 shows an example in which the inner circumferential surface of the cylindrical body is used.

回転体6のf方には合金粉8を収容する容器9を備えて
おく。
A container 9 containing alloy powder 8 is provided on the f side of the rotating body 6.

なお、合金粉を連続的に製造するに当って一回転体7.
7aiたけ7bを強制冷却しながら操業することが臨界
冷却速度以上の冷却速度を確保するため望ましい。
In addition, when producing alloy powder continuously, one rotating body 7.
It is desirable to operate while forcibly cooling the tubes 7ai and 7b in order to ensure a cooling rate higher than the critical cooling rate.

次に第3図に示す装置を使用して本発明の方法を実施し
た例について説明する。
Next, an example of implementing the method of the present invention using the apparatus shown in FIG. 3 will be described.

高速度工具鋼5KH9、合金工具鋼S K D 61、
スデンレス鋼5US304、鉄基超耐熱合金A、 −2
86またげニッケル基超耐熱合金インコネル600の溶
湯を石英管製のノズル3を経由して黒鉛製ロール4a、
4bの間隙に向けて供給した。
High speed tool steel 5KH9, alloy tool steel S K D 61,
stainless steel 5US304, iron-based super heat-resistant alloy A, -2
The molten metal of Inconel 600, a nickel-based superheat-resistant alloy, is passed through a quartz tube nozzle 3 to a graphite roll 4a,
It was supplied toward the gap 4b.

Iノール4a、4bは径80alIIで0.1mの間隙
をおいて相対向し、それぞれ6000 r、p、rn、
(周速25.1’m/抄)で回転させておいた。ロール
4a。
The I-knolls 4a and 4b have a diameter of 80 alII and face each other with a gap of 0.1 m, and have a diameter of 6000 r, p, rn, respectively.
(peripheral speed of 25.1'm/sh). Roll 4a.

′::1 4b間を通過した溶融金属滴は高速で下向きに放出し、
250 (1r、p、m、  で回転する最大径200
間、両端面径180M、厚さ20mの銅製回転体7aの
周面に衝突させて急冷して合金粉8とした。
'::1 The molten metal droplets that passed between 4b are ejected downward at high speed,
250 (1r, p, m, maximum diameter 200
During this time, the powder was rapidly cooled by colliding with the circumferential surface of a copper rotating body 7a having a diameter of 180 M on both ends and a thickness of 20 m, to obtain alloy powder 8.

得られた合金粉は20〜500 ミクロンの大きさであ
った。これらの合金粉は検鏡の結果、粉末粒子の大きさ
に関係なく結晶粒の粒径はいずれの合金の場合でも約5
ミクロンであって、従来法によって製造された同一化学
組成の合金粉に比べて結晶粒が著しく微細で、かつ均一
であった。
The alloy powder obtained had a size of 20 to 500 microns. As a result of microscopic examination of these alloy powders, regardless of the size of the powder particles, the grain size of the crystal grains is approximately 5.
The crystal grains were significantly finer and more uniform than the alloy powder of the same chemical composition produced by the conventional method.

以上説明したように本発明の方法によれば溶融金属に濡
れにぐい材料で作ったロールを高速回転させておいて、
その回転面に溶湯を落下供給し7、溶湯内に生ずる負圧
によりキャビテーションを起させて微細な融滴に分断し
、遠心力によって高速で放出して熱伝導性のよい回転体
の回転面に衝突させ、臨界冷却速度以上の速度で急速に
凝固冷却させるので容易に微細で、ばらつきの小さい結
晶組織を有する合金粉を得ることができる。また熱伝導
のよい金属回転体の回転面に衝突させて急冷凝固させる
ので、冷却液体を使用して急冷する従来方法に比較する
と著しく速い冷却速度とすることができるので、一層広
い化学組成範囲の合金を微細組iIkを有する合金粉と
することができるようになるなど、その工業的利用価値
はきわめて大きい。
As explained above, according to the method of the present invention, a roll made of a material that does not easily get wet with molten metal is rotated at high speed,
The molten metal is dropped and supplied to the rotating surface 7, and the negative pressure generated within the molten metal causes cavitation to break up into fine molten droplets, which are then released at high speed by centrifugal force onto the rotating surface of the rotating body, which has good thermal conductivity. Since the particles are collided and rapidly solidified and cooled at a rate higher than the critical cooling rate, it is possible to easily obtain an alloy powder having a fine crystal structure with small variations. In addition, since rapid solidification occurs by colliding with the rotating surface of a metal rotating body with good thermal conductivity, the cooling rate can be significantly faster than that of the conventional method of rapid cooling using a cooling liquid, allowing for a wider range of chemical composition. Its industrial utility value is extremely large, as it has become possible to turn the alloy into an alloy powder having a microstructure iIk.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の実施態様の要部を図解的に示す
一部破断立面図、第2図は同じり【〕−ル2個の場合の
実施態様を示す同様な立面図、第3図は同じく回転体の
異なる他の実施態様を示す同様な立面図、第4図は同じ
く回転体の内周面を使用したその他の実施態様を示す同
様な立面図である。 ■・・・るつぼ、2・・・溶融金属、3・・・ノズル、
4・・・ロール、4a14b・・・ロール対、5・・・
冷却用ジャケット、6・・・溶融金属滴、7.7a、7
b・・・回転体、8・・・金属粉、9・・・容器 出願人代理人  弁理士 鴨志FL(次 男第7図 第2図 第3区 第4図
Fig. 1 is a partially cut-away elevation view schematically showing the main parts of an embodiment of the method of the present invention, and Fig. 2 is a similar elevation view showing an embodiment in the case of two identical []-rules. , FIG. 3 is a similar elevational view showing another embodiment of the rotating body, and FIG. 4 is a similar elevational view showing another embodiment using the inner peripheral surface of the rotating body. ■... Crucible, 2... Molten metal, 3... Nozzle,
4...Roll, 4a14b...Roll pair, 5...
Cooling jacket, 6... Molten metal droplets, 7.7a, 7
b...Rotating body, 8...Metal powder, 9...Container Patent attorney Patent attorney FL Kamoshi (second son, Figure 7, Figure 2, Ward 3, Figure 4)

