JPH0595127A - Manufacture of photoelectric conversion device - Google Patents
Manufacture of photoelectric conversion deviceInfo
- Publication number
- JPH0595127A JPH0595127A JP3255348A JP25534891A JPH0595127A JP H0595127 A JPH0595127 A JP H0595127A JP 3255348 A JP3255348 A JP 3255348A JP 25534891 A JP25534891 A JP 25534891A JP H0595127 A JPH0595127 A JP H0595127A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor layer
- semiconductor substrate
- substrate
- photoelectric conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Chemically Coating (AREA)
- Electrodes Of Semiconductors (AREA)
- Photovoltaic Devices (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、光電変換素子に関
し、特に、その素子の高効率化および低価格化の向上を
図る光電変換素子の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion element, and more particularly to a method of manufacturing a photoelectric conversion element for improving the efficiency and cost of the element.
【0002】[0002]
【従来の技術】近年、光電変換素子である太陽電池の高
効率化、低価格化の向上を同時に図るための手段とし
て、太陽電池の薄型化が挙げられている。結晶シリコン
太陽電池における薄型化は、基板の厚さを減少させるこ
とにある。このように、基板の厚さを減少させること
で、材料のコストを低下させ、太陽電池としての価格の
低下を招来している。2. Description of the Related Art In recent years, thinning of solar cells has been mentioned as a means for simultaneously improving efficiency and cost reduction of solar cells which are photoelectric conversion elements. Thinning in crystalline silicon solar cells consists in reducing the thickness of the substrate. By reducing the thickness of the substrate as described above, the cost of the material is reduced and the price of the solar cell is reduced.
【0003】ここで、シリコン基板中で、光起電力効果
により発生したキャリアは、シリコン基板中を拡散して
集められるため、シリコン基板の厚さはキャリアの拡散
長よりも薄くする必要がある。しかしながら、シリコン
基板の厚さの低減は、基板に入出力した光のうちで長波
長を有する光は拡散長が長くシリコン基板を透過し、光
起電力効果に寄与せず、入射した光のうち実際光起電力
効果に寄与し起電力を生じさせる効率が悪いという問題
点があった。そこで、シリコン基板の裏面側に、シリコ
ン基板を透過した光を再びシリコン基板内へ反射させ再
度光起電力効果に寄与させる反射膜を設け、光閉じ込め
構造を有する太陽電池が開発されている。Since carriers generated by the photovoltaic effect in the silicon substrate are diffused and collected in the silicon substrate, the thickness of the silicon substrate needs to be smaller than the diffusion length of the carriers. However, the reduction of the thickness of the silicon substrate is because light having a long wavelength out of the light input to and output from the substrate has a long diffusion length and penetrates the silicon substrate, does not contribute to the photovoltaic effect, and In fact, there is a problem in that the efficiency of generating electromotive force by contributing to the photovoltaic effect is poor. Therefore, a solar cell having a light confining structure has been developed in which a reflective film is provided on the back surface side of the silicon substrate to reflect the light transmitted through the silicon substrate again into the silicon substrate and contribute to the photovoltaic effect again.
【0004】上記構造を有する太陽電池の構造は、図7
を参照して、p型シリコン基板1の受光面側にn+ 型の
半導体層3が形成されている。また、n+ 型の半導体層
3の受光面側には、Si3 N4のパッシベーション膜4
および反射低減のための反射防止膜5が形成されてい
る。さらに、この反射防止膜5およびn+ 型の半導体層
3を貫通しn+ 型の半導体層3と接する所定の形状の受
光面電極7が形成されている。The structure of the solar cell having the above structure is shown in FIG.
Referring to, an n + type semiconductor layer 3 is formed on the light receiving surface side of the p type silicon substrate 1. On the light-receiving surface side of the n + type semiconductor layer 3, a passivation film 4 of Si 3 N 4 is formed.
And an antireflection film 5 for reducing reflection is formed. Further, a light-receiving surface electrode 7 having a predetermined shape is formed which penetrates the antireflection film 5 and the n + type semiconductor layer 3 and is in contact with the n + type semiconductor layer 3.
