JPS58151070A - Solar battery and manufacture thereof - Google Patents

Solar battery and manufacture thereof

Info

Publication number
JPS58151070A
JPS58151070A JP57028123A JP2812382A JPS58151070A JP S58151070 A JPS58151070 A JP S58151070A JP 57028123 A JP57028123 A JP 57028123A JP 2812382 A JP2812382 A JP 2812382A JP S58151070 A JPS58151070 A JP S58151070A
Authority
JP
Japan
Prior art keywords
film
substrate
solar cell
silicon
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57028123A
Other languages
Japanese (ja)
Inventor
Hiroshi Morita
廣 森田
Taketoshi Kato
加藤 健敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57028123A priority Critical patent/JPS58151070A/en
Publication of JPS58151070A publication Critical patent/JPS58151070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To contrive the improvement of photoelectric conversion efficiency, by making hydrogen exist in the neighborhood of the interface between an N type Si substrate having a junction and an Si3N4 film. CONSTITUTION:An N<+> layer 12 is formed by introducing P into the P type Si substrate, then an Al film is evaporated on the back surface of the substrate and sintered, accordingly a P<+> layer 13 is formed in the P type substrate into an electrode take-out layer, and the improvement of the efficiency of a solar battery is contrived by the effect of the back surface electric field. Successively, by the three layer of Ti-Pd-Ag, an electrode 14 is formed over the entire surface of the back surface, and electrodes 15 are formed on the surface in fine lattice form. Next, the substrate is kept at approx. 300 deg.C in vacuum, then, with poly Si as a target, argon, N2, H2 are introduced, and thus a reflection preventing film 22 of Si3N4 containing H is formed by a sputtering method. By the H added-reflection preventing film, the speed of recombination of carriers on the Si surface can be decreased, and therefore the conversion efficiency of the solar battery is improved.

Description

【発明の詳細な説明】 (発明の技術分野) 不@明は太陽−池及びその製造方法4;係シ、脣(二半
導体希板鍼面近傍の伏線を改良して光電変換効率を良好
にした太陽電池及びその製造方法(二関するものである
[Detailed Description of the Invention] (Technical Field of the Invention) A solar pond and its manufacturing method 4; Engagement, 脣 (Improving foreshadowing near the acupuncture surface of a two-semiconductor rare plate to improve photoelectric conversion efficiency A solar cell and its manufacturing method (two related items).

(尭rso技術的背景及び問題点) 従来、太陽光を光電変換する目的(二は、例えばシリコ
ン単結晶等を木材とする第1図1=示すような形状の太
陽電池が実用化されている。例えば岸さQ、3〜0.4
鵡のPmシリコン単結晶基板(1)の表1O,2〜0.
6μm Omさに熱拡散等の方法≦二より♂拡散層−が
般杖られ、前記n1拡敏層(2)4二光がおたるように
格子状、くし瀝、網状等の′wt他(3)、基面のP 
1jJi V 9 = y 単1i Jas ’y エ
バ(−全dE l−b タり lkm亀m(47が形成
されている。以上の例ではP証シリコンの上櫨二♂層が
設けられているがn戯のシリコンの上(二r層を設けた
構造でも同等の時性が得られる。との構成のような嵌合
を庸する太陽゛蝋池鴫二於ては、基板表il[1(61
に入射する太陽光の反射損失を少なくする為(=シリコ
ンの表面(二多数の値小4向体即ちビラ建ツド状の凹曲
面を設けるいわゆる異方性エツチング面を形成し、入射
光とシリコン1IRTjIiのヒランツド状の元学的多
夏反射C二よって太陽光の1収単を増大ならしめたり、
シリコンウェファの表面を反射防止膜(6)で機う工夫
がなされている。表面(二人陽光が入射する場合、この
表面で太陽光の一部が反射され、この反射される割合は
シリコンの屈折率をnとすると(n−1)”/(n+1
)”となり、n = 3.7とするとおよそ0.3とな
る。この為にシリコンウェファの表面を空気とシリコン
との中間の屈折54Aをもつ透明な反射防止膜で−うこ
とべ;より反射損失を半分以下にすることが考えられ太
陽1i!c池の効率同上(二効米的でるる為、これまで
Sing * SiO* TiCh + T&tCh等
種々の材料を用いテ、蒸層、スパッタリング、スピンコ
ード、スゲレイ、CVD、等様々な薄膜形成方法(二よ
り反射防止膜が形成場れてきた。
(Technical Background and Problems with RSO) Conventionally, for the purpose of photoelectric conversion of sunlight (2), solar cells with the shape shown in Figure 1, which are made of wood such as silicon single crystal, have been put into practical use. .For example, shore depth Q, 3 to 0.4
Tables 1O, 2 to 0. of Parrot Pm silicon single crystal substrate (1).
A male diffusion layer (by a method such as thermal diffusion≦2) is applied to the 6 μm layer, and a lattice-like, comb-like, net-like, etc. ), base P
1jJi V 9 = y Single 1i Jas 'y EVA (-total dE l-b Tari lkm kame m (47 is formed. In the above example, the upper 2♂ layer of P-certified silicon is provided. On top of n-layer silicon (a structure with two r layers can also provide the same timing characteristics), in the case of a solar wax pond with a typical mating structure, the substrate surface il [1 ( 61
In order to reduce the reflection loss of sunlight incident on the surface of silicon (= silicon surface), a so-called anisotropic etched surface is formed, which has a concave curved surface in the form of a four-dimensional structure with a large number of small values. By increasing the yield of sunlight by the Hiranzu-like elemental multi-summer reflection C2 of silicon 1IRTjIi,
An attempt has been made to coat the surface of the silicon wafer with an anti-reflection film (6). Surface (2 people) When sunlight is incident, part of the sunlight is reflected on this surface, and the reflected ratio is (n-1)''/(n+1), where the refractive index of silicon is n.
)", and if n = 3.7, it becomes approximately 0.3. For this reason, the surface of the silicon wafer is coated with a transparent anti-reflection film that has a refraction of 54A, which is between that of air and silicon. It is thought that it is possible to reduce the loss by half or more, and the efficiency of the solar 1i!c pond is the same as above (because it is a double effect, we have used various materials such as Sing * SiO * TiCh + T&tCh), vapor layer, sputtering, and spin. Various thin film forming methods such as cord, staghorn, CVD, etc. have been used to form anti-reflective films.

この上う4二太陽゛醸池は太陽光の反射損失を少なくシ
、光電変換効率を同上すべく種々の工夫がなされている
が、現状ではその効率は十分でなく、高々10〜13チ
であり、その5IJJ率の抜書が菫筐れている。
In addition, various efforts have been made to reduce the reflection loss of sunlight and increase the photoelectric conversion efficiency of the 42-solar pond, but at present the efficiency is not sufficient, and it is only 10 to 13 solar cells at most. Yes, there is an excerpt of the 5 IJJ rate.

