JPS58150831A - Solar beam incidence factor measuring apparatus for artificial satellite - Google Patents

Solar beam incidence factor measuring apparatus for artificial satellite

Info

Publication number
JPS58150831A
JPS58150831A JP11354382A JP11354382A JPS58150831A JP S58150831 A JPS58150831 A JP S58150831A JP 11354382 A JP11354382 A JP 11354382A JP 11354382 A JP11354382 A JP 11354382A JP S58150831 A JPS58150831 A JP S58150831A
Authority
JP
Japan
Prior art keywords
light
artificial satellite
sunlight
photodetector
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11354382A
Other languages
Japanese (ja)
Other versions
JPH0138253B2 (en
Inventor
Sadao Shimoji
下地 貞夫
Koichiro Kurahashi
倉橋 浩一郎
Minoru Oda
稔 小田
Hiroshi Kimura
弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11354382A priority Critical patent/JPS58150831A/en
Publication of JPS58150831A publication Critical patent/JPS58150831A/en
Publication of JPH0138253B2 publication Critical patent/JPH0138253B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/1626Arrangements with two photodetectors, the signals of which are compared

Abstract

PURPOSE:To enable the measurement of an incidence factor of solar beam by obtaining an output ratio from a combination of two photodetectors each having a measuring diffusion reflector plate as view with the intensity of the solar beam as reference value. CONSTITUTION:Light from a pulse light source 2 driven by a pulse power source 8 irradiates an artificial satellite 1 to be measured with a reflector 3. A small measuring diffusion reflector plate 4 is placed at a preset measuring point. As the angle between the normal of the diffusion relfector plate 4 and the direction of an observing point therefrom and the distance between the diffusion reflector plate 4 and the observing pont are known from the arrangement of the measuring system, a totalized incidence value is obtained by measuring the intensity reflected light from the reflector plate 4. A photo detector 5 has the measuring diffusion reflector plate 4 as view and is set so as to admit no light from others. The incidence factor of solar beam is defined as totalized incidence value at a measuring point when the intensity of the solar beam is set at 1. Therefore, the incidence factor of the solar beam can be obtained by determining the ratio between the output of the photo detector 5 having the diffusion reflector plate 4 as view and the output of a photo detector 7 having a calibrating diffusion reflector plate 6 as view.

Description

【発明の詳細な説明】 この発明は人工衛星の光学的特性を測定するための新し
い装置に関するもので2人工衛星各部への太陽光入射係
数を測定することを目的にしている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new device for measuring the optical characteristics of an artificial satellite, and its purpose is to measure the coefficient of sunlight incident on each part of two artificial satellites.

人工衛星のミッションを成功させるためには。In order for the satellite mission to be successful.

宇宙環境において、jfr載機器および衛星各部の温度
が要求範囲に入っていなければならない。
In the space environment, the temperature of the JFR onboard equipment and each part of the satellite must be within the required range.

熱設計および製造の妥当性を検証するために。To validate thermal design and manufacturing.

人工衛星開発の各段階、すなわちエンジニアリングモデ
ル、グロトタイプモデルおよびフライトモデルの段階に
おいて宇宙環境試験が行なわnる。試験装置はこnらの
モデルに高真空かつ極低温環境下で、太陽光に相当する
放射を照射したとき、予測した温度分布に近いものとな
るか、正常に動作するかを調べる。そのために10  
”mmHg以上に排気される高真空を持ち。
Space environment tests are conducted at each stage of satellite development, namely the engineering model, grototype model, and flight model stages. The test equipment examines whether the temperature distribution approximates the predicted temperature distribution and whether the models operate normally when exposed to radiation equivalent to sunlight in a high vacuum and extremely low temperature environment. 10 for that
``It has a high vacuum that can be evacuated to over mmHg.

その内壁近くに約20°Kに冷却されるシュラウドが設
けられている。太陽光の代りに数10Kwのクセノンラ
ンプの集合と光学系から成る擬似太陽光照射装置、ある
いは高出力の赤外線ランプの配列が用いらfる。
A shroud is provided near its inner wall which is cooled to about 20°K. Instead of sunlight, a pseudo-sunlight irradiation device consisting of a set of xenon lamps of several tens of kilowatts and an optical system, or an array of high-output infrared lamps is used.