【0005】また一方、p型シリコン基板1の裏面側に
はp+ 型のBSF(バックサーフェイスフィールド)層
2が形成され、さらに、このBSF層2の裏面側にパッ
シベーション膜4が形成されている。また、光起電力効
果により得られる起電力を受光面電極7との間で取出す
ための裏面電極が、パッシベーション膜4を貫通し、B
SF層2に接して所定の形状に設けられている。さら
に、パッシベーション膜4および裏面電極6を覆うよう
に半導体基板内を透過してきた光を反射させるための反
射層9が形成されている。On the other hand, a p + type BSF (back surface field) layer 2 is formed on the back side of the p type silicon substrate 1, and a passivation film 4 is further formed on the back side of the BSF layer 2. . Further, a back surface electrode for taking out an electromotive force obtained by the photovoltaic effect with the light receiving surface electrode 7 penetrates the passivation film 4, and B
It is provided in a predetermined shape in contact with the SF layer 2. Further, a reflection layer 9 for reflecting the light transmitted through the semiconductor substrate is formed so as to cover the passivation film 4 and the back surface electrode 6.
【0006】上記構成よりなる光電変換素子の製造方法
は、まずp型シリコン基板1の裏面側にAlなどをドー
ピングしp+ 型層からなるBSF層を形成する。In the method of manufacturing the photoelectric conversion element having the above structure, first, the back side of the p-type silicon substrate 1 is doped with Al or the like to form a BSF layer of a p + -type layer.
【0007】次に、p型シリコン基板1の受光面側にS
i3 N4熱窒化リンやひ素をドーピングし、n+ 型の半
導体層3を形成する。その後、基板の両側に酸化膜を約
150Å形成し、パッシベーション膜4を形成する。ま
た、受光面側のパッシベーション膜4の上には、熱酸化
によりTiO2 よりなる反射防止膜5が形成される。Next, S is formed on the light receiving surface side of the p-type silicon substrate 1.
i 3 N 4 thermal phosphorus nitride or arsenic is doped to form an n + type semiconductor layer 3. After that, an oxide film is formed on both sides of the substrate to a thickness of about 150 Å to form the passivation film 4. An antireflection film 5 made of TiO 2 is formed on the passivation film 4 on the light receiving surface side by thermal oxidation.
【0008】その後、受光面電極7および裏面電極6を
Agを主成分とする金属ペーストを印刷し、焼成によ
り、各電極6,7を形成する。Thereafter, the light-receiving surface electrode 7 and the back surface electrode 6 are printed with a metal paste containing Ag as a main component, and baked to form the electrodes 6 and 7.
【0009】次に、裏面側には、光の高い反射率を有す
る金属材料からなる反射層(たとえば銀の薄膜)9を蒸
着法により形成する。ここに、蒸着法とは、高真空に排
気した釜の中で、金属を高温にして蒸発させ、この蒸気
をあてて金属を薄膜状に形成する方法をいう。Next, a reflective layer (for example, a silver thin film) 9 made of a metal material having a high light reflectance is formed on the back surface side by a vapor deposition method. Here, the vapor deposition method refers to a method in which a metal is evaporated at a high temperature in a kettle evacuated to a high vacuum, and the vapor is applied to form the metal into a thin film.
【0010】上記製造方法により、裏面側に反射層を有
する光電変換素子が形成され、半導体基板1に入射した
光は、効率よく光起電力効果に起与させることが可能と
なる。By the above manufacturing method, the photoelectric conversion element having the reflective layer on the back surface side is formed, and the light incident on the semiconductor substrate 1 can be efficiently caused to the photovoltaic effect.
【0011】[0011]
【発明が解決しようとする課題】しかしながら、上記光
電変換素子の製造方法においては、以下に述べる問題点
を有している。However, the above-mentioned method for manufacturing a photoelectric conversion element has the following problems.
