JPS58153093A - Heat exchanger used in thermoelectric generator - Google Patents

Heat exchanger used in thermoelectric generator

Info

Publication number
JPS58153093A
JPS58153093A JP57033090A JP3309082A JPS58153093A JP S58153093 A JPS58153093 A JP S58153093A JP 57033090 A JP57033090 A JP 57033090A JP 3309082 A JP3309082 A JP 3309082A JP S58153093 A JPS58153093 A JP S58153093A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat transfer
thermoelectric
heat
grease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57033090A
Other languages
Japanese (ja)
Other versions
JPS6131799B2 (en
Inventor
Kenichi Hirabayashi
健一 平林
Shigeru Muraki
村木 滋
Hideaki Sugiura
英明 杉浦
Tatsu Suga
菅 達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP57033090A priority Critical patent/JPS58153093A/en
Publication of JPS58153093A publication Critical patent/JPS58153093A/en
Publication of JPS6131799B2 publication Critical patent/JPS6131799B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce the resistance of heat transfer, by pushing out superfluous grease when a heat-conductive grease is applied to the contact surfaces of fins and heat exchanger tubes, and thereby enabling to seal the grease only in the air gaps formed when the fins and the heat exchanger tubes are brought into direct contact with each other. CONSTITUTION:Stay bolts 16 are disposed at proper intervals between flanges of an upper and a lower retainer plates 15, 15 so that a required pressure is applied to the contact surfaces of heat exchanger tubes 9, 10 and sub-module units 8 with fins held between the upper and lower retainer plates 15 by imparting tension to the stay bolts 16 by tightening nuts 17 on the outside of the flanges of the retainer plates 15. Therefore, superfluous grease applied a little excessively to the contact surfaces of the heat exchanger tubes 9, 10 and fins 7 other than the amont of grease required for filling up the air gaps is pushed outwards and they are brought into direct contact with each other, so that the heat conductive grease can be sealed only in the air gaps formed between them in the above state.

Description

【発明の詳細な説明】 この発明は、熱電素子を利用して熱を直接電気に変換す
るための熱電発電機用熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger for a thermoelectric generator for directly converting heat into electricity using thermoelectric elements.

新エネルギ〜開発および省エネルギー技術開発の一環と
して、海底と海面の昌11差の如く量は膨大であっても
温度差が小さ〈従来利用さnzかった熱の利用に関する
研究開発が〕゛役近内外で活発((行なわ几ている。こ
のような低熱落差の熱を直接電気に変換する技術に「熱
電素子による発電」がある。
As part of the development of new energy and the development of energy-saving technologies, research and development on the use of heat that has not been used in the past is being undertaken, even though the amount is huge, the difference in temperature is small, such as the difference in energy between the ocean floor and the ocean surface. ``Power generation using thermoelectric elements'' is a technology that directly converts heat with such a low thermal drop into electricity.

熱電素子とは、熱電性能(熱を電気に変換する、性能〕
のすぐnだN型とP型の半導体であって、・その一方の
面金加熱し、他方の而を冷却す2)とそ型とP型とで加
熱、冷却面と起電力の方向との関係は逆になる。したが
って、第1図に示す如く、熱電素子1のP型の熱電素子
Ii’、p2.・・・・・・とN型の熱電素子N、、N
2・・・・・・と全交互に並べ、隣゛り合った熱電素子
の2つずつを上側ではPlとN、 、 P2とN2゜・
・・、下側ではN1とP2+・・・と言う具合に金属電
極片2で千鳥に接続し、いずnか一方の面の電極片を加
熱し、他の面の電極片を冷却する、換言すnばP型、N
型の熱電素子全電気的には直列に、熱的には並列に接合
してサブモジュールに1とめ、その一方の面を加熱し、
他方の面を冷却して両面間に温度差を与えると、両端の
熱電素子に接続さ几た端子間に起電力が発生する。この
熱による直接的な電力の発生現象は、ゼーベック、ペル
チェ、トムソンの3効果およびジュール発熱、熱伝導と
いう5つの基礎的な物理現象が互いに密接にかかわりあ
った結実現わ几るものである。
A thermoelectric element has thermoelectric performance (ability to convert heat into electricity).
N-type and P-type semiconductors, one side of which is heated and the other side is cooled. The relationship is reversed. Therefore, as shown in FIG. 1, the P-type thermoelectric elements Ii', p2. ...and N-type thermoelectric elements N,,N
2......, all arranged alternately, and the two adjacent thermoelectric elements are arranged on the upper side as Pl and N, , P2 and N2゜.
..., on the lower side, N1 and P2+... are connected in a staggered manner with metal electrode pieces 2, and the electrode pieces on one side are heated and the electrode pieces on the other side are cooled. In other words, n is P type, N
The type of thermoelectric element is electrically connected in series and thermally in parallel, fixed to the submodule, and one side of it is heated.
When the other side is cooled to create a temperature difference between the two sides, an electromotive force is generated between the terminals connected to the thermoelectric elements at both ends. This direct generation of electric power from heat is the result of five basic physical phenomena that are closely related to each other: the Seebeck, Peltier, and Thomson effects, Joule heat generation, and heat conduction.