一般に物体表面の光や熱放射に対する吸収率や反射率は
これらの放射に含まれる電磁波の波長毎に異なり、また
それらの入射および反射の方向によっても異なりつる。
In general, the absorptivity and reflectance of the surface of an object for light and thermal radiation differ depending on the wavelength of the electromagnetic waves contained in these radiations, and also vary depending on the directions of incidence and reflection.

クセノンランプからの放射は太陽スペクトルを相当に良
く近似しており、また光学系によって平行光束が得られ
る。従って擬似太陽光照射装置として太陽からの放射を
近似することができる。しかしこの方式に基づいて大形
の照射装置を製作することは技術的1価格的に困難が伴
ない、運転および保守に多大の労力を要する。一方、赤
外線ラング列からの放射はスペクトル分布は太陽放射と
比べると長波長側に偏っており、方向性も拡散的である
。太陽放射を近似してはいないが、放射により加熱を折
力う装置として、比較的容易に大規模のものを製作しつ
る。現在、宇宙環境試験装置はクセノンランプと光学系
による照射装置を備えたものを標準とし、これ一台に対
して赤外線ランプ列による照射装置を備えたものが多数
製作され9人工衛星の開発および性能確認のための詳細
な試験が行なわれている。
The radiation from a xenon lamp approximates the solar spectrum fairly well, and the optics provide a parallel beam of light. Therefore, radiation from the sun can be approximated as a pseudo sunlight irradiation device. However, manufacturing a large-sized irradiation device based on this method is technically and economically difficult, and requires a great deal of effort for operation and maintenance. On the other hand, the spectral distribution of radiation from an infrared rung train is biased toward longer wavelengths compared to solar radiation, and the directionality is also diffuse. Although it does not approximate solar radiation, it is relatively easy to manufacture a large-scale device that uses radiation to generate heat. Currently, the standard space environment test device is one equipped with an irradiation device using a xenon lamp and an optical system, and many devices equipped with an irradiation device using an array of infrared lamps are manufactured for each of these devices. Detailed tests are being conducted to confirm this.

このような宇宙環境試験をまとめてみると。Let's summarize these space environment tests.

各開発段階における人工衛星を高真空、極低温環境下に
おき、擬似太陽光を照射して温度分布を測定するもので
あると云える。すなわち人工衛星が太陽光を吸収し、そ
れによって発生した熱量が熱放射の形で宇宙空間に放出
される様子を調べようとするものである。
It can be said that the satellite at each stage of development is placed in a high vacuum, extremely low temperature environment, and the temperature distribution is measured by irradiating it with simulated sunlight. In other words, the aim is to investigate how an artificial satellite absorbs sunlight and the amount of heat generated by it is emitted into space in the form of thermal radiation.

ところが放射伝熱の理論によれば、この放射エネルギの
流nにおいて、太陽光のスペクトル帯と熱放射のスペク
トル帯を分けて考えることができる。人工衛星の熱設計
においても、各部への太陽光入射量の予測、それを吸収
しての発熱分布の予測、およびこの発熱分布と他の原因
の発熱による温度分布の予測を段階的に行なっている。
However, according to the theory of radiant heat transfer, the spectral band of sunlight and the spectral band of thermal radiation can be considered separately in this radiant energy flow n. In the thermal design of satellites, we step-by-step predict the amount of sunlight incident on each part, predict the heat generation distribution due to the absorption of sunlight, and predict the temperature distribution due to this heat generation distribution and heat generation from other causes. There is.

太陽光入射量は人工衛星の光学的性質である太陽光入射
係数を知ることによって直ちに求められる。そこで太陽
光入射係数の測定を実行すれば、擬似太陽光照射試験に
よる温度分布測定結果の解析、赤外ランプ列を使用する
場合の照射条件設定、設計および製造法の妥当性を検討
する上で有用力情報を得ることができる。
The amount of sunlight incident can be immediately determined by knowing the sunlight incident coefficient, which is an optical property of the artificial satellite. Therefore, by measuring the sunlight incidence coefficient, you can analyze the temperature distribution measurement results from the simulated sunlight irradiation test, set the irradiation conditions when using an infrared lamp array, and examine the validity of the design and manufacturing method. You can obtain useful power information.