【0012】上記において、反射層9を形成する方法と
して蒸着法を用いている。しかし、蒸着法による金属薄
膜の形成には、高真空を作りだす必要がある。さらに、
装置構成も真空排気系、真空室、電子銃、冷却系、制御
系など複雑かつ大掛かりであり、非常に高価なものであ
る。また、作業性の面においても、蒸着という手法の性
質上、半導体基板の蒸着面を蒸着源に向けて並べる必要
があり、膜厚の分布を考慮すれば、10cm×10cm
の大きさの半導体基板の場合は1回に数枚の処理しかで
きず、非常に生産性が悪くコスト低下のための問題点と
なっている。In the above, the vapor deposition method is used as the method of forming the reflective layer 9. However, it is necessary to create a high vacuum for forming the metal thin film by the vapor deposition method. further,
The device configuration is complicated and large-scale such as a vacuum exhaust system, a vacuum chamber, an electron gun, a cooling system, and a control system, and is very expensive. Also in terms of workability, it is necessary to arrange the vapor deposition surface of the semiconductor substrate toward the vapor deposition source due to the nature of the vapor deposition method. Considering the film thickness distribution, 10 cm × 10 cm
In the case of a semiconductor substrate having a size of, only a few substrates can be processed at a time, which is very poor in productivity and is a problem for cost reduction.
【0013】この発明は、上記問題点を解決するために
なされたもので、半導体基板の裏面に形成される反射膜
の形成のためのコストを低下させることにより、光電変
換素子のコストを低下させ、従来と同様の機能を有する
光電変換素子の製造方法を提供することを目的とする。The present invention has been made to solve the above problems, and reduces the cost of forming a reflective film formed on the back surface of a semiconductor substrate, thereby reducing the cost of a photoelectric conversion element. It is an object of the present invention to provide a method for manufacturing a photoelectric conversion element having the same function as conventional ones.
【0014】[0014]
【課題を解決するための手段】この発明に基づいた光電
変換素子の製造方法においては、第1導電型の半導体基
板の受光面側に第2導電型の半導体層を形成する工程
と、この半導体層の受光面上に、受光面電極を形成する
工程と、上記半導体基板の上記半導体層と反対側の面
に、光起電力効果により得られる起電力を上記受光面電
極との間で取出すための裏面電極を形成する工程と、上
記半導体基板の上記半導体層と反対側の面および上記裏
面電極を覆うように無電界めっき法により上記半導体層
および上記半導体基板を透過した光を反射させるための
反射層を形成する工程とを備えている。In a method of manufacturing a photoelectric conversion element according to the present invention, a step of forming a second conductivity type semiconductor layer on a light receiving surface side of a first conductivity type semiconductor substrate, and the step of forming the semiconductor layer Forming a light-receiving surface electrode on the light-receiving surface of the layer, and extracting the electromotive force obtained by the photovoltaic effect between the light-receiving surface electrode and the surface of the semiconductor substrate opposite to the semiconductor layer. A step of forming a back electrode, and for reflecting light transmitted through the semiconductor layer and the semiconductor substrate by electroless plating so as to cover the surface of the semiconductor substrate opposite to the semiconductor layer and the back electrode. And a step of forming a reflective layer.
【0015】[0015]
【作用】光電変換素子の裏面側に形成される反射膜を無
電界めっき法を用いて形成することにより、生産性の向
上をはかることができる。The productivity can be improved by forming the reflective film formed on the back surface side of the photoelectric conversion element by the electroless plating method.
【0016】[0016]
【実施例】以下、この発明に基づいた実施例について図
面に基づいて説明する。なお、この実施例において製造
される光電変換素子の構造は、図1を参照して、従来技
術における光電変換素子と同じであるためこの実施例の
特徴である製造方法についてのみ以下言及する。Embodiments of the present invention will be described below with reference to the drawings. Since the structure of the photoelectric conversion element manufactured in this example is the same as that of the photoelectric conversion element in the prior art with reference to FIG. 1, only the manufacturing method which is the feature of this example will be described below.
【0017】まず、図2を参照して、p型シリコン基板
1の裏面側にAlなどをドーピングしてp+ 型層からな
るBSF層を形成する。First, referring to FIG. 2, the back side of p type silicon substrate 1 is doped with Al or the like to form a BSF layer of ap + type layer.
【0018】次に、p型シリコン基板1の受光面側にリ
ンやひ素をドーピングしn+ 型の半導体層を形成する。
その後、図3を参照して、基板の両側にSi3 N4 熱窒
化膜を約150Å形成し、パッシベーション膜4を形成
する。Next, phosphorus or arsenic is doped on the light-receiving surface side of the p-type silicon substrate 1 to form an n + -type semiconductor layer.
Thereafter, referring to FIG. 3, a Si 3 N 4 thermal nitride film is formed on both sides of the substrate to a thickness of about 150 Å to form a passivation film 4.