−例として、海洋温度領域において最も高性能を発揮す
るとさnているビスマス・テルル系熱′!−に素子によ
り構成さ几ンを熱電サブモジュールの列を第2図(a)
、 (b) (C) ((f)に示−J−0(a)は該
ザブモジュールの上面、(b)は正面、(C)は下面、
(のは側面を示す。
-For example, bismuth-tellurium heat, which is said to exhibit the highest performance in the ocean temperature range! - Figure 2 (a) shows a row of thermoelectric submodules made up of elements.
, (b) (C) (shown in (f)-J-0 (a) is the top surface of the sub module, (b) is the front surface, (C) is the bottom surface,
(The indicates the side.

熱電素子lは直径13 ms 、厚さl。5關の円板状
全なし、P型及びN型素子を各101固、都合2o飼の
素子企図に示す如く2列に、各列ではP型とN型とが交
互に並び横断方向の2個はP型とN型とが並ぶように配
設し、銅板より成る電極片2で上面では第2図(a)に
示す如く横断方向に並んだP型N型の2個ずつを接続し
、下面では第2図(C)に示す如く、モジュールの長平
方向に隣合ったP型N型の2個全線瓦積みの如く互い違
いに接続し、両端の下面に電極片2の付かない熱電素子
の下面には電極扱2と同様の端子板3を接続して構成さ
nている。
The thermoelectric element l has a diameter of 13 ms and a thickness l. 5 disc-shaped, P-type and N-type elements each with 101 pieces each, arranged in 2 rows as shown in the 2-hole element plan, with P-type and N-type elements arranged alternately in each row. The electrodes are arranged so that the P type and the N type are lined up, and the two P and N type pieces arranged in the transverse direction are connected on the upper surface with an electrode piece 2 made of a copper plate. On the bottom surface, as shown in Figure 2 (C), two thermoelectric elements of P type and N type adjacent to each other in the longitudinal direction of the module are connected alternately like a full-wire tile stack, and thermoelectric elements without electrode pieces 2 are attached to the bottom surface of both ends. A terminal plate 3 similar to the electrode handle 2 is connected to the lower surface of the electrode.

電イタ板2及び端子板3は電気的導体であると同時に伝
熱面とも成る。熱電ザブモジュール4の一方の面を加熱
し、他の而を冷却するために、例えば第3図に示す如く
外面が平面より成り内面が円筒状の四角管5.6が従来
実験室規模の熱電発電機用熱交換器に用いらnた。第3
図において四角管5は低温パイプであり内部に冷水金泥
し、四角管6は高温バイブであり、内部に温水を流して
いる。
The power plate 2 and the terminal plate 3 serve as both electrical conductors and heat transfer surfaces. In order to heat one side of the thermoelectric sub module 4 and cool the other side, for example, as shown in FIG. Used in heat exchangers for generators. Third
In the figure, square tube 5 is a low-temperature pipe filled with cold water, and square tube 6 is a high-temperature vibrator with hot water flowing inside.