この発明はこの原理にもとづいて、簡単でかつ正確に太
陽光入射係数を測定する手段を提供するものである。す
なわち、太陽光入射係数の測定を目的とするならば2人
工衛星を高真空。
The present invention provides a means for simply and accurately measuring the sunlight incidence coefficient based on this principle. In other words, if the purpose is to measure the solar incidence coefficient, the two satellites should be placed in a high vacuum.

極低温環境下におく必要はなく、温度を保つための強力
な擬似太陽光照射装置も必要としない。
There is no need to place it in an extremely low temperature environment, and there is no need for a powerful simulated sunlight irradiation device to maintain the temperature.

通常の実験室環境下で測定することができる。It can be measured under normal laboratory conditions.

また、各部の温度が上昇しないように間に的に照射を行
なった方が良いから、照射装置は低出力のもので良い。
Furthermore, since it is better to perform irradiation in between to prevent the temperature of each part from rising, a low-output irradiation device may be used.

従来、太陽光入射係数の測定を目的としたものは提案さ
れた例があるが、これは自然太陽光を直接に利用する方
式であるため、設置場所や気象条件への要求が厳しく、
一般に用いられる迄に至っていない。この発明は屋内測
定用として特に照明装置に工夫を凝らしである。
In the past, there have been proposals for measuring the sunlight incidence coefficient, but since this method uses natural sunlight directly, there are strict requirements regarding the installation location and weather conditions.
It has not yet come into general use. This invention is particularly designed for use in indoor measurements with a lighting device.

以下、この発明の内容を実施例により説明する。第1図
は装置の構成を示す概念図で、(1)は測定対象である
人工衛星、(2)はパルス化された光源、(3)は広断
面積平行光束を得るための光学系で例えば放物面鏡、(
4)は測定点におかれた測定用拡散反射板、(5)は測
定用拡散反射板(4)を視野とする光検出器、(6)は
較正用拡散反射板、(7)は較正用拡散反射板(6)を
視野とする光検出器。
Hereinafter, the content of this invention will be explained with reference to examples. Figure 1 is a conceptual diagram showing the configuration of the device, where (1) is the artificial satellite to be measured, (2) is the pulsed light source, and (3) is the optical system to obtain a wide cross-sectional parallel beam. For example, a parabolic mirror, (
4) is a measurement diffuse reflector placed at the measurement point, (5) is a photodetector whose field of view is the measurement diffuse reflector (4), (6) is a calibration diffuse reflector, and (7) is a calibration plate. A photodetector whose field of view is the diffuse reflection plate (6).

(8)はパルス電源、(9)は信号処理装置、およびQ
lは電子計算機である。
(8) is a pulse power supply, (9) is a signal processing device, and Q
l is an electronic computer.

パルス電源(8)で駆動されるパルス光源(2)から出
た光は光学系(3)により、測定対象である人工衛星(
1)を照射するために十分な大きさの断面積(直径約2
〜7mφ)を持った光束に拡大される。
The light emitted from the pulsed light source (2) driven by the pulsed power source (8) is sent to the artificial satellite (to be measured) by the optical system (3).
1) A cross-sectional area (approximately 2 in diameter) large enough to irradiate
~7 mφ).

光束の平行度は光源(2)の大きさおよび光学系(3)
の大きさを適当に選んで、太陽光の平行度に対応して約
9.3ミリラジアンに保たれる。
The parallelism of the light beam depends on the size of the light source (2) and the optical system (3)
By choosing the size appropriately, it is kept at about 9.3 milliradians, corresponding to the parallelism of sunlight.

さて2人工衛星(1)の表面各部には光束内の光が直接
に、あるいは表面の他の部分から反射されて入射しうる
。直接光および反射光の双方が入射する部分、どちらか
一方のみが入射する部分、および双方とも入射しない部
分がある。反射の回数も1回だけとは限らない。反射光
の強度は入射光の入射角2反射面の表面特性および反射
面からの方向に依存し、一般に解析的に十分な精度で求
めることは困難であるから、その寄与を知ることが測定
上の重要な項目となる。
Now, the light in the luminous flux can be incident on each part of the surface of the second artificial satellite (1) directly or after being reflected from other parts of the surface. There are parts where both direct light and reflected light enter, parts where only one of them enters, and parts where neither of them enter. The number of reflections is not limited to just one. The intensity of reflected light depends on the angle of incidence of the incident light, the surface characteristics of the reflecting surface, and the direction from the reflecting surface, and it is generally difficult to obtain it analytically with sufficient accuracy, so knowing its contribution is important in measurement. This is an important item.