【0019】次に、図4を参照して、基板の受光面側に
熱酸化によりTiO2 よりなる反射防止膜5が形成され
る。その後、図5を参照して、受光面電極7および裏面
電極6をAgを主成分とする金属ペーストを印刷し、焼
成により各電極6,7を形成する。Next, referring to FIG. 4, an antireflection film 5 made of TiO 2 is formed on the light receiving surface side of the substrate by thermal oxidation. After that, referring to FIG. 5, a metal paste containing Ag as a main component is printed on light-receiving surface electrode 7 and back surface electrode 6, and each electrode 6, 7 is formed by firing.
【0020】次に、図6を参照して、基板の表面側にめ
っきの保護膜となるレジスト膜8を全面印刷により形成
する。その後、基板の裏面側を不導体用前処理液にHF
を2〜4wt%の割合で加えたものを用い、前処理を施
し、無電界めっき液を用いて、約3μmの銅めっき膜か
らなる反射層9を形成する。Next, referring to FIG. 6, a resist film 8 serving as a protective film for plating is formed on the front surface of the substrate by printing on the entire surface. After that, the back side of the substrate is treated with HF as a pretreatment liquid for non-conductor.
Is added in a proportion of 2 to 4 wt%, pretreatment is performed, and a reflection layer 9 made of a copper plating film of about 3 μm is formed by using an electroless plating solution.
【0021】次に、図7を参照して、基板を溶剤中にお
いて、超音波洗浄を行ないレジスト膜8を取除くことで
本実施例における光電変換素子が形成される。Next, referring to FIG. 7, the substrate is subjected to ultrasonic cleaning in a solvent to remove the resist film 8 to form the photoelectric conversion element of this embodiment.
【0022】次に、基板の裏面に設けた反射層が銀薄膜
および銅薄膜の場合の光の波長に対する反射率を図8に
示す。Next, FIG. 8 shows the reflectance with respect to the wavelength of light when the reflection layer provided on the back surface of the substrate is a silver thin film and a copper thin film.
【0023】図8より、裏面反射に寄与できる800n
m以上の長波長領域において、蒸着法の代表例である銀
薄膜と、無電界めっきで使用した銅薄膜の反射率は同等
であることがわかる。From FIG. 8, 800n which can contribute to the back surface reflection
It can be seen that in the long wavelength region of m or more, the reflectance of the silver thin film, which is a typical example of the vapor deposition method, is the same as that of the copper thin film used in the electroless plating.
【0024】また、無電界めっき法を用いることは、銅
薄膜の形成が基板をめっき液に浸漬することによって行
なわれるために大掛かりな装置を不要とし、1回に大量
の処理を可能としている。The use of the electroless plating method does not require a large-scale apparatus because the copper thin film is formed by immersing the substrate in a plating solution, and a large amount of processing can be performed at one time.
【0025】なお、上記において基板の裏面に形成され
る反射層を銅薄膜としたが、これは、光の反射率および
めっき液の単価から最適として選ばれたものであり、め
っき液単価を問題としなければ、金、銀などにおいても
同様の作用効果が得ることができる。In the above description, the reflection layer formed on the back surface of the substrate is a copper thin film, but this is optimally selected from the light reflectance and the unit price of the plating solution. Otherwise, the same effect can be obtained with gold, silver, etc.
【0026】[0026]
【発明の効果】この発明の製造方法に基づいた光電変換
素子においては、基板の裏面に形成される反射層を無電
界めっき法を用いて形成することにより、従来の蒸着法
によって形成された反射層と同等の反射率を備え、ま
た、1回に大量枚数の基板の処理が可能となるために、
工程の減少ひいては大幅なコストダウンを可能としてい
る。In the photoelectric conversion element based on the manufacturing method of the present invention, the reflection layer formed on the back surface of the substrate is formed by the electroless plating method so that the reflection layer formed by the conventional vapor deposition method is formed. Since it has the same reflectivity as a layer and can process a large number of substrates at one time,
This enables a reduction in the number of processes and thus a significant cost reduction.
【図1】この発明に基づいた製造方法を用いて形成され
た光電変換素子の構造を示す図である。FIG. 1 is a diagram showing a structure of a photoelectric conversion element formed by using a manufacturing method according to the present invention.