(発明の目的) この発明は−このような欠点を改善する為(;、なされ
たもので、光電変換効率を向上させた太陽電池及びその
製造方法な提供することを目的とする。
(Object of the Invention) The present invention has been made in order to improve the above-mentioned drawbacks, and an object of the present invention is to provide a solar cell with improved photoelectric conversion efficiency and a method for manufacturing the same.

(発明の概*) 次(:本発明の詳細な説明する0発明(ユ先だち、牛曝
体基板の表面の何M骨速度(以下Sと略す)を低下させ
る為4;見出した我々の発見C;ついてシリコン基板を
例礁二して述べる。
(Summary of the invention *) Next (: Detailed explanation of the present invention 0 Invention (First, our discovery to reduce the M bone velocity (hereinafter abbreviated as S) on the surface of a cow exposed substrate 4; C: Next, a silicon substrate will be described as an example.

シリコン中のSはレーザーダイオード光でシリコンクエ
7ア中−二電子一ホール対を生成し、マイクロ′I!L
v照射してこの反射強度の減訛からツインタイムt’求
め、Sを分離する周知の方法(例えは応用物理11N4
9巻、 1192頁(二記載)4二より求められる。4
!!樵のシリコンウェファについてSを測定した結果は
36tlのよう≦二なった。また、従来広く用いられて
いる%樟の反射防止膜をクエへ−上ζ;彫成した場合の
Sの−j定結結果我2 (a) 、 (bJのようにな
った。talは基板(二NtJMシリコンcz単結晶を
用いた場合、(blはP屋シリコンcz単結晶を用いた
場合である。いずれの場合もSは膜形成前(二比べ嵌 
2(&J 大暑くなってお9、反射防止効釆鴫二よυ光の吸収量が
増えてもlII函再結合鑑;よる損失が逆(=大きくな
ることがあった。
S in silicon generates a pair of two electrons and one hole in silicon qua7a by laser diode light, and micro'I! L
A well-known method (for example, applied physics 11N4
Determined from Volume 9, page 1192 (2nd entry) 42. 4
! ! The result of measuring S on woodcutter's silicon wafer was 36 tl≦2. In addition, when the conventionally widely used anti-reflection film of camphor was carved into the surface, the results of S-j were as shown in (a) and (bJ. tal is the substrate (When using two NtJM silicon cz single crystals, (bl is when using Pya silicon cz single crystals. In both cases, S is before film formation (two comparisons)
2 (&J It's getting very hot, and even if the amount of light absorbed by the anti-reflection effect increases, the loss due to recombination can sometimes become larger.

次6;不5I5@ に関する発見(二係る実験結果を示
す。
Next 6: Discovery regarding non-5I5@ (2 related experimental results are shown.

表3 ta)は真X ta)と同一のシリコンウェファ
上(二反応ガスとして水素化合WV金含有たプラズマC
VD流(化学気相成長法)、スパッタガスとして水素な
含むマグネトロンスパッタリング法及び比較例として従
来の常圧CVD法(二より形成した窒化シリ;ンを形成
した場合の84二ついてまとめたものでるj)、嵌1(
b)は表2(b)と同一のウェファを用いた結果である
。グツズ−W CVD及びマグネトロンスノくツタリン
グで膜を形成したものはSの低下が著しい。籍(二Nf
f1ウエノ・−の場合(二は顕著である。赤外畝収スペ
クトルの比較層;よれば反応ガスとして水素化合一を含
む(=もかかわらず常圧CVD法(二よる膜(二は水素
の存在が見られないが、マグネ)aンスパッタリング、
プラズマCVD法で形成した膜では水素の存在がみられ
た。表面Oダングリングボンドやトラップレベルが水素
C二よジター建ネイトされ不活化したり、膜中(二水素
イオンの形で蓄積されたものが表WM部し内s′dL界
を形成して少数キャリアの表面への到達を阻止する結果
Sが改善されたと理解される。本発明では従来の反射防
止膜に変えてこのよう≦二Sを低下させる為ζ二水累を
含有した状態の膜を用いる。Sを低下させる為の前記の
、■水素(=よるダングリングボンドやトラップレベル
の不活性化、■電#畜積層艦=よる表面内S″4場の磨
起、を達成する為(二換形成時(二水索を導入し膜中又
は基板上(=有効な状態で残すことが肝要である0発明
者等の実kIIL(:よれば−腿展中C二含有された水
素も400’O程度以上の熱処理(二より抜は出てしま
いSを大きくすることから基板温度も重要である。常圧
CVD法(二よる膜中(二水素が見られなかったのは、
この方法の噛合基板m[がsoo′o近くまたはそれ以
上(−なるためであろう。
Table 3 ta) shows the true
VD flow (chemical vapor deposition method), magnetron sputtering method containing hydrogen as sputtering gas, and conventional atmospheric pressure CVD method as a comparative example (when silicon nitride was formed from 2). j), fit 1 (
b) is the result using the same wafer as in Table 2(b). Gutsuzu-W Films formed by CVD and magnetron snorting have a significant decrease in S content. Registration (2Nf)
In the case of f1 Ueno-- (2 is remarkable. Comparative layer of infrared ridge yield spectrum; according to it, hydrogen compound 1 is included as a reaction gas (= despite the atmospheric pressure CVD method (2 is hydrogen Magneto a) sputtering, although its presence is not seen.
The presence of hydrogen was observed in the film formed by plasma CVD. The surface O dangling bonds and trap levels are inactivated by hydrogen C diazitter formation, and in the film (dihydrogen ions accumulated in the form of dihydrogen ions form an internal s'dL field in the surface WM area, causing a small number of It is understood that S is improved as a result of preventing carriers from reaching the surface.In the present invention, instead of the conventional antireflection film, a film containing ζ dihydrate is used to reduce S≦2S. In order to achieve the above-mentioned in order to lower S, ■inactivation of dangling bonds and trap levels due to hydrogen, and polishing of S″4 field within the surface due to electricity During biconversion formation (introducing bihydrochorions and leaving them in a valid state (== in the membrane or on the substrate), it is essential to leave them in an effective state. Heat treatment at about 400'O or more (substrate temperature is also important because hydrogen is removed and S is increased.Atmospheric pressure CVD method (no dihydrogen was observed in the film)
This is probably because the mating substrate m[ of this method is close to soo'o or more (-).