そのため測定点に小さな測定用拡散反射板(4)をおく
。拡散反射板(4)からの反射は拡散的であって1反射
光の強度な観測点の方向と入射光の入射角の相対関係に
依存せず2反射面の法線と観測点の方向との角度に関係
する。測定用拡散反射板(4)の法線と観測点方向の角
度および両者の間の距離は測定系の配置により既知であ
るから。
Therefore, a small diffuse reflection plate (4) for measurement is placed at the measurement point. The reflection from the diffuse reflector (4) is diffuse, and does not depend on the relative relationship between the direction of the observation point where the reflected light is strong and the angle of incidence of the incident light, but the relationship between the normal of the reflecting surface and the direction of the observation point. related to the angle of This is because the angle between the normal line of the measurement diffuse reflection plate (4) and the direction of the observation point and the distance between the two are known based on the arrangement of the measurement system.

この反射板(4)からの反射光の強度を測定することに
よって、直接光および他の面から反射されて来るものを
含めての総合された入射量が得られる。光検出器(5)
は測定用拡散反射板(4)を視野ν とし、他からの光入力はないように七%トするこのよう
な反射板(4)の表面特性は測定点における本来の反射
特性と異なるから、それが関与する人工衛星表面各部間
の反射光のやりとりに影響を与えるが、全表面積に比べ
て面積が十分に小さいから、その影響を無視することが
できる。
By measuring the intensity of the reflected light from this reflection plate (4), the total incident amount including direct light and light reflected from other surfaces can be obtained. Photodetector (5)
The field of view ν is the diffuse reflection plate (4) for measurement, and the surface characteristics of such a reflection plate (4) are different from the original reflection characteristics at the measurement point. This affects the exchange of reflected light between the various parts of the satellite's surface, but since the area is sufficiently small compared to the total surface area, this effect can be ignored.

較正用拡散反射板(6)からの反射光も同様に入射光に
影響を与えるが、こnも十分に小さい。
The reflected light from the calibration diffuse reflector (6) similarly affects the incident light, but this n is also sufficiently small.

太陽光入力係数は太陽光の強度を1とした時の測定点へ
の総合された入射量として定義される。従って測定用拡
散反射板(4)を視野とする光検出器(5)の出力と較
正用拡散反射板(6)を視野とする光検出器(7)の出
力の比をとることによって太陽光入射係数が求められる
。そのための信号処理装置(9)によって行なう。一方
、光検出器(7)の出力を用いて光学系(3)からの光
の強度を較正し、これを太陽光の照射強度と等しくする
ことにより、測定点への太陽光入射量を求めることもで
きる。表面の各点において測定した太陽光入射係数およ
び模擬太陽光入射量は使用の便を計って電子計算機01
に貯える。
The sunlight input coefficient is defined as the total amount of incidence on the measurement point when the intensity of sunlight is 1. Therefore, by taking the ratio of the output of the photodetector (5) whose field of view is the diffuse reflection plate for measurement (4) and the output of the photodetector (7) whose field of view is the diffuse reflection plate for calibration (6), The incidence coefficient is determined. This is performed by a signal processing device (9) for this purpose. On the other hand, the intensity of light from the optical system (3) is calibrated using the output of the photodetector (7), and by making this equal to the irradiation intensity of sunlight, the amount of sunlight incident on the measurement point is determined. You can also do that. The sunlight incident coefficient and simulated sunlight incident amount measured at each point on the surface are calculated using an electronic computer 01 for convenience of use.
Store in.