冷水と温水の流動方向は互い((逆方向となっており、
こうすることにより熱電サブモジュール4全介して低温
パイプ5と高温バイブロとの間で熱交換が行なわnる場
合、温度差はどこも同じにすることができる。上述の低
温パイプ5、サブモジュール4、高温バイブロを順次多
段に積重ねることにより任意の発電量を得ることが出来
る。
The flow directions of cold water and hot water are opposite to each other.
By doing so, when heat exchange is performed between the low temperature pipe 5 and the high temperature vibro through the entire thermoelectric submodule 4, the temperature difference can be made the same everywhere. By sequentially stacking the above-mentioned low temperature pipe 5, submodule 4, and high temperature vibro in multiple stages, it is possible to obtain an arbitrary amount of power generation.

さて、上述の四角管の伝熱管は、アルミニウム合金の押
出形材であり、実用規模の大型熱電発電機用熱交換器の
場合には、加工上の寸法公差や、部分的な温度差に基く
管の歪みにより管が熱電モジュールの接着面から剥離し
たり、熱電サブモジュール内の接着部、素子自体、ハン
ダ付は部に力が掛り破損する恐九がある。又、実用規模
の熱交換器に必要な海水に対する耐食性が不充分である
Now, the square heat exchanger tube mentioned above is an extruded aluminum alloy shape, and in the case of a heat exchanger for a large thermoelectric generator on a practical scale, it is necessary to Due to distortion of the tube, the tube may peel off from the adhesive surface of the thermoelectric module, and there is a risk that force will be applied to the adhesive parts, the elements themselves, and the soldered parts in the thermoelectric submodule, causing damage. Furthermore, the corrosion resistance against seawater required for a practical-scale heat exchanger is insufficient.

こit、らの欠点全改善するために、実用規模の大型熱
交換器に対する伝熱構造として、第4図に示す如く、高
温及び低温用伝熱管として銅合金の円管を用いた場合、
一方の而にこ几らの円管の外周面に密着するほぼ半円形
断面の凹面を有し、他面に上記熱電サブモジュール4の
電極片2に密着する平面ケ有するアルミニウム押出形材
に電気絶縁性アルマイト処理を施した伝熱片7全熱電サ
ブモジユール4の各2枚を1組として擾手方向に並べ、
(第4図には熱電サブモジュール4は一枚ノミi示す〕
その上下面に熱伝導性接着剤で接着して一体化した伝熱
片付サブモジュールユニット8を構成し、第5図に示す
如く、該ユニット8の両側の凹面の一方に低温伝熱管9
が、他方の凹面には高温伝熱管lOが接触する如く、伝
熱管9、lOとユニット8とを交互に枠構造11内に多
段に積重ねて保持して構成さnた熱交換器が提案されて
いる。
In order to improve all of these drawbacks, as shown in Figure 4, as a heat transfer structure for a large practical scale heat exchanger, when copper alloy circular tubes are used as high temperature and low temperature heat transfer tubes,
The aluminum extruded shape has a concave surface with an approximately semicircular cross section that closely contacts the outer peripheral surface of the circular tube on one side, and a flat surface that closely contacts the electrode piece 2 of the thermoelectric submodule 4 on the other side. A set of two each of the heat transfer pieces 7 and the thermoelectric submodules 4 which have been subjected to insulating alumite treatment are arranged in the direction of the arm,
(The thermoelectric submodule 4 is shown in one chisel i in Fig. 4)
A sub-module unit 8 with a heat transfer unit is formed by bonding the upper and lower surfaces with a thermally conductive adhesive, and as shown in FIG.
However, a heat exchanger has been proposed in which heat exchanger tubes 9, 10 and units 8 are alternately stacked and held in multiple stages within a frame structure 11 so that the high temperature heat exchanger tubes 10 are in contact with the other concave surface. ing.

この構成によnば、薄肉の伝熱管9.lOと厚肉の伝熱
片7とは一体でなくなるため膨張は夫々自由となり、上
記の欠点は改善さnる。しかし伝熱管≦)、lOと伝熱
片7との間の接触はメタル・タレチにはなっているが、
相互間に寸法公差があるため、全面的に完全に隙間なく
接触することはあり得す、エアギヤラフ゛が生ずること
は避けら几ない3エアギャップが生ずると大きな伝熱抵
抗が生ずる。
According to this configuration, the thin-walled heat exchanger tube 9. Since the lO and the thick heat transfer piece 7 are no longer integrated, they can expand freely, and the above-mentioned drawbacks are improved. However, the heat transfer tube ≦), although the contact between lO and the heat transfer piece 7 is a metal slope,
Since there are dimensional tolerances between them, it is impossible for them to contact each other completely without gaps, but it is inevitable that air gear roughness will occur.3 If an air gap occurs, a large heat transfer resistance will occur.