Sの下がる原因からして窒化シリコン(=材料は限定さ
れる必要はなく、従来反射防止膜として適癲な肩折本、
透過率を有する材料であれは形成時毫二水素を膜中4;
導入することζ:より同様の効果が得られる。この−例
として発明者はマグネトロンスパッタリング法仁よるT
a鵞Og腹中に水素を尋人することによりSの値212
0 cm/ sec l=下げること1二成功した。水
素の導入はTa雪Osが堆積する基板上にイオンガン(
二より水素イオンを注入しながら膜形成した結果達成で
きた。輩化シリコン展の場合には膜を形成するの(二必
須なガス中の成分元素として水素が入っており、前記の
T&tOsの例では別:二注入しなければならぬ手間が
あるが、不発明の主旨C=は充分かなうものでおる。反
射防止膜の形成方法、その結果として現れる、膜及び膜
とシリコンウェファとの境界の特徴的状態を除いては基
本的(=従来の太陽゛電池と同一の構成となる。東(=
、不発明は反射防止膜を形成する前のもともとのシリコ
ンが大きなSを有している場合Cニ一層有効である。ち
なみζ二蚊近広く使用されている、例えば%願ws56
−126793号の明細書(=開示されている表面を凹
凸(=シて光反射を少くした異方性エツチング面ではS
が3000〜4000 cm/seaとなるが、本発明
の反射防止膜く二よp、1000以下(=減少させるこ
とができる。挺鴫二、結晶粒界O多く存在する多結晶シ
リ−yやリボン結晶では結晶粒界Oダングリングポン、
ド(二よる局伍準位が高密[(二6す、ヤヤリアの拡散
長を着しく低下させる欠点がありSo値は2000〜3
000と太きかった。これも又、不発明(二よる反射防
止gを形成すると、やはり1000以下(−低減できる
ことがわかった。
Considering the cause of the decrease in S, there is no need to limit the material (silicon nitride).
If the material has a permeability, dihydrogen is present in the membrane when formed;
Introducing ζ: More similar effects can be obtained. As an example of this, the inventor has developed a method using magnetron sputtering.
The value of S is 212 by adding hydrogen to the stomach of a goose.
Successfully lowered 0 cm/sec l=12. Hydrogen was introduced using an ion gun (
This was achieved by forming the film while implanting hydrogen ions. In the case of hydrogenated silicon, hydrogen is included as an essential element in the gas, which is different from the T&tOs example mentioned above. Purpose C of the invention is fully fulfilled.The method of forming the antireflection film and the characteristic state of the film and the boundary between the film and the silicon wafer that appear as a result of the formation method are basic (= conventional solar cells). It has the same configuration as .East (=
The invention is even more effective than C when the original silicon before forming the anti-reflection film has a large S content. Incidentally ζ two mosquitoes are widely used, for example, %ws56
- Specification of No. 126793
is 3000 to 4000 cm/sea, but the anti-reflection coating of the present invention can be reduced to less than 1000 cm/sea. In crystals, grain boundaries O dangling pons,
The local level due to de
It was thick at 000. It has also been found that by forming a second anti-reflection g, it can be reduced to 1000 or less (-).

(発明の実施例) 次に不発明の実施例を第2図乃至第5図によりg明する
(Embodiments of the Invention) Next, embodiments of the invention will be explained with reference to FIGS. 2 to 5.

実施例−1 先ず、第2図に示すように万位(111) 、厚さ20
0μm比抵抗1Ω儂のPliのボロンドープドC2単結
晶半導体基板住υを用意する。3インチ径、l114面
研磨仕上げの状麟である。洗砂を行ったあと、1層(2
)を基板−側光jIIli@i−形成する。この為(=
は850℃でオキシ三塩化リンpocz、を気相利用し
リンを5分間デポジットし、ひきつづき(資)分間のド
ライブインな行うこと(二よF)IIIIl濃度(二拡
散すればよい。この緒米懺閣も一生じた慣暢大の^一度
不純物添m慣域、いわゆる多欠陥層(dead 1at
er )をエツチング除去し、適度の表面鏡層で損傷の
少ない接合深″:50.2μmの接合を形成させる。
Example-1 First, as shown in Fig. 2, the thickness is 111, and the thickness is 20.
A boron-doped C2 single crystal semiconductor substrate of Pli with a resistivity of 0 μm and a resistivity of 1 Ω is prepared. It has a diameter of 3 inches and has a 114-sided polished finish. After washing sand, 1 layer (2 layers)
) is formed on the substrate-side light jIIli@i-. For this reason (=
Deposit phosphorus at 850°C using phosphorus oxytrichloride pocz in the gas phase for 5 minutes, followed by a drive-in process for 2 minutes. The Imperial Palace also once appeared in the customary region of impurity addition, the so-called multi-defect layer (dead layer).
er) is removed by etching to form a junction with a moderate surface mirror layer and a junction depth of 50.2 μm with little damage.

次(:基板114I裏面(ニアルミニウム膜を形成する
Next (: Back surface of substrate 114I (Nialiumuminum film is formed).

I X 10−” Torr以下の真空中(二おかれた
純[99,99チのアルミニクム蒸兜源C二〇、2Aの
ビーム−眞、3KVの加速磁圧で磁子線束を照射するこ
とにより、アルミニウムン蒸発させ同一真空槽中に設置
した基板(二成編するいわゆる磁子ビーム蒸m法4二よ
ればよい、但し、膜の付着力を増す為4m4着中の基板
温fを300”Oとし、蒸屓速[3000又/winで
4μmO膜を形成した。
By irradiating a magneton beam with an accelerating magnetic pressure of 3 KV in a vacuum of less than I x 10-'' Torr (with a beam of 2 A of pure [99,99-inch aluminum evaporation source)] The so-called magneton beam evaporation method, which involves evaporating aluminum and placing the substrate in the same vacuum chamber (double-forming) may be used. However, in order to increase the adhesion of the film, the temperature of the substrate during deposition of 4 m4 was set at 300". A 4 μm O film was formed at an evaporation rate of 3000 m/win.

続いて、このアルミニウム膜の焼成を行う。この場合、
酸素50%、窒tAsosの雰囲気中、830℃で(9
)秒間焼成を行うこと4二よりP戯のウェファ中にP”
ノ[l漕が形成でき、電極がとれるよう(二なると共4
二、吏ζ二はBSFと呼ばれる裏面電場効果をもたらす
為、太1lII′4aとしての効率を向上させることが
できる。次(二弗咳と塩#を用いて余分なアルミニウム
及びその酸化物を除去しp”m u3表面を出す。
Subsequently, this aluminum film is fired. in this case,
At 830°C in an atmosphere of 50% oxygen and nitrogen tAsos (9
) 4 seconds into the wafer of P”
In order to form a column and remove the electrode (both 2 and 4
2. Since 吏ζ2 brings about a back surface electric field effect called BSF, it is possible to improve the efficiency as a thick 1lII'4a. Next, remove excess aluminum and its oxides using salt and salt to expose the p''mu3 surface.

続いて、躾面電鳴I、−面゛電極◎を形成する。Subsequently, a conductive surface electrode I and a negative surface electrode ◎ are formed.

裏面の電極はP+/1μ四上全面(二1000^のチタ
ンU呻。
The electrode on the back is P+/1μ4 (21000^ titanium U).

500λOバ2ジウムαη、10μmのm−を真空蒸着
すること一二よりIS成される。角面−は真空蒸宥沃と
フォトエツチング氏なくり返すことにより格子状の微細
三層11L惚として形成する。懺鯛の材料。
IS is made by vacuum evaporating 500 λO bardium αη, 10 μm m−. The corner surfaces are formed into a lattice-like fine three-layer structure by repeating vacuum evaporation and photoetching. Ingredients for sea bream.

犀さの構成は、チタンBl 1000 A 、 □:ラ
ジウム(至)sooX、罎gυSumとする。
The composition of the rhinoceros is titanium Bl 1000 A, □: radium (to) sooX, and gυSum.