第2図はパルス化された光源(2)と広断面積平行光束
を得るための光学系(3)の一実施例を示す図で、(2
υは光源、(イ)は光源の支持機構・(3)け゛動物面
鏡である。光源(2)としてキセノンガス放電のフラッ
シュランプを用い、パルス電源(8)によって繰返しパ
ルス光を発生させる。キセノンランプからの放射光のス
ペクトル分布は太陽光のスペクトルを良く近似し、また
十分なせん頭光出力が得られる。光源(2)は動物面鏡
(3)の焦点におき1両者の対称軸は一致させである。
FIG. 2 is a diagram showing an example of a pulsed light source (2) and an optical system (3) for obtaining a wide cross-sectional area parallel light beam.
υ is the light source, (a) is the support mechanism for the light source, and (3) is the animal surface mirror. A xenon gas discharge flash lamp is used as a light source (2), and pulsed light is repeatedly generated by a pulsed power source (8). The spectral distribution of the emitted light from the xenon lamp closely approximates the spectrum of sunlight, and sufficient peak light output can be obtained. The light source (2) is placed at the focal point of the animal mirror (3), so that the symmetry axes of both mirrors coincide.

動物面鏡(3)からの反射光の平行度は、光源(2)の
実効径をd、抛物面の焦点距離をfとすると、a/fで
与えられる。いまdは約3crnに取れば太陽光の平行
度に等しいd/f<0.01ラジアンが得られる。光源
(2)とその支持機構(1)に当る光束の部分は測定対
象である人工衛星(1)に対して遮断され代 るが、それは光束の全断面積に対して00001鵠程度
であり、十分に無視することができる。
The parallelism of the reflected light from the animal mirror (3) is given by a/f, where d is the effective diameter of the light source (2) and f is the focal length of the parapet surface. Now, if d is set to about 3 crn, d/f<0.01 radian, which is equal to the parallelism of sunlight, can be obtained. The part of the light beam that hits the light source (2) and its support mechanism (1) is blocked from the artificial satellite (1) that is the measurement target, but this is about 00001 square meters with respect to the total cross-sectional area of the light beam. It can be completely ignored.

第3図は光源(2)と光学系(3)の他の実施例を示す
図で、  (21A)および(21B)はパルスレーザ
、(2)はレーザ切換用鏡面、(ハ)は光束径拡大用レ
ンズ系。
Fig. 3 is a diagram showing another embodiment of the light source (2) and optical system (3), in which (21A) and (21B) are pulse lasers, (2) is a mirror surface for laser switching, and (C) is a beam diameter. Magnifying lens system.

04)はランダム位相板、(3Iは支持棒、  (31
)は楕円形凸面鏡、および(32)は球面鏡である。
04) is a random phase plate, (3I is a support rod, (31
) is an elliptical convex mirror, and (32) is a spherical mirror.

レーザからの出力光は殆ど単色であるから。This is because the output light from a laser is almost monochromatic.

異なる発振波長のもの(21A)および(21B)を組
み合わせて用いる。太陽光のスペクトル帯から3点1例
えば044,05?および0.75 μmを選び1発振
可能範囲の広いローダミンなどの色素レーザを2〜3台
組み合わせ、レーザ切換用鏡面(2)によって切換えて
使用する。、この実施例では3色を切換えるとしたが、
3色を混合し。
Those having different oscillation wavelengths (21A) and (21B) are used in combination. 3 points from the sunlight spectral band 1 For example 044,05? and 0.75 μm are selected, and two to three dye lasers such as rhodamine, which have a wide range of single oscillation, are combined and used by switching with a laser switching mirror (2). , in this example, three colors are switched,
Mix 3 colors.

照射しても良い。また2色素レーザの代りに半導体レー
ザや固体レーザを使用することもできる。レーザからの
出力ビームは細く、小反射鏡の製作が困難となるので、
レンズ系(ハ)を通シてこれを実効径3crrLφ程度
に拡大する。さらに可干渉性の光と非干渉性の光では物
質との相互作用が異なるので、レンズ系231を出た光
をランダム位相板Q(イ)によって非干渉性のものにす
る。
It may also be irradiated. Moreover, a semiconductor laser or a solid-state laser can also be used instead of a two-dye laser. The output beam from the laser is narrow, making it difficult to manufacture small reflecting mirrors.
This is expanded to an effective diameter of about 3 crrLφ through a lens system (c). Furthermore, since coherent light and non-coherent light interact differently with substances, the light exiting the lens system 231 is made non-coherent by the random phase plate Q(a).