こA全改善するには何機物−や無機物よりなる良好な熱
体、導率全有するグリース全伝熱片7と伝熱・19.1
0との接合面に塗布する1−と(・てより工′rギャッ
プ會埋め、伝熱抵抗を減少させるのがよい。
What is the best way to improve this? A good heating body made of organic or inorganic materials, grease with good conductivity, total heat transfer piece 7 and heat transfer. 19.1
It is better to apply 1 to the joint surface with 0 to fill the gap and reduce heat transfer resistance.

しかし、いかに熱伝導性の良いグリースを使用したとし
ても、金属の熱伝導率には及ばず、伝熱管と伝熱片とは
メタル区タッチとするのが最良であり、グリースを塗布
し7. 、e、めに両者の間にグリースの層が全面的に
形成さf’した場合は逆効果を招くことになり、両者を
直接々触させた場合にどうしても生ずるエアギャップに
だけグリースが封入さ几ている状態にすることが望゛ま
しい。
However, no matter how good the thermal conductivity of grease is used, it cannot match the thermal conductivity of metal, so it is best to have metal contact between the heat transfer tube and the heat transfer piece. If a layer of grease is formed entirely between the two, it will have the opposite effect, and the grease will be sealed only in the air gap that inevitably occurs when the two are brought into direct contact. It is desirable to keep it in a cool state.

伝熱片7と伝熱管sr、loとは、夫々の口直で相互に
押圧さ几るが倉)tだけでは両者の間の余分のグリース
を押し出すのに必要な締付力金得るのに十分ではない。
The heat transfer piece 7 and the heat transfer tubes SR and LO are pressed against each other directly, but it is not possible to obtain the tightening force necessary to push out the excess grease between them with T alone. Not enough.

本発明は、伝熱片付熱電素子サブモジュールと伝熱管と
毛τ交′ri、に多段に積重ねてこ714−枠構造で保
持し伝熱片と伝熱管の接触面に熱伝導性グIJ−ス全塗
布して成る熱電発電機用熱交換器において、との間の押
圧力が得られるような構造を有する熱交換器で促洪すも
ことを目的とする。
In the present invention, a thermoelectric element sub-module with a heat transfer piece, a heat transfer tube, and a capillary τ'ri are stacked in multiple stages and held in a lever 714-frame structure, and a thermally conductive glue IJ- It is an object of the present invention to provide a heat exchanger for a thermoelectric generator completely coated with a heat exchanger having a structure such that a pressing force can be obtained between the heat exchanger and the heat exchanger.

以下、不発明をその実施例を示す図面にもとfいて詳細
に説明する。
Hereinafter, the invention will be described in detail with reference to drawings showing embodiments thereof.

第6図に示す実施例の熱交換器は紙面の都合で、中間部
が省略されている。電熱片付サブモジュール8と伝熱管
9.10とは熱交換器の長手方向に適当な;、i1隔で
配置さn1電熱片7の幅をおいて対向して設けらnたl
対のサイドガイド11の間に交互に多段に積重ねて両側
面をサイドガイド11に保持さルる。両側のサイドガイ
ド11の上部と下部は〜熱交換器の全長1・てわ之って
設けらルた111形1判より成る縦ノi¥i :フレー
ム12に、第7図に示す如くボルト13で固定さ1′シ
ている。上下の夫々の縦通フレーム12は適当な間隔で
設けた横梁14により左右の縦通フレームが所定の間隔
を保荷して結合さ扛ている。
In the heat exchanger of the embodiment shown in FIG. 6, the middle portion is omitted due to space constraints. The electric heating unit sub-module 8 and the heat exchanger tubes 9 and 10 are arranged at appropriate intervals in the longitudinal direction of the heat exchanger, and are provided facing each other with a width of n1 electric heating pieces 7 between them.
They are stacked alternately in multiple stages between pairs of side guides 11, and both sides are held by the side guides 11. The upper and lower parts of the side guides 11 on both sides are vertical holes made of 111 type 1 size, and are installed with the total length of the heat exchanger. It is fixed at 13 and 1'. The upper and lower longitudinal frames 12 are connected to each other by cross beams 14 provided at appropriate intervals, with the left and right longitudinal frames maintaining a predetermined interval.