反射防止wI&(2)は次のようしして形成した。ウェ
ハ7アを!ダネトロンスパツタ* [4;装増し真空[
I X 10−” Torr以下に一度引いた後、ガス
を導入した。スパッタガスは次のような組成とした。即
ち・ア″′ンI X 10−” Torr e M累5
 x 10−’ TOrr *水素1 x 10−”T
orr とした。ターゲット(二は8インチ多結晶シリ
コンを用い、高周技°峨力をIKWとし、−4板温直を
3QO’O(2株って水素を含んだ窒化シリコンJIA
を堆積させた。膜厚は700^とじた。
Antireflection wI&(2) was formed as follows. Wafer 7a! Danetron Spatsuta* [4; Additional Vacuum [
After the temperature was once lowered to below I x 10-" Torr, a gas was introduced. The sputtering gas had the following composition:
x 10-' TOrr *Hydrogen 1 x 10-”T
orr. Target (second is 8-inch polycrystalline silicon, high frequency strength is IKW, -4 plate temperature is 3QO'O (two is hydrogen-containing silicon nitride JIA)
was deposited. The film thickness was 700^.

屈折率は可視光域で1.95〜2.0であり、良好な反
射防止効果を示した。よく知られた赤外分光法の亦外歓
収沫(;より1llllfしたところ膜中(ニイオン化
した水素及びシリコン基板と頴合した水素の奴収6二相
尚する波長ピークが酪められた。
The refractive index was 1.95 to 2.0 in the visible light range, showing good antireflection effects. As a result of the well-known infrared spectroscopy method, the absorption of ionized hydrogen in the film and hydrogen integrated with the silicon substrate was detected. .

次にシリコンクエファの周辺部を弗欧、硝賊系のエツチ
ング液(二よりエツチングして更4ニエンキャップ材(
ハ)として例えば東しシリコーン社#!JCB−610
8のシリコーン綱線を翅布・乾−させると長期間の使用
後も劣化のない太−蝋池ができる。
Next, the surrounding area of the silicone wafer was etched with a nitrile-based etching solution.
c) For example, Toshi Silicone Company #! JCB-610
By drying the silicone rope in Step 8, a thick wax pond is created that does not deteriorate even after long-term use.

このよう(二水累め5加した反射防止膜を形成すること
口よりシリコン我囲でのキャリアの再lti台速度を低
減させることができた。その結果、入射面よ’) 10
0 mW/m”の強度の太−光を入射させた場合、囲放
亀圧0.61V短絡元゛磁tlL密度蕊mA%ゴ、変換
効率16.5価の太陽@池を得ることができた。これは
反射防止膜を従来の水素な含まないTa、O,スパッタ
リング朧にしてそれ以外本実施例と同一の工程、MMと
したセルの同一*件下での欄定結果4二比べ、゛IJi
流密度比で5.5%、変換効率比で3.0嗟高φ結来で
めった。
In this way, by forming an anti-reflection film containing dihydrate, it was possible to reduce the carrier velocity in the silicon area.As a result, the incidence surface was reduced.
When bright light with an intensity of 0 mW/m'' is incident, it is possible to obtain a solar cell with an ambient voltage of 0.61 V, a short-circuit source, a magnetic tlL density of mA%, and a conversion efficiency of 16.5. This was compared with the column evaluation results 42 under the same * conditions of a cell in which the antireflection film was made into a conventional hydrogen-free Ta, O, sputtering haze, and the process was otherwise the same as in this example, and the cell was made into MM.゛IJi
The flow density ratio was 5.5%, and the conversion efficiency ratio was 3.0%.

実施例−2 まず第8図(=示−fよう賜二方位(100) 、厚さ
250μm、比抵抗10Ωぼのpmcz単結蟲牛導体基
板い〃を用意する。′まず、30%のNaOH水溶液を
110゛Cし加熱したものl: L、5分浸漬し表面層
をエッチソゲする。次(二2 ’Ik Na0K水醍箪
とイングロビルアルコールを4=14=混合したものを
80”O1=加熱し55分関エツチングする。7111
1熱は/(−ナーで行いリービッヒコンデンサー(二本
を渡しながら、エツチング液のm直、准重管理を十分(
二行って一定の条件でエツチングを行い、次面(=凹凸
を形wfる。
Example-2 First, prepare a pmcz single-knot conductor substrate with a thickness of 250 μm and a resistivity of 10 Ω in the two directions (100) shown in FIG. 8. First, 30% NaOH The aqueous solution was heated to 110°C and immersed for 5 minutes to etch the surface layer. Heat and etch for 55 minutes.7111
1. Heat the etching solution with /(-ner) while passing two Liebig condensers (2 bottles), and carefully control the etching solution (
Etching is carried out twice under certain conditions to form the next surface (= unevenness wf).

エツチングの停止とシリコンウェファ(ロ)表面のアル
カリ残渣の除去を行うため(二、塩酸水浴液中(二1分
w4浸漬、続いて純水で15分間流水洗浄し、アセトン
W候後、乾燥させると、シリコンウェファの表面4二1
辺、高さ先に2μmのピラミッド状の凸部(2)が一様
(二形成され反射率の低下を示す。次4二POC4をン
ースとしてPをデポジション拡散する。850υでb分
間デポジションし60分間ドライブインすると凸部も含
めたシリコンウェファ表(3)シニ0.5μm[さの接
合部を有するよう(ニー拡散)Wl(至)が形成される
。次に、弗V水浴液(二より表面鹸化層を除去後、裏面
にA7−Agペースト(エンゲルー−)A−422F・
・・商品名)の印刷及び焼成(二より良面電@−を形成
する。焼成は8301J30秒間行い、これ嘔=より裏
面側の♂拡散層をつきぬけてr層が出き、シリコンウェ
ファから電極がとれるよう6二なる。次(:表面にプラ
ズマCVD法(二より窒化シリコン膜(2)を700 
k形成する。平行平板谷量結合蓋の装[1ニウエ7アを
入れ、基′4!LK度を300℃鴫二して反応ガスを導
入、50KHzの高JiI11tM、)(ワーを500
W投入してデポジションした。反応ガスC;はSL&と
NH3を用い、N、をキャリアーガスとした。反射率の
低い均一な窒化シリコンの膜がシリコン表面(二形成さ
れた。
To stop etching and remove alkaline residue on the surface of the silicon wafer (2), immerse it in a hydrochloric acid water bath (21 minutes w4, then wash it with running water for 15 minutes, rinse with acetone W, and then dry. and the surface of the silicon wafer 421
Pyramid-shaped protrusions (2) of 2 μm are uniformly formed on the sides and height, indicating a decrease in reflectance. Next, P is deposited and diffused using 42 POC4 as a source. Deposition for b minutes at 850 υ. Drive-in for 60 minutes to form a silicon wafer surface (3) including convex portions (knee diffusion) with a joint of 0.5 μm thick. After removing the surface saponification layer from the second side, apply A7-Ag paste (ENGERU-) A-422F to the back side.
・・Product name) is printed and fired (to form a good surface electrode from the second side. Firing is performed for 30 seconds with 8301J, and the r layer penetrates through the male diffusion layer on the back side, and the electrode is removed from the silicon wafer. Next, a silicon nitride film (2) is applied to the surface using a plasma CVD method (2) to remove the
k form. Assemble the parallel plate valley connection lid [1 Niue 7a, base '4! The reaction gas was introduced by increasing the LK degree to 300°C, and the high JiI of 50KHz was 11tM.
I put in a W and deposited. For the reaction gas C, SL& and NH3 were used, and N was used as a carrier gas. A uniform silicon nitride film with low reflectivity was formed on the silicon surface.