【図2】この発明に基づいた製造方法における光電変換
素子の第1の製造工程を示す図である。FIG. 2 is a diagram showing a first manufacturing process of the photoelectric conversion element in the manufacturing method based on the present invention.
【図3】この発明に基づいた製造方法における光電変換
素子の第2の製造工程を示す図である。FIG. 3 is a diagram showing a second manufacturing process of the photoelectric conversion element in the manufacturing method based on the present invention.
【図4】この発明に基づいた製造方法における光電変換
素子の第3の製造工程を示す図である。FIG. 4 is a diagram showing a third manufacturing step of the photoelectric conversion element in the manufacturing method based on the present invention.
【図5】この発明に基づいた製造方法における光電変換
素子の第4の製造工程を示す図である。FIG. 5 is a diagram showing a fourth manufacturing process of the photoelectric conversion element in the manufacturing method based on the present invention.
【図6】この発明に基づいた製造方法における光電変換
素子の第5の製造工程を示す図である。FIG. 6 is a diagram showing a fifth manufacturing step of the photoelectric conversion element in the manufacturing method based on the present invention.
【図7】この発明に基づいた製造方法における光電変換
素子の最終製造工程を示す図である。FIG. 7 is a diagram showing a final manufacturing process of a photoelectric conversion element in a manufacturing method according to the present invention.
【図8】半導体基板の裏面側に形成される反射膜の、銀
薄膜および銅薄膜における光反射の波長に対する反射率
を示す図である。FIG. 8 is a diagram showing the reflectance of a reflective film formed on the back surface side of a semiconductor substrate with respect to the wavelength of light reflection in a silver thin film and a copper thin film.
1 半導体基板 2 BSF層 3 半導体層 4 パッシベーション膜 5 反射防止膜 6 裏面電極 7 受光面電極 9 反射層 なお図中、同一符号は同一または相当部分を示す。 1 semiconductor substrate 2 BSF layer 3 semiconductor layer 4 passivation film 5 antireflection film 6 back surface electrode 7 light receiving surface electrode 9 reflection layer In the drawings, the same reference numerals indicate the same or corresponding portions.
Claims (1)
2導電型の半導体層を形成する工程と、 この半導体層の受光面上に、受光面電極を形成する工程
と、 前記半導体基板の前記半導体層と反対側の面に、光起電
力効果により得られる起電力を前記受光面電極との間で
取出すための裏面電極を形成する工程と、 前記半導体基板の前記半導体層と反対側の面および裏面
電極を覆うように無電界めっき法により前記半導体層お
よび半導体基板を透過した光を反射させるための反射層
を形成する工程と、 を備えた光電変換素子の製造方法。1. A step of forming a second conductive type semiconductor layer on the light receiving surface side of a first conductive type semiconductor substrate; a step of forming a light receiving surface electrode on the light receiving surface of the semiconductor layer; A step of forming a back surface electrode on the surface of the substrate opposite to the semiconductor layer for extracting an electromotive force obtained by a photovoltaic effect between the light receiving surface electrode and the semiconductor layer of the semiconductor substrate; A step of forming a reflective layer for reflecting light transmitted through the semiconductor layer and the semiconductor substrate by electroless plating so as to cover the side surface and the back surface electrode, and a method for manufacturing a photoelectric conversion element, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3255348A JPH0595127A (en) | 1991-10-02 | 1991-10-02 | Manufacture of photoelectric conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3255348A JPH0595127A (en) | 1991-10-02 | 1991-10-02 | Manufacture of photoelectric conversion device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0595127A true JPH0595127A (en) | 1993-04-16 |
Family
ID=17277543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3255348A Withdrawn JPH0595127A (en) | 1991-10-02 | 1991-10-02 | Manufacture of photoelectric conversion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0595127A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004039998A (en) * | 2002-07-05 | 2004-02-05 | Sharp Corp | Semiconductor device provided with light receiving element unit and manufacturing method thereof |
WO2006129444A1 (en) * | 2005-05-31 | 2006-12-07 | Naoetsu Electronics Co., Ltd. | Solar cell element and method for fabricating same |