所要の断面積を持った光束を得るために、小反射鏡とし
て楕円形凸面鏡(61)および主反射鏡として球面鏡(
32)を組み合わせたカセグレン方式を用いる。これは
主反射鏡(32)が球面鏡であるため、動物面鏡に比べ
て製作が容易である。
In order to obtain a luminous flux with the required cross-sectional area, an elliptical convex mirror (61) is used as a small reflecting mirror and a spherical mirror (61) is used as a main reflecting mirror.
32) is used in combination with the Cassegrain method. Since the main reflecting mirror (32) is a spherical mirror, it is easier to manufacture than an animal-shaped mirror.

しかし球面鏡と楕円面鏡の組み合わせの代りに。But instead of a combination of spherical and elliptical mirrors.

共焦点の大小の動物面鏡の組み合わせでも良い。A combination of large and small confocal animal mirrors may also be used.

更に改良された実施例の要部の構成を第4図に示す。0
υおよびaりは同期検波器である。パルス電源(8)に
より、光源(2)を一定周期で繰返し駆動し、このパル
スに同期して検出器(5) 、 (71の出力を検波す
ることにより1周囲の光雑音を分離して測定を行なうこ
とができる。また、同期検波の代りに2個々のパルスの
強度または積分強度を測定しても良い。この方法でも周
囲の光雑音を分離することができる。精度の点では同期
検波に劣るが、多数の測定結果を平均することニヨって
精度を改善することができる。
FIG. 4 shows the configuration of the main parts of a further improved embodiment. 0
υ and a are synchronous detectors. The light source (2) is driven repeatedly at a constant cycle by the pulse power source (8), and in synchronization with this pulse, the output of the detector (5) (71) is detected to separate and measure the surrounding optical noise. In addition, instead of synchronous detection, the intensity or integrated intensity of two individual pulses may be measured.This method also allows the separation of ambient optical noise.In terms of accuracy, synchronous detection is superior to synchronous detection. Although inferior, accuracy can be improved by averaging a large number of measurements.

なおこの装置の他の利用法として、この装置を用いて人
工衛星に搭載された太陽電池システムの実装状態での性
能測定が可能である。
As another use of this device, it is possible to use this device to measure the performance of a solar cell system mounted on a satellite.

以上、詳細に述べたように、この発明は太陽光に近似せ
る光スペクトルを有する点状のパルス光源、この光源か
ら放射された光束を人工衛星全体を照射するに足る広い
断面積をもち太陽光の平行度に近似せる平行度をもつ平
行光束に広げる光学系、上記人工衛星の被照射面に配設
された小面積の測定用拡散反射板、この反射板のみを視
野とする第1の光検出器、上記光学系に配設された小面
積の較正用拡散反射板、この反射板のみを視野とする第
2の光検出器、および上記第1.第2の光検出器の検出
値を比較し上記人工衛星の上記測定用拡散板が配設され
た面域の太陽光入射係数を算出する信号処理装置を備え
たもので、光パルスを用いるため、小さい光源ランプあ
るいけパルスレーザにヨリ、通常の実験室条件で太陽光
入射係数および模擬太陽光入射量を求めることができ1
人工衛星の光学的特性の測定が経済的に行なわれる。
As described in detail above, this invention provides a point-like pulsed light source with a light spectrum that approximates that of sunlight, a point-like pulsed light source that has a large cross-sectional area that is large enough to irradiate the entire satellite with the luminous flux emitted from this light source, and a an optical system that spreads the beam into a parallel light beam with parallelism approximating the parallelism of , a small-area measurement diffuse reflector disposed on the irradiated surface of the above-mentioned satellite, and a first light whose field of view is only this reflector. a detector, a small-area calibration diffuse reflection plate disposed in the optical system, a second photodetector whose field of view is only this reflection plate, and the first photodetector. It is equipped with a signal processing device that compares the detection value of the second photodetector and calculates the sunlight incidence coefficient of the area where the measuring diffuser of the artificial satellite is installed, and uses optical pulses. In addition to small light source lamps and pulsed lasers, it is possible to determine the sunlight incidence coefficient and simulated sunlight incidence under normal laboratory conditions1.
Measurements of optical properties of artificial satellites are performed economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成を示す概念図、第2
図はそのパルス光源の詳細図、第3図はパルス光源と平
行光束を得る光学系の他の実施例の構成を示す概念図、
第4図はこの発明の他の実施例の要部の構成を示すブロ
ック図である。 図において、(1jは人工衛星、(2)はパルス光源。 (3)は反射鏡、(4)は測定用拡散反射板、 (5)
 、 (71は光検出器、(6)は較正用拡散反射板、
(8)はパルス電源、(9)は信号処理装置、αOは電
子計算機、0υ。 α)は同期検波器、  (21A)、 (21B)はパ
ルスレーザ、(イ)はレーザ切換用鏡面、c23はレン
ズ系、 CI’4)けランダム位相板、 (31)は左
円形凸面鏡、 (52)は球面鏡である。 なお図中同一符号はそれぞれ同一または相当部分を示す
。 代理人 葛 野 信 − (外 1名)
FIG. 1 is a conceptual diagram showing the configuration of an embodiment of the present invention, and FIG.
The figure is a detailed diagram of the pulsed light source, and FIG. 3 is a conceptual diagram showing the configuration of another embodiment of the pulsed light source and an optical system for obtaining parallel light flux.
FIG. 4 is a block diagram showing the configuration of main parts of another embodiment of the present invention. In the figure, (1j is an artificial satellite, (2) is a pulsed light source, (3) is a reflector, (4) is a diffuse reflector for measurement, (5)
, (71 is a photodetector, (6) is a diffuse reflection plate for calibration,
(8) is a pulse power supply, (9) is a signal processing device, αO is an electronic computer, and 0υ. α) is a synchronous detector, (21A) and (21B) are pulse lasers, (A) is a mirror surface for laser switching, c23 is a lens system, CI'4) is a random phase plate, (31) is a left circular convex mirror, ( 52) is a spherical mirror. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Shin Kuzuno - (1 other person)