Claims (1)

【特許請求の範囲】[Claims] 溶融金属に対して濡れ性の小さな表面層を有し2m/秒
以−Fの周速度で回転し7ているロール表向に、溶融金
属をノズルを経由して落下させ、該溶融金属を微細な溶
融金属滴に分断したのち、引続いて該溶融金属滴を10
m/秒以上の周速度で回転する金属製回転体に衝突させ
て急冷凝固させる微細組織合金粉の製造方法。
The molten metal is dropped through a nozzle onto the surface of a roll that has a surface layer with low wettability for the molten metal and is rotating at a circumferential speed of 2 m/sec or more -F, and the molten metal is finely dispersed. After dividing the molten metal droplets into 10
A method for producing microstructured alloy powder, in which it is collided with a metal rotating body that rotates at a circumferential speed of m/s or more and is rapidly solidified.
JP3542882A 1982-03-06 1982-03-06 Manufacture of alloy powder with fine structure Granted JPS58153708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3542882A JPS58153708A (en) 1982-03-06 1982-03-06 Manufacture of alloy powder with fine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3542882A JPS58153708A (en) 1982-03-06 1982-03-06 Manufacture of alloy powder with fine structure

Publications (2)

Publication Number Publication Date
JPS58153708A true JPS58153708A (en) 1983-09-12
JPS6225723B2 JPS6225723B2 (en) 1987-06-04

Family

ID=12441588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3542882A Granted JPS58153708A (en) 1982-03-06 1982-03-06 Manufacture of alloy powder with fine structure

Country Status (1)

Country Link
JP (1) JPS58153708A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128507A (en) * 1979-03-23 1980-10-04 Allied Chem Manufacture of glassy metal powder and its apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128507A (en) * 1979-03-23 1980-10-04 Allied Chem Manufacture of glassy metal powder and its apparatus

Also Published As

Publication number Publication date
JPS6225723B2 (en) 1987-06-04

Similar Documents

Publication Publication Date Title
US3862658A (en) Extended retention of melt spun ribbon on quenching wheel
US4215084A (en) Method and apparatus for producing flake particles
Savage et al. Production of rapidly solidified metals and alloys
JP2911908B2 (en) Powder sintering and molding method
US5102620A (en) Copper alloys with dispersed metal nitrides and method of manufacture
US3625677A (en) Aluminum alloys
US4770718A (en) Method of preparing copper-dendritic composite alloys for mechanical reduction
US4961457A (en) Method to reduce porosity in a spray cast deposit
EP0017723B1 (en) Method and apparatus for making metallic glass powder
JPH0149769B2 (en)
US3216076A (en) Extruding fibers having oxide skins
US4355057A (en) Formation of alloy powders through solid particle quenching
JPS58153708A (en) Manufacture of alloy powder with fine structure
JPH0514779B2 (en)
JPH0754019A (en) Production of powder by multistage fissure and quenching
US4377375A (en) Apparatus for forming alloy powders through solid particle quenching
Raman et al. Rapidly solidified powder produced by a new atomization process
US5302182A (en) Method of preparing particles with a controlled narrow distribution
JPS586907A (en) Manufacture of amorphous metallic powder
JPH10158755A (en) Production of bcc type hydrogen storage alloy
JPS58120702A (en) Manufacture of rapid coagulated aluminum alloy powder
Singer et al. Centrifugal spray forming of large-diameter tubes
JPH0366361B2 (en)
JPH075937B2 (en) Method for producing rapidly solidified metal-based composite powder
JPS59166606A (en) Preparation of amorphous metal fine powder