WO2006137322A1 (en) * | 2005-06-22 | 2006-12-28 | Kyocera Corporation | Solar cell element and solar cell element manufacturing method |
JP2008251726A (en) * | 2007-03-29 | 2008-10-16 | Sharp Corp | Solar cell manufacturing method |
WO2009035112A1 (en) | 2007-09-12 | 2009-03-19 | Mitsubishi Materials Corporation | Composite membrane for super straight solar cell, process for producing the composite membrane for super straight solar cell, composite membrane for substraight solar cell, and process for producing the composite membrane for substraight solar cell |
WO2010119512A1 (en) * | 2009-04-14 | 2010-10-21 | 三菱電機株式会社 | Photovoltaic device and method for manufacturing the same |
WO2010150606A1 (en) * | 2009-06-23 | 2010-12-29 | 三菱電機株式会社 | Photovoltaic device and method for manufacturing same |
WO2012046306A1 (en) * | 2010-10-05 | 2012-04-12 | 三菱電機株式会社 | Photovoltaic device and method for manufacturing same |
CN103664457A (en) * | 2012-09-25 | 2014-03-26 | 中国石油化工股份有限公司 | Selective hydrogenation method of crude isopentene |
US8758891B2 (en) | 2007-04-19 | 2014-06-24 | Mitsubishi Materials Corporation | Conductive reflective film and production method thereof |
US8816193B2 (en) | 2006-06-30 | 2014-08-26 | Mitsubishi Materials Corporation | Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method |
US8822814B2 (en) | 2006-10-11 | 2014-09-02 | Mitsubishi Materials Corporation | Composition for electrode formation and method for forming electrode by using the composition |
JP2019057567A (en) * | 2017-09-20 | 2019-04-11 | 株式会社東芝 | Photodetector, optical detection device, lidar device and manufacturing method of photodetector |
JP2021100058A (en) * | 2019-12-23 | 2021-07-01 | 浜松ホトニクス株式会社 | Semiconductor photodetector |
WO2021131758A1 (en) * | 2019-12-23 | 2021-07-01 | 浜松ホトニクス株式会社 | Semiconductor photodetector |
-
1991
- 1991-10-02 JP JP3255348A patent/JPH0595127A/en not_active Withdrawn
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004039998A (en) * | 2002-07-05 | 2004-02-05 | Sharp Corp | Semiconductor device provided with light receiving element unit and manufacturing method thereof |
WO2006129444A1 (en) * | 2005-05-31 | 2006-12-07 | Naoetsu Electronics Co., Ltd. | Solar cell element and method for fabricating same |
WO2006137322A1 (en) * | 2005-06-22 | 2006-12-28 | Kyocera Corporation | Solar cell element and solar cell element manufacturing method |
JPWO2006137322A1 (en) * | 2005-06-22 | 2009-01-15 | 京セラ株式会社 | Solar cell element and method for manufacturing solar cell element |
JP4837662B2 (en) * | 2005-06-22 | 2011-12-14 | 京セラ株式会社 | Method for manufacturing solar cell element |
US9620668B2 (en) | 2006-06-30 | 2017-04-11 | Mitsubishi Materials Corporation | Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method |
US8816193B2 (en) | 2006-06-30 | 2014-08-26 | Mitsubishi Materials Corporation | Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method |
US9312404B2 (en) | 2006-06-30 | 2016-04-12 | Mitsubishi Materials Corporation | Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method |
US8822814B2 (en) | 2006-10-11 | 2014-09-02 | Mitsubishi Materials Corporation | Composition for electrode formation and method for forming electrode by using the composition |
JP2008251726A (en) * | 2007-03-29 | 2008-10-16 | Sharp Corp | Solar cell manufacturing method |
US10020409B2 (en) | 2007-04-19 | 2018-07-10 | Mitsubishi Materials Corporation | Method for producing a conductive reflective film |
US8758891B2 (en) | 2007-04-19 | 2014-06-24 | Mitsubishi Materials Corporation | Conductive reflective film and production method thereof |
US8921688B2 (en) | 2007-09-12 | 2014-12-30 | Mitsubishi Materials Corporation | Composite film for superstrate solar cell having conductive film and electroconductive reflective film formed by applying composition containing metal nanoparticles and comprising air pores of preset diameter in contact surface |