分析の結果膜中(二本素イオンの存在が確aat−gれ
た。
As a result of the analysis, the presence of two elementary ions (aat-g) was confirmed in the membrane.

次屯二窒化シリコン膜上(ニネガレジストOMR−85
(東京応化、−品名)をスピンコードする。絖いて光露
光、現儂エツチングからなる写真食刻法を便用しバター
ニングする。このあとのめつき法6二よる[極形成工程
で、反射防止膜がめつきマスクな兼ねるよう(=、鍛終
′4に他パターンの部分の窒化シリコン膜を弗酸(二て
除去する。レジスト除去後良く知られているニッケル無
゛嵯解めつきを行い、弐儒電極(至)を形成し太陽′磁
心を完成する。
On the second silicon nitride film (Ninegaresist OMR-85)
Spin code (Tokyo Ohka, - product name). Buttering is then carried out using a photo-etching method consisting of light exposure and in-situ etching. After this, plating method 62 is used to remove the silicon nitride film in other pattern parts with hydrofluoric acid (resist After removal, the well-known nickel-free dispersion process is performed to form the two electrodes and complete the solar magnetic core.

このよう(ニジて得られた太陽′磁心もまた、前記実施
例と同等の特性をボした。また、同−m造で反射防止膜
が、従来の例えば魚屑法の酸化チタン属を用いた場合の
ものベニ比べ、膜中の水素′嘔荷の効果ζ二よ#)機面
合結合の形曽が減少し、特(二短波長領域での光IIA
FItが向上していることが単色光を照射した場合の光
感度スペクトルをみるスペクトラレスポンス測定の耐釆
明らかとなった。このことは矯上太陽光(ニルして短波
長成分の多い宇宙での太陽光室内での螢元灯下での使用
(;有利なことを示している。
The solar magnetic core obtained in this manner also exhibited properties equivalent to those of the above-mentioned example. In addition, the anti-reflection coating of the same structure was different from that of the conventional method using titanium oxide, for example, using the fish waste method. Compared to the case, the effect of hydrogen loading in the film ζ2) is reduced in the form of mechanical bonding, and especially in the light IIA in the short wavelength region (2).
The improvement in FIt was clearly demonstrated by spectral response measurement, which measures the photosensitivity spectrum when irradiated with monochromatic light. This indicates that it is advantageous for use in a solar room under a fireworks lamp in space, where there are many short-wavelength components due to the correction of sunlight.

実施例−3 第4因は、シリコンウェファ(=結晶粒界(4υの多く
存在する多結晶シリコン基板(6)を用いた場合の例で
ある。比抵抗lΩ・cML、P1!iの300μm厚の
10(m X 10 mのウェー−である。充分な洗浄
を行ったあとn+拡散層−をウェー−fi面(二形成し
た。この鳥籠二は890℃でPOCImを気相使用しリ
ンを10分間デポジットし、ひきつづき10分間のドラ
イブインを行った。これ(二より接合深さ0.3μmの
接合が形成できた。次礁二基板裏面(二AJペースト 
(エンゲルバー)A−3484・・・闇ih名)の印刷
及びそれC2統〈焼成を行い、史l−Agペースト (
エンゲルバートム−2734・・・部品名)の印刷・焼
成を行って基面電極−を形成した。AAペーストの焼成
は850℃15秒で行うこと(二より峯面の?拡散層を
つきぬけてP臘のシリコンウェファから電極がとれるよ
う(二なり、史(二はBSF効果をもたらす為に太陽電
池の効率を向上させることができる。紹ペーストの焼成
は700 ’0 、30秒で行った。次毫二」帽;格子
状電極−を形成する。この為(二は紹ペース (デエボ
ン7095・・・商品名)を用い、325メツシユのス
テンレススクリーンで印刷したものを650℃で9秒焼
成を行った。史(=この上(二W&1の実施例同様、マ
グネトロンスパッタリング法仁よシ窒化シリ;ンの反射
防止−一を形成した。分析の結果膜中のイオン化した水
素及び基板と結合した水素の存在を確認した。
Example-3 The fourth factor is an example using a polycrystalline silicon substrate (6) in which many crystal grain boundaries (4υ) exist. Specific resistance 1Ω・cML, 300 μm thickness of P1!i After thorough cleaning, an n+ diffusion layer was formed on the fi surface of the wafer. This birdcage was heated to 890°C using POCIm in a vapor phase to remove phosphorus. Deposition was carried out for 10 minutes, followed by 10 minutes of drive-in.A bond with a bonding depth of 0.3 μm was formed from the two substrates.
(Engelber) A-3484...dark name) printing and C2 type (firing), history l-Ag paste (
A base electrode was formed by printing and firing Engelbarthom 2734 (part name). The AA paste should be fired at 850°C for 15 seconds. The efficiency of the paste was fired at 700°C for 30 seconds to form a grid-like electrode.・Product name) was used to print with a 325 mesh stainless steel screen and baked at 650°C for 9 seconds. As a result of analysis, the presence of ionized hydrogen in the film and hydrogen bonded to the substrate was confirmed.

形成時Cニグラズi中から膜中−二活性化した水素がと
9込まれると、結晶粒界でのダングリングボンドと結合
が行われる。その結果、結晶粒界でのキャリアの再結合
が減少し、光電流が多くとれ、効率の同上をもたらした
。レーザー光をスキャンニングしながら微少領域の光電
流の分布を観察するよく知られた方法により水素化効果
を有する反射防止層を形成した場合の光電流の向上を第
5図(=示す。(alは反射防止膜を形成していない場
合で、m6粒界での落ち込みが大きい。一方(b)はプ
ラズマ窒化シリコン膜を形成した場合で粒界での落ち込
みは少くなっている。
When diactivated hydrogen is introduced into the film from C Nigraz i during formation, dangling bonds and bonds are formed at grain boundaries. As a result, recombination of carriers at grain boundaries was reduced, and a large amount of photocurrent was obtained, resulting in the same efficiency. Figure 5 shows the improvement in photocurrent when an antireflection layer having a hydrogenation effect is formed by a well-known method of observing the distribution of photocurrent in a minute area while scanning a laser beam. (b) shows a case in which no antireflection film is formed, and the drop at the m6 grain boundary is large.On the other hand, (b) shows a case in which a plasma silicon nitride film is formed, and the drop at the grain boundary is small.