こ才tらのサイドフレーム11.縦通フレーム’2、横
梁14により立体的な枠構造が形成さ扛る。
Side frame 11. A three-dimensional frame structure is formed by the longitudinal frame 2 and the horizontal beams 14.

 8− −に記枠溝造の左右のサイドフレーム11の間に積重ね
ら;Q、7v伝熱片付サブモジュールユニット8と伝熱
管9.lOの集合体の最−ト及び最下の伝熱管の半面は
+Bに伝熱片7のみで支持さnるが、その平面側、即ち
集合体の上下・面は、第7図に示す如く溝形材15aと
平板15bとを溶接して構成した押え板15によシ押え
らnている。この押え板15は前記横梁14全避けてそ
几らの間に設けらnでいる。平板15bは溝形材15a
よりも両側方に突出して7ランジを形成している。
8- - Stacked between the left and right side frames 11 of frame groove structure; Q, 7v heat transfer submodule unit 8 and heat transfer tubes 9. Half of the top and bottom heat transfer tubes of the IO assembly are supported by only the heat transfer piece 7 at +B, but the flat side, that is, the upper and lower sides of the assembly, is as shown in Figure 7. It is held down by a holding plate 15 constructed by welding a grooved member 15a and a flat plate 15b. This presser plate 15 is provided between the horizontal beams 14, completely avoiding them. The flat plate 15b is a channel member 15a.
It protrudes to both sides to form 7 lunges.

上下の押え板15の7ランジの間には適当な間隔でステ
ーポルM6が設けらnており、上下の押え板の7う/ジ
の外側に設けたナツト17’i締めることにより、ステ
ーポル)16に張力を付与し〜、こnによって上下の押
え板15に挾持さ扛た伝熱片付サブモジュールユニット
8と伝熱管9.lOの接触面には所望の押圧力を掛ける
ことができる。その結果、伝熱片7と伝熱管9.lOと
の接触面に多少の余裕金具−C塗布さ几ているグリース
のうちエアギャップの充填に必要な分身外の余分のグリ
ースは外部に押し出され、両部材は直接接触し、その際
出来るエアギャップにのみ熱伝導性グリースを封入する
ことができる。
Staples M6 are provided at appropriate intervals between the 7 lunges of the upper and lower presser plates 15, and the staples 16 are tightened by tightening nuts 17' provided on the outside of the 7 lunges of the upper and lower presser plates. By applying tension to the sub-module unit 8 and the heat transfer tube 9 held between the upper and lower presser plates 15. A desired pressing force can be applied to the contact surface of IO. As a result, the heat transfer piece 7 and the heat transfer tube 9. Among the grease that is applied to the contact surface with lO, the excess grease that is not necessary for filling the air gap is pushed out, and the two parts come into direct contact, and the air that is created at this time is pushed out. Thermal conductive grease can be filled only in the gap.

第8図及び第9図に示す他の実施例では、上記実施例の
ステーポル)16の代りに、押え板15の7ランジと縦
通フレーム12の水平7ランジとの間に短かいポル)1
8ffi設け、ナラ)19’r締めることにより、上下
の押え板15どうしを上下のポル)15とその間の枠構
造とを介して引き寄せる方向に力を掛けるようにした池
は前記実施例と全く同じである。
In another embodiment shown in FIGS. 8 and 9, instead of the stay pole 16 of the above embodiment, a short pole 1 is provided between the 7 langes of the holding plate 15 and the 7 horizontal langes of the longitudinal frame 12.
The pond in which the upper and lower holding plates 15 are applied in the direction of drawing them together via the upper and lower poles 15 and the frame structure between them is exactly the same as in the previous embodiment. It is.

以上の如く、不発明によnば伝熱片と伝熱管との接触面
に熱伝導性グリースを塗布した場合に余分のグリースを
押し出し、両部材が直接接触した場合のエアギャップに
のみグリースを封入することができるので伝熱抵抗全大
幅に減少させることができ、熱電発電効率の向りに顕著
な効果全行る。
As described above, according to the invention, when thermally conductive grease is applied to the contact surface between the heat transfer piece and the heat transfer tube, excess grease is pushed out and grease is applied only to the air gap when the two members are in direct contact. Since it can be encapsulated, the total heat transfer resistance can be significantly reduced, which has a significant effect on the thermoelectric power generation efficiency.