Claims (4)

【特許請求の範囲】[Claims] (1)  太陽光に近似せる光スペクトルを有する点状
のパルス光源、この光源から放射された光!l。 束を人工衛星全体を電封するに足る広い断面積をもち太
陽光の平行度に近似せる平行度をもつ平行光束に広げる
光学系、上記人工衛星の被照、射面に配設された小面積
の測定用拡散反射板、この反射板のみを視野とする第1
の光検出器、上記光学系に配設された小面積の較正用拡
散反射板、この反射板のみを視野とする第2の光検出器
、および上記第1.第2の光検出器の検出値を比較′し
上記人工衛星の上記測定用拡散板が配設された面域の太
陽光入射係数を算出する信号処理装置を備えた人工衛星
の太陽光入射係数測定装置。
(1) A point-like pulsed light source with a light spectrum that approximates sunlight, and the light emitted from this light source! l. An optical system that spreads the beam into a parallel beam with a cross-sectional area large enough to electrically seal the entire satellite and a parallelism approximating that of sunlight; Diffuse reflector for area measurement, first with only this reflector as field of view
a photodetector, a small-area calibration diffuse reflection plate disposed in the optical system, a second photodetector whose field of view is only this reflection plate, and the first photodetector. The solar light incidence coefficient of the artificial satellite is equipped with a signal processing device that compares the detected values of the second photodetector and calculates the solar light incidence coefficient of the area in which the measurement diffuser of the artificial satellite is disposed. measuring device.
(2)  点゛状パルス光源がフラッシュランプである
特許請求の範囲第1項記載の人工衛星の太陽光入射係数
測定装置。
(2) The sunlight incidence coefficient measuring device for an artificial satellite according to claim 1, wherein the point-like pulsed light source is a flash lamp.
(3)  点状パルス光源が太陽光スペクトル内に分散
して選定された光を放射する複数のパルスレーザ光源で
あり、該光源から放射さnた光束を順次または同時に拡
散光学系、ランダム位相板を経たのち拡大平行光束とす
る光学系て を経鶏人工衛星に照射する構成としたことを特徴とする
特許請求の範囲第1項記載の人工衛星の太陽光入射係数
測定装置。
(3) The point pulse light source is a plurality of pulse laser light sources that emit selected light dispersed within the sunlight spectrum, and the light beams emitted from the light sources are sequentially or simultaneously diffused by a diffusing optical system and a random phase plate. 2. A solar light incident coefficient measuring device for an artificial satellite according to claim 1, characterized in that the optical system is configured to irradiate the artificial satellite with an optical system that converts the beam into an expanded parallel light beam.
(4)  第1.第2の光検出器の出力を検波する周期
検波器を備えた特許請求の範囲第1項記載の人工衛星の
太陽光入射係数測定装置。
(4) 1st. The solar incidence coefficient measuring device for an artificial satellite according to claim 1, comprising a periodic detector for detecting the output of the second photodetector.
JP11354382A 1982-06-30 1982-06-30 Solar beam incidence factor measuring apparatus for artificial satellite Granted JPS58150831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11354382A JPS58150831A (en) 1982-06-30 1982-06-30 Solar beam incidence factor measuring apparatus for artificial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11354382A JPS58150831A (en) 1982-06-30 1982-06-30 Solar beam incidence factor measuring apparatus for artificial satellite

