JPS5815064B2 - Continuous measurement method for nitrate and nitrite ion concentrations in factory wastewater - Google Patents

Continuous measurement method for nitrate and nitrite ion concentrations in factory wastewater

Info

Publication number
JPS5815064B2
JPS5815064B2 JP1153979A JP1153979A JPS5815064B2 JP S5815064 B2 JPS5815064 B2 JP S5815064B2 JP 1153979 A JP1153979 A JP 1153979A JP 1153979 A JP1153979 A JP 1153979A JP S5815064 B2 JPS5815064 B2 JP S5815064B2
Authority
JP
Japan
Prior art keywords
absorption
wastewater
sample
activated carbon
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1153979A
Other languages
Japanese (ja)
Other versions
JPS55103461A (en
Inventor
井幡忠
小野昭紘
松本龍太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1153979A priority Critical patent/JPS5815064B2/en
Publication of JPS55103461A publication Critical patent/JPS55103461A/en
Publication of JPS5815064B2 publication Critical patent/JPS5815064B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、工場排水中などに含有される硝酸イオン及び
亜硝酸イオンを同時にかつ連続的に測定するための方法
を新規に提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel method for simultaneously and continuously measuring nitrate ions and nitrite ions contained in industrial wastewater.

近年、脱窒処理を盛んに試みるようになってきている。In recent years, denitrification treatments have been actively attempted.

排水処理工程あるいは排出時点での上記各イオンの連続
測定には適当な分析方法及び装置がなく、これらの開発
が強く要請されている。
There is no suitable analytical method or apparatus for continuous measurement of each of the above ions during the wastewater treatment process or at the point of discharge, and there is a strong need for the development of these.

そこで本発明者らはかかる点に鑑み、工場排水中の硝酸
イオン及び亜硝酸イオンに注目して以前から研究開発を
実施してきている。
In view of this, the present inventors have been carrying out research and development for some time, focusing on nitrate ions and nitrite ions in factory wastewater.

工場排水中の硝酸イオン及び亜硝酸イオンの測定には、
共存成分の影響が大きいことなどの理由で、これまで紫
外線吸収法はほとんど用いられていなかった。
For measuring nitrate ions and nitrite ions in factory wastewater,
Until now, ultraviolet absorption method has rarely been used due to the large influence of coexisting components.

し1かし、本発明者らは、特に影響の著しい鉄イオン等
の金属イオンを水酸化物として沈殿分離する前処理法を
導入することによって特願昭5l−152826(特開
昭53−77586)、特願昭5l−152828(特
開昭53−77585)に示したような紫外線吸収法に
基づく硝酸イオン及び亜硝酸イオンの連続測定装置をす
でに発明した。
However, the present inventors have proposed a pretreatment method in which metal ions such as iron ions, which have a particularly significant influence, are precipitated and separated as hydroxides. ), has already invented a continuous measuring device for nitrate ions and nitrite ions based on the ultraviolet absorption method as shown in Japanese Patent Application No. 51-152828 (Japanese Patent Application Laid-Open No. 53-77585).

これらの発明は沈殿物や金属イオン等を含む工場排水に
対して非常に有効な測定装置であったが、紫外領域に吸
収を持つ有機化合物イオンを含み、特に紫外吸収を示す
黄色等の着色をもつ工場排水の分析には不適であること
がわかった。
These inventions were very effective measuring devices for industrial wastewater containing sediments, metal ions, etc.; It was found that this method was not suitable for analyzing industrial wastewater.

本発明はこれらの欠点をおぎなう目的で特に共存有機化
合物イオン及び着色の除去方法及び装置化を中心とする
ものであり、検出測定手法はすでに出願を行った発明に
準じているものである。
In order to overcome these drawbacks, the present invention focuses on a method and apparatus for removing coexisting organic compound ions and coloring, and the detection and measurement method is based on the previously filed invention.

以上のような目的で研究開発を進め沈殿物除去−活性炭
処理−紫外線吸収法を基本原理として、方法原理及び装
置構造が簡単で耐久性に富み、かつ分析精度の良い工場
排水中硝酸イオン及び亜硝酸イオンの同時連続分析方法
を提供するに至ったものである。
With the above objectives in mind, we are conducting research and development based on the basic principles of sediment removal, activated carbon treatment, and ultraviolet absorption. This has led to the provision of a simultaneous and continuous analysis method for nitrate ions.

本発明は工場排水中に含まれる沈殿物や濁りをろ過処理