他方、従来の水素の入らない反射防止膜を形成した場合
シーは(b)のようなことは起らず、ta)より全体に
高いレベルで、(a)と同様な曲線でわりだ。この結果
不実施例では従来のもの(二比べて変換効率比(;シて
約ionの向上が与られた。
On the other hand, when a conventional anti-reflection film that does not contain hydrogen is formed, the shea (b) does not occur, and the curve is similar to (a), with an overall higher level than ta). As a result, in the non-example, an improvement in conversion efficiency ratio of about ions was given compared to the conventional one.

実施例−4 爽4二別の実施例(二ついて第5図を参照して説明する
。まず、方位(100) 、厚さ2501層m e比抵
抗10Ω・alOボロンド−7’FZシリコン単tih
ウ工ハー6m)を用意する。充分な洗浄後、?拡散層−
をクエハー衣面(膜形成した。この為には加速エネルギ
ー10 KeVで2.5 X 10”イオン/−の密度
でイオン注入を行い、ひ慈つづきルビーレーザーで1.
5 J/alI O強度で7ニールをした。これによシ
0.2μrno*台深さの接合が形成できた。次に裏面
(ニボロンのイオン注入を行いBSF層を形成した。ボ
ロンのソースとしてBF、を用い加速エネルギー及びイ
オン密度はそれぞれ、25 KeV 、 5 X 10
”イオy/cdとした。
Example 4 Two different examples (two examples will be explained with reference to FIG. 5. First, orientation (100), thickness 2501 layer m e specific resistance 10 Ω・alO boron-7'FZ silicon monotih
Prepare a 6m harpoon. After thorough cleaning? Diffusion layer
A film was formed on the surface of a quencher. For this purpose, ion implantation was performed at a density of 2.5 x 10" ions/- at an acceleration energy of 10 KeV, followed by 1.
Seven cycles were performed at an intensity of 5 J/alIO. This made it possible to form a junction with a depth of about 0.2 μrno*. Next, a BSF layer was formed by implanting niboron ions on the back surface. BF was used as the boron source, and the acceleration energy and ion density were 25 KeV and 5 x 10, respectively.
“Io y/cd.

裏面゛嘔mtn、表向電極−をチタン、白金、銀の連続
蒸N4−より形成した。更にこの上に反射防止層(ト)
を形成した。反射防止膜にはT&tOg膜を選び膜中へ
の水素の導入は、スパッタリング法(二よυTa、OB
が堆積する基板上(ニイオンガン(二よシ水素イオンを
注入しながら膜形成した結果達成できた。
The back surface electrode and the front electrode were formed from N4 by continuous vaporization of titanium, platinum, and silver. Furthermore, there is an anti-reflection layer (T) on top of this.
was formed. A T&tOg film was selected as the anti-reflection film, and hydrogen was introduced into the film using a sputtering method (NiyoυTa, OB).
This was achieved by forming a film while injecting dihydrogen ions onto the substrate on which they are deposited (with a nitrogen ion gun).

このよう(−して得られた太陽電池も前記実施例同様、
従来の水素を含まない反射防止層の太陽電池(二比べ変
換効率比で2〜3−高い良い特性を示した。
The solar cell obtained in this way (-) also has the same characteristics as in the previous example.
Compared to conventional solar cells with antireflection layers that do not contain hydrogen, the conversion efficiency ratio was 2 to 3 times higher than that of conventional solar cells with antireflection layers.

実施例−5 186図はクエ7アーI]l14ニリボン結1シリコン
を用いた場合の例でわる。比抵抗1Ω・偏、P垣の厚さ
35G pmの10cxx2octn(D f) x 
y 7 ’T! h ;b。光分す況汐な行ったあと、
n+拡歓J−IJをウェファ異面(膜形成した。この為
≦二は900’0でPOCl3を気相使用し、リンを5
分間デポジットし、ひきつづき10分間のドライブイン
を行った。これ4二より接合深さα6μmO接合が形成
された。次(二表面(=レジストでマスクを施した後、
j111!屹解ニッケルメツ中を表・kTlkiと付着
せしめ、つづいて銀の電気メッキを行い、戎−極輪、成
−極一を形成した0反射防止幽−亀二はSiOを用いた
。真を蒸着法によりSiOを堆積させながらイオンガン
C;より基板上(二本素イオンを注入して水素d入った
反射防止膜を形成した。結晶粒界でのダングリングボン
ドの不活性化が行われ、太・陽光下特性評価(二より効
率の向上が確嬉された。
Example-5 Fig. 186 shows an example in which silicon is used. 10cxx2octn (D f) with specific resistance of 1Ω and P fence thickness of 35G pm
y7'T! h;b. After the light-splitting situation went by,
A different surface (film was formed) on a wafer of n+Kanhuan J-IJ.For this reason, ≦2 was 900'0 using POCl3 in the vapor phase, and phosphorus was
A minute deposit was made, followed by a 10 minute drive-in. From this 42, a junction with a junction depth of α6 μmO was formed. Next (two surfaces (= after masking with resist,
j111! SiO was used for the anti-reflection coatings in which the nickel metal was deposited on the surface and kTlki, followed by silver electroplating to form the polar rings and the polar rings. While depositing SiO by the evaporation method, an anti-reflection film containing hydrogen was formed by injecting two elementary ions onto the substrate using an ion gun C. Dangling bonds at grain boundaries were inactivated. We were pleased with the improvement in efficiency from the solar and sunlight characteristics evaluation (second).

実施自−6 j171Glを参照して説明する。この例は方位(11
1)厚さ300 firm *比抵抗10Ω・αのボロ
ンドープC2単結晶ウェファ(71)を用意する。4イ
ンチ径9両面研磨仕上げの状態である。洗浄を行ったあ
と1層(72)を基板−測光面に形成する。850℃で
電電を利用し、リンを15分間デポジットし、ひきつづ
き(9)分間のドライブインを行うことにより拡散する
0次(二基板他側表面(=アルミニウムを蒸着し、シン
ターしてBSF Mを形成する。次に弗酸と堪能を用い
て余分なアルミニウム及びその酸化物を除去しP”)−
表面を出す。続いて、表面電極(73) 、裏面l1i
iL極(74)を銀ペーストの叩刷及び焼成(=よ膜形
成する。反射防止膜(75)はプラズマCVD法(二よ
りまず窒化シリコン膜な700人形成した上(二x’m
法(二よシ1050 A L:DMgRMを重ねたもの
とした。一層目の窒化シリコンにより水素が導入され、
二層目のMgFl膜は反射防止効果を犬(二助長するの
(−役立つ。このように反射防止膜を多層(二する際(
二重水素を導入した反射防止層の利用は効果的である。
This will be explained with reference to Implementation Self-6 j171Gl. This example shows the direction (11
1) A boron-doped C2 single crystal wafer (71) with a thickness of 300 firm *specific resistance of 10Ω·α is prepared. It has a 4 inch diameter and has been polished on both sides. After cleaning, one layer (72) is formed on the substrate-photometric surface. By depositing phosphorus at 850°C using electricity for 15 minutes, and then performing a drive-in for (9) minutes, we deposited zero-order (= aluminum on the other side of the two substrates) and deposited BSF M by sintering. Next, excess aluminum and its oxides are removed using hydrofluoric acid and hydrogen.
Bring out the surface. Next, the front surface electrode (73), the back surface l1i
The iL electrode (74) is plated with silver paste and fired (= film formed).The anti-reflection film (75) is formed by plasma CVD method (first of all, a silicon nitride film is formed (2x'm)).
method (Niyoshi 1050 A L: DMgRM was layered. Hydrogen was introduced through the first layer of silicon nitride,
The second layer of MgFl film enhances the anti-reflection effect.In this way, when applying multiple layers of anti-reflection film,
The use of an antireflection layer incorporating double hydrogen is effective.