Publications (2)

Publication Number Publication Date
JPS58150831A true JPS58150831A (en) 1983-09-07
JPH0138253B2 JPH0138253B2 (en) 1989-08-11

Family

ID=14614972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11354382A Granted JPS58150831A (en) 1982-06-30 1982-06-30 Solar beam incidence factor measuring apparatus for artificial satellite

Country Status (1)

Country Link
JP (1) JPS58150831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8850755B2 (en) 2008-07-09 2014-10-07 Skyfuel, Inc. Solar collectors having slidably removable reflective panels for use in solar thermal applications
US8904774B2 (en) 2008-08-22 2014-12-09 Skyfuel, Inc. Hydraulic-based rotational system for solar concentrators that resists high wind loads without a mechanical lock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8850755B2 (en) 2008-07-09 2014-10-07 Skyfuel, Inc. Solar collectors having slidably removable reflective panels for use in solar thermal applications
US8904774B2 (en) 2008-08-22 2014-12-09 Skyfuel, Inc. Hydraulic-based rotational system for solar concentrators that resists high wind loads without a mechanical lock

Also Published As

Publication number Publication date
JPH0138253B2 (en) 1989-08-11

Similar Documents

Publication Publication Date Title
US9201016B2 (en) Device for the contactless and nondestructive testing of surfaces
Wang et al. Development of a Fresnel lens based high-flux solar simulator
JP6263637B2 (en) Calibration system that can be tracked to a fiber-coupled integrating sphere laser energy meter and primary level standards
Garrido et al. Characterization of the KTH high-flux solar simulator combining three measurement methods
Millan-Gabet et al. Keck interferometer observations of FU Orionis objects
US8253932B1 (en) Laser and corner cube refractive-index structure parameter system
CN110823364A (en) High-intensity illuminometer calibration device and calibration method
JPS58150831A (en) Solar beam incidence factor measuring apparatus for artificial satellite
US3383902A (en) Infrared simulator
Jurkovič et al. A precision optical calibration module (pocam) for icecube-gen2
Black et al. A study of directional radiation properties of specially prepared V-groove cavities
DE102005063373A1 (en) Solar illumination simulator used in measuring solar cell opto-electronic characteristics, comprises pulsed high intensity source with reflective dynamic spectral mask
Dunn et al. Ellipsoidal mirror reflectometer
Terebey et al. The impact of ionizing stars on the diffuse interstellar medium: a swept-up shell and ionized halo around the W4 chimney/superbubble
CN113865716A (en) Thermal infrared imager test system
Parretta et al. Method for measurement of the hemispherical/hemispherical reflectance of photovoltaic devices
TWI727381B (en) Coaxial multi-wavelength optical element detection system
Vinokurov et al. Visualization of radiation from a high-power terahertz free electron laser with a thermosensitive interferometer
Wong et al. Design, fabrication and test of a high efficiency refractive secondary concentrator for solar applications
Hornung et al. Characterization of optics for concentrating photovoltaic and solar thermal applications
Kiefel et al. Monochromatic collimated light source for an indoor lens efficiency tester
RU218898U1 (en) Stand for background-target environment for checking the characteristics of sensitivity and resolution of the thermal imaging channel of the onboard optical-electronic homing head
Agnetta et al. Extensive air showers and diffused Cherenkov light detection: The ULTRA experiment
Snail New optical systems for the measurement of diffuse reflectance
US3971940A (en) Detector absorptivity measuring method and apparatus