WO2009035112A1 (en) | 2007-09-12 | 2009-03-19 | Mitsubishi Materials Corporation | Composite membrane for super straight solar cell, process for producing the composite membrane for super straight solar cell, composite membrane for substraight solar cell, and process for producing the composite membrane for substraight solar cell |
WO2010119512A1 (en) * | 2009-04-14 | 2010-10-21 | 三菱電機株式会社 | Photovoltaic device and method for manufacturing the same |
US8722453B2 (en) | 2009-04-14 | 2014-05-13 | Mitsubishi Electric Corporation | Photovoltaic device and method for manufacturing the same |
WO2010150606A1 (en) * | 2009-06-23 | 2010-12-29 | 三菱電機株式会社 | Photovoltaic device and method for manufacturing same |
WO2010150358A1 (en) * | 2009-06-23 | 2010-12-29 | 三菱電機株式会社 | Photoelectromotive device, and method for manufacturing the same |
JPWO2012046306A1 (en) * | 2010-10-05 | 2014-02-24 | 三菱電機株式会社 | Photovoltaic device and manufacturing method thereof |
TWI415280B (en) * | 2010-10-05 | 2013-11-11 | Mitsubishi Electric Corp | Light power device and manufacturing method thereof |
CN103180964A (en) * | 2010-10-05 | 2013-06-26 | 三菱电机株式会社 | Photovoltaic device and method for manufacturing same |
WO2012046306A1 (en) * | 2010-10-05 | 2012-04-12 | 三菱電機株式会社 | Photovoltaic device and method for manufacturing same |
CN103664457A (en) * | 2012-09-25 | 2014-03-26 | 中国石油化工股份有限公司 | Selective hydrogenation method of crude isopentene |
JP2019057567A (en) * | 2017-09-20 | 2019-04-11 | 株式会社東芝 | Photodetector, optical detection device, lidar device and manufacturing method of photodetector |
US11189746B2 (en) | 2017-09-20 | 2021-11-30 | Kabushiki Kaisha Toshiba | Photodetector comprising dual cells with different thickness of interposing substrates, photodetection device, laser imaging detection and ranging apparatus and method of manufacturing a photodetector |
JP2021100058A (en) * | 2019-12-23 | 2021-07-01 | 浜松ホトニクス株式会社 | Semiconductor photodetector |
WO2021131758A1 (en) * | 2019-12-23 | 2021-07-01 | 浜松ホトニクス株式会社 | Semiconductor photodetector |
WO2021131759A1 (en) * | 2019-12-23 | 2021-07-01 | 浜松ホトニクス株式会社 | Semiconductor light detection element |
JP2021100057A (en) * | 2019-12-23 | 2021-07-01 | 浜松ホトニクス株式会社 | Semiconductor photodetector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7897867B1 (en) | Solar cell and method of manufacture | |
US7388147B2 (en) | Metal contact structure for solar cell and method of manufacture | |
US4234352A (en) | Thermophotovoltaic converter and cell for use therein | |
EP2612369B1 (en) | Solar cell and method for manufacturing the same | |
JPH0595127A (en) | Manufacture of photoelectric conversion device | |
WO2010119512A1 (en) | Photovoltaic device and method for manufacturing the same | |
JP2008543067A (en) | Method for manufacturing single-sided contact solar cell and single-sided contact solar cell | |
JP3469729B2 (en) | Solar cell element | |
KR20090118056A (en) | Method for the producing a solar cell and solar cell produced using said method | |
KR20100057702A (en) | Solar battery cell | |
JP2010129872A (en) | Solar battery element | |
JP2000183379A (en) | Method for manufacturing solar cell | |
KR101597532B1 (en) | The Manufacturing Method of Back Contact Solar Cells | |
JPH06310740A (en) | Solar cell and fabrication thereof | |
JP2989373B2 (en) | Method for manufacturing photoelectric conversion device | |
JPH0969643A (en) | Solar battery and its manufacturing method | |
US4922218A (en) | Photovoltaic device | |
JPWO2009157053A1 (en) | Photovoltaic device and manufacturing method thereof | |
JP2999867B2 (en) | Solar cell and method of manufacturing the same | |
JP3301663B2 (en) | Solar cell manufacturing method | |
US5298087A (en) | Photovoltaic device useful as a mirror | |
US8828790B2 (en) | Method for local contacting and local doping of a semiconductor layer | |
JPH11135812A (en) | Formation method for solar cell element | |
JPH11103081A (en) | Photovoltaic element | |
JP5452755B2 (en) | Method for manufacturing photovoltaic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990107 |