このよう(ニして作成した太陽電池も又、良好な改善さ
れた特性を示した。
Solar cells prepared in this manner also exhibited good improved properties.

(発明の効果) 以上、本発明によれば反射防止膜形成時に水素が添加さ
れる為に、表面丹結合速度が下がり、高効*O太陽電池
の実現が可能となる。又、短波長感度の向上があること
から地上用のみでなく、室内用宇宙用用途(二も燻し、
多方面への応用が可能となり、低価格材料として注目さ
れる多結晶状態のウェー−4=も礁めて大きな改善効果
を付加することができる。
(Effects of the Invention) As described above, according to the present invention, since hydrogen is added during the formation of the antireflection film, the surface red bonding rate is reduced, making it possible to realize a highly efficient *O solar cell. In addition, due to improved short wavelength sensitivity, it is suitable not only for terrestrial use, but also for indoor and space applications (both
It can be applied to many fields, and it is possible to add a significant improvement effect to polycrystalline Wa-4, which is attracting attention as a low-cost material.

【図面の簡単な説明】[Brief explanation of the drawing]

第11Qは従来の太陽電池の構造を示す断匍斜祝因、第
2図乃至!i34図、第6図乃至第8図は本発明の一実
施例を示す凶、85図は本発明Cユ係る太陽電池の特性
図である。 1υ、0υ、輪・・・牛導体基板 輪、@、41−・・拡散層 (14)、 L9. Cl41. ffi、 14. 
(fit・[&(2)、tMJ、@−・反射防止膜 (7317)代理人 弁理士 則 近 憲 佑(ほか1
名)第  1 図 第  2 図 第3図 第  4 図 第  5 図 第  6 図 第  8 図 手続補正1)(自発) 特許庁長官 若 杉 和 夫 殿 1、 事件の表示 特願昭57−28123号 2、発明の名称 太陽電池及びその製造方法 本 補正をする者 事件との関係 特許出願人 (307)東京芝浦鑵気株式会社 4、代理人 〒100 東京都千代田区内幸町1−1−6 東京芝浦岨気株式会社東京◆務所内 (1)  明細書の特許請求の範囲の欄+21 1!細
書の発明の詳細な説明の欄(3)  明細書の図面の簡
単な説明の掴(4)   図  面 る、「Sの下がる原因からして・・・・・・・・・(中
略)・・・・・・・・・・・・に、本発明は反射防止膜
を」を、「本発明は反射防止膜を」と訂正する。 (2)明細書第14N第8行目5;あるr 100 m
W/、7 Jを、r 100 mW/ cd Jと訂正
スル。 (3)  明細書第19負第18行目にある「第5図」
を、「第6図」と訂正する。 (4)明細書第19Am19行目乃至第2111114
19行目にある、「まず、方位(100) 、厚さ28
0μrn 、・・・・・・・・・(中略)・・・・・・
・・・この例は方位(111月を、[この例は、方位(
111) 、 Jと訂正する。 (5)明細書第23頁第11行目乃至第13行目にある
「第2図乃至・・・・・・(中略)・・・・・・特性図
である。」を、「第2図乃至$4図は本発明の実施例な
示す図、第5図は本発明の一実施例に係る太陽電池の特
性図、第6図は本発明の他の実施例を示す図である。」
と訂正する。 (6)特許請求の範囲を別紙のとおり訂正する。 (7)図面の内、第6図及び第7因を削除し、第8図を
別紙のとおりvs6図シ:訂正する。 以  上 特許請求の範H (1)  接合な有する半導体基板と、この半導体基る
ことve黴とする特許請求の範囲′!II&1項記載の
太陽電池。 (3)前記半導体基板がv9コン基板雪あることを特徴
とする特許請求の範囲第1項記載の太陽電池。 (4)前記Vリフン基板が多結晶シリコン基板であるこ
とを特徴とする特許請求の範囲$3項記載の太陽電池。 特許請求の範囲第1項記載の太陽電池。 (6)  前記Vリコン基板がP型であることを特徴と
する特許請求の範囲第1項記載の太陽電池。 ス中Cユ水素を含むスパッタリング法により窒化すする
太陽電池の製造方法。 ぎ 第〆図
The 11th Q shows the structure of a conventional solar cell, and Figure 2 shows the structure of a conventional solar cell. Figure 34 and Figures 6 to 8 show one embodiment of the present invention, and Figure 85 is a characteristic diagram of a solar cell according to the present invention. 1υ, 0υ, ring...Circular conductor board ring, @, 41-...Diffusion layer (14), L9. Cl41. ffi, 14.
(fit・[&(2), tMJ, @-・Anti-reflective film (7317) Agent: Patent attorney Noriyuki Chika (and 1 others)
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Procedural amendment 1) (Voluntary) Commissioner of the Japan Patent Office Kazuo Wakasugi1, Patent Application No. 1983-28123 2. Name of the invention Solar cell and method for manufacturing the same Relationship with the case of the person making the amendment Patent applicant (307) Tokyo Shibaura Kouki Co., Ltd. 4, Agent Address: Tokyo Shibaura, 1-1-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo 100 Japan Sanki Co., Ltd. Tokyo ◆ Office (1) Claims column of the specification +21 1! Column for detailed explanation of the invention in the specification (3) Understanding the brief explanation of the drawings in the specification (4) Drawing In ・・・・・・・・・・・・, "The present invention relates to an anti-reflection film" is corrected to "The present invention relates to an anti-reflection film." (2) Specification No. 14N, line 8 5; certain r 100 m
W/, 7 J was corrected to r 100 mW/ cd J. (3) "Figure 5" in the 19th negative line 18th line of the specification
is corrected to "Figure 6". (4) Specification No. 19 Am Line 19 to No. 2111114
On the 19th line, ``First, the direction (100), the thickness 28
0μrn ・・・・・・・・・(omitted)・・・・・・
...This example shows the direction (November), [this example shows the direction (
111), corrected as J. (5) In the 23rd page of the specification, lines 11 to 13, "Fig. 2 is a characteristic diagram." is replaced with "Fig. 2. FIG. 5 is a characteristic diagram of a solar cell according to one embodiment of the present invention, and FIG. 6 is a diagram showing another embodiment of the present invention. ”
I am corrected. (6) The scope of claims is amended as shown in the attached sheet. (7) Among the drawings, Figure 6 and cause 7 will be deleted, and Figure 8 will be corrected as shown in the attached sheet. Claims H (1) Claims that include a semiconductor substrate having a bond and a ve mold based on this semiconductor! The solar cell according to item II & 1. (3) The solar cell according to claim 1, wherein the semiconductor substrate is a V9 semiconductor substrate. (4) The solar cell according to claim 3, wherein the V-refun substrate is a polycrystalline silicon substrate. A solar cell according to claim 1. (6) The solar cell according to claim 1, wherein the V recon board is of P type. A method for manufacturing a solar cell in which nitridation is performed by a sputtering method containing hydrogen in the gas. Ending diagram