鵠1図は熱電素子を用いた発電原理を説明する図式同第
2図(a)(b)(c)(のけ夫々熱電素子ザブモジュ
ールの1例の上面図、正面図、下面図及び側面図、第3
図は実験室規模の熱電発電機用熱交換器の要部を示す斜
視図、第4図は実用規模の熱交換器に使用さ7しる伝熱
片付サブモジュールユニットの1例を示す斜視図、第5
図は第4図のサブモジュールユニットと円管伝熱管と全
便用した熱交換器の要部構造を示す断面図、第6図は不
発明の実施例の熱交換器の中央部全省略して示す側面図
、第7図は第6図中の■−■線による断面の下部を詳細
に示す断面図、第8図及び第9図は不発明の他の実施例
の第6図、第7図と同様の図である。
Figure 1 is a diagram explaining the principle of power generation using thermoelectric elements. Figure, 3rd
The figure is a perspective view showing the main parts of a heat exchanger for a laboratory-scale thermoelectric generator, and Figure 4 is a perspective view showing an example of a submodule unit with a heat transfer unit used in a practical-scale heat exchanger. Figure, 5th
The figure is a cross-sectional view showing the main structure of a heat exchanger that uses the sub-module unit and circular heat exchanger tubes shown in Figure 4, and Figure 6 shows the central part of the heat exchanger according to the uninvented embodiment. 7 is a sectional view showing in detail the lower part of the cross section taken along the line ■-■ in FIG. 6, and FIGS. 8 and 9 are side views showing other embodiments of the invention. FIG.

l・・・熱電素子   2・・・電極片4・・・サブモ
ジュール7・・・伝熱片8・・・伝熱片付サブモジュー
ルユニット9・・・低温伝熱管  lO・・・高温伝熱
管11 、12 、14・・・枠構造15・・・押え板
16・・・ステーボルト18・・・ボルト11− 第3図 第4図 第5図
l... Thermoelectric element 2... Electrode piece 4... Sub module 7... Heat transfer piece 8... Sub module unit with heat transfer piece 9... Low temperature heat transfer tube lO... High temperature heat transfer tube 11, 12, 14... Frame structure 15... Pressing plate 16... Stay bolt 18... Bolt 11- Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] N型とP型の熱電素子を交互に平板電極片により電気的
1に直列に熱的に並列に接続し、片側の電極片外側全加
熱面、他の側の電・瞳片の外側全冷却面として構成した
熱電サブモジュールを、−面に高温又は低温伝熱管の外
周面に密着する形状を有する凹面、他面に上記熱電サブ
モジュールの冷却面又は加熱面に密着する平面を有する
伝熱片の2枚によりサンドウィッチ状に挾みその接触面
を熱伝導性接着剤で接着して一体の伝熱片付熱電サブモ
ジュールユニットヲ構成1〜、該ユニットの両側の凹面
の一方には高温伝熱管が、他方には低温伝熱管が接触す
る如く、伝熱管と上記ユニットとを交互に枠構造内に多
段に積重ねて保持し、上記ユニットの伝熱片の凹面と上
記伝熱管との接触面にニアギャップ金属めるため熱伝導
性グリースを塗布して成る熱電発電機用熱交換器におい
て、上記の多段に積重ねらt″した伝熱片付熱伝ザブモ
ジュールユニットと伝熱管の集合体の上下mt夫々押え
板で押え、上下の押え板どうしをステーボルトにより直
接、又は上記枠構造ケ介してボルトにより、適当な張力
で引き付けることにより、上記の伝熱片と伝熱管とを適
度の押圧力で圧接せしめたことを特徴とする熱電発電機
用熱交換器。
N-type and P-type thermoelectric elements are alternately connected electrically in series and thermally in parallel using flat plate electrode pieces, with the entire outside heating surface of the electrode piece on one side and the outside cooling of the electric and pupil pieces on the other side. A heat transfer piece having a concave surface having a shape that closely contacts the outer peripheral surface of a high temperature or low temperature heat transfer tube on the negative side and a flat surface that closely contacts the cooling surface or heating surface of the thermoelectric sub module on the other surface. The two pieces are sandwiched together and their contact surfaces are bonded with a thermally conductive adhesive to form an integrated thermoelectric submodule unit with a heat transfer unit.Construction 1~, one of the concave surfaces on both sides of the unit is equipped with a high temperature heat transfer tube. However, the heat exchanger tubes and the unit are alternately stacked and held in a frame structure in multiple stages so that the low-temperature heat exchanger tube is in contact with the other, and the contact surface between the concave surface of the heat exchanger piece of the unit and the heat exchanger tube is In a heat exchanger for a thermoelectric generator, which is made of a near-gap metal coated with thermally conductive grease, the upper and lower parts of the above-mentioned multi-stage stacked heat transfer sub module unit with heat transfer pieces and an assembly of heat transfer tubes. By holding each mt with a holding plate and pulling the upper and lower holding plates together with an appropriate tension with a stay bolt directly or with a bolt through the frame structure, an appropriate pressing force is applied to the heat transfer piece and the heat transfer tube. A heat exchanger for a thermoelectric generator, characterized in that the heat exchanger is pressed into contact with the thermoelectric generator.
JP57033090A 1982-03-04 1982-03-04 Heat exchanger used in thermoelectric generator Granted JPS58153093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57033090A JPS58153093A (en) 1982-03-04 1982-03-04 Heat exchanger used in thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57033090A JPS58153093A (en) 1982-03-04 1982-03-04 Heat exchanger used in thermoelectric generator

Publications (2)

Publication Number Publication Date
JPS58153093A true JPS58153093A (en) 1983-09-10
JPS6131799B2 JPS6131799B2 (en) 1986-07-22

Family

ID=12376972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57033090A Granted JPS58153093A (en) 1982-03-04 1982-03-04 Heat exchanger used in thermoelectric generator

Country Status (1)

Country Link
JP (1) JPS58153093A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132339A (en) * 1996-11-05 1998-05-22 Nippon Oil Co Ltd Cold air machine
CN102725491A (en) * 2010-02-03 2012-10-10 罗伯特·博世有限公司 Thermoelectric generator with integrated preloaded mounting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132339A (en) * 1996-11-05 1998-05-22 Nippon Oil Co Ltd Cold air machine
CN102725491A (en) * 2010-02-03 2012-10-10 罗伯特·博世有限公司 Thermoelectric generator with integrated preloaded mounting

Also Published As

Publication number Publication date
JPS6131799B2 (en) 1986-07-22

Similar Documents

Publication Publication Date Title
US6385976B1 (en) Thermoelectric module with integrated heat exchanger and method of use
US20050087222A1 (en) Device for producing electric energy
US8378205B2 (en) Thermoelectric heat exchanger
TW425729B (en) Thermal electric module unit
US7032389B2 (en) Thermoelectric heat pump with direct cold sink support
JP4785476B2 (en) Thermoelectric power generation structure and heat exchanger with power generation function
CN102738378A (en) Thermoelectric cluster, method for operating same, device for connecting an active element in said cluster to a thermoelectric drive, generator (variants) and heat pump (variants) based thereon
KR102111604B1 (en) Device using thermoelectric moudule
JP2006294935A (en) High efficiency and low loss thermoelectric module
JP2005317648A (en) Thermoelectric conversion module
JP2016092027A (en) Thermoelectric module
JPWO2010090350A1 (en) Power generator
KR101508793B1 (en) Manufacturing method of heat exchanger using thermoelectric module
AU2018220031A1 (en) Thermoelectric device
JPS58153093A (en) Heat exchanger used in thermoelectric generator
JP3501394B2 (en) Thermoelectric conversion module
US20050126618A1 (en) Device for producing electric energy
KR102109486B1 (en) Multi-multi-array themoeletric generator and its generating system
JPS58153092A (en) Heat exchanger used in thermoelectric generator
US3531330A (en) Thermoelectric assemblies
JP3562733B2 (en) Thermoelectric generator and power generator using this thermoelectric generator
TWM546022U (en) Thermal-electric conversion fluid pipe
JP2003273412A (en) Thermoelectric conversion device
JP2003179274A (en) Thermoelectric converting device
JP2004064015A (en) Thermoelectric conversion device and manufacturing method thereof