Claims (1)

【特許請求の範囲】 (1)接合を有する半導体基板と、この半導体基板上に
形成塙れる反射防止膜とを具備する太−′磁亀区二おい
て、前記反射防止膜中めるいは前記反射防止膜と前記半
導体基板との境界函近傍の少なくともいずれか一方4;
、イオン伏線の水素るるいはNII記着板と結合した状
緒の水素の少なくともいずれか一方の水素を有すること
を特徴とする太陽−亀。 (2)反射防止膜が一化シリコンより成ることをW値と
する%奸請求の範囲第1項記載の太陽′電池。 (3)半導体着板がシリコン基板でるることを特徴とす
る特許請求の範囲81項記載の太陽電池。 (4)  シリコンが多結晶シリコンでおることを特徴
とする特許−求の軛8第3項記載の太陽電池。 (5)半導体基板の反射防止膜を形成される側のmt二
は異方性エツチングを施した面を有することをJllI
41Lとする特許請求の範囲第1項記載の太It電池。 (61/リコン譲板がP浚であることを特徴とする特許
請求の範囲第1項記載の太陽電池。 (力 反射防止膜が2種類以上の材料を積層した多層膜
でなることを時機とする特許請求の範囲第1項に域の太
陽電池。 (8)接台を有する半導体基板上4二、スパッタガス中
に水素又は水素化金物を含む!ダネトロンスパッタリン
グ法(二より反射防止膜を形成する1掘を具備すること
を%倣とする太陽電池の製造方法。 (9)接合を有する半導体基板上(二、反応ガス中(二
水凧又は水素化合物を含むグツズ1CVD法(;より反
射防止膜を形成する1根をA偏することを特許とする太
陽電池の製造方法。
[Scope of Claims] (1) A thick magnetic field comprising a semiconductor substrate having a junction and an anti-reflection film formed on the semiconductor substrate, wherein the anti-reflection film includes a at least one of the antireflection film and the semiconductor substrate near the boundary box 4;
, hydrogen in the ionic foreground, or hydrogen in a state bonded to the NII recording plate. (2) The solar cell according to claim 1, wherein the W value is that the anti-reflection film is made of silicon monoxide. (3) The solar cell according to claim 81, wherein the semiconductor substrate is a silicon substrate. (4) The solar cell according to Paragraph 3 of Patent No. 8, characterized in that the silicon is polycrystalline silicon. (5) It is noted that mt2 on the side of the semiconductor substrate on which the antireflection film is formed has an anisotropically etched surface.
41L thick It battery according to claim 1. (61/Solar cell according to claim 1, characterized in that the recon board is made of P. A solar cell according to claim 1. (8) On a semiconductor substrate having a base 42, the sputtering gas contains hydrogen or a metal hydride! (9) On a semiconductor substrate having a junction (2. In a reactive gas (2. A solar cell manufacturing method patented in which the first root forming the protective film is A-biased.
JP57028123A 1982-02-25 1982-02-25 Solar battery and manufacture thereof Pending JPS58151070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57028123A JPS58151070A (en) 1982-02-25 1982-02-25 Solar battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57028123A JPS58151070A (en) 1982-02-25 1982-02-25 Solar battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58151070A true JPS58151070A (en) 1983-09-08

Family

ID=12240011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57028123A Pending JPS58151070A (en) 1982-02-25 1982-02-25 Solar battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58151070A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159772A (en) * 1985-01-07 1986-07-19 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric conversion device
US4640001A (en) * 1982-06-16 1987-02-03 Japan Solar Energy Co., Ltd. Solar cell manufacturing method
JPS63204775A (en) * 1987-02-20 1988-08-24 Kyocera Corp Solar battery element and manufacture thereof
WO1989000341A1 (en) * 1987-07-07 1989-01-12 Mobil Solar Energy Corporation Method of fabricating solar cells with anti-reflection coating

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640001A (en) * 1982-06-16 1987-02-03 Japan Solar Energy Co., Ltd. Solar cell manufacturing method
JPS61159772A (en) * 1985-01-07 1986-07-19 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric conversion device
JPS63204775A (en) * 1987-02-20 1988-08-24 Kyocera Corp Solar battery element and manufacture thereof
WO1989000341A1 (en) * 1987-07-07 1989-01-12 Mobil Solar Energy Corporation Method of fabricating solar cells with anti-reflection coating
GB2215129A (en) * 1987-07-07 1989-09-13 Mobil Solar Energy Corp Method of fabricating solar cells with anti-reflection coating
JPH02500397A (en) * 1987-07-07 1990-02-08 モービル・ソラー・エナージー・コーポレーション Method for manufacturing solar cells with antireflection coating
GB2215129B (en) * 1987-07-07 1990-12-12 Mobil Solar Energy Corp Method of fabricating semiconductor devices such as solar cells with anti-reflecting coating

Similar Documents

Publication Publication Date Title
US4468853A (en) Method of manufacturing a solar cell
US4824489A (en) Ultra-thin solar cell and method
US3922774A (en) Tantalum pentoxide anti-reflective coating
JPS6228599B2 (en)
US3949463A (en) Method of applying an anti-reflective coating to a solar cell
Zhao et al. 24% efficient silicon solar cells
US4640001A (en) Solar cell manufacturing method
US4078945A (en) Anti-reflective coating for silicon solar cells
WO1995012898A1 (en) High efficiency silicon solar cells and methods of fabrication
US3492167A (en) Photovoltaic cell and method of making the same
JP2931498B2 (en) Solar cell and method of manufacturing the same
KR960001468B1 (en) Method of fabricating solar cells with anti-reflection coating
JPH0595127A (en) Manufacture of photoelectric conversion device
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
JP2015050277A (en) Solar cell and process of manufacturing the same
GB2091940A (en) Composition and method for applying antirefelctive coatingon solar cell
JPS58151070A (en) Solar battery and manufacture thereof
JPH0361348B2 (en)
JPS6196772A (en) Surface treating method of semiconductor substrate for solar battery
US4177093A (en) Method of fabricating conducting oxide-silicon solar cells utilizing electron beam sublimation and deposition of the oxide
US3977905A (en) Solar cell with niobium pentoxide anti-reflective coating
US4246043A (en) Yttrium oxide antireflective coating for solar cells
US4835006A (en) Process for the passivation of crystal defects
KR930004126B1 (en) Single crystal solar cell manufacture method
JPS5810872A (en) Manufacture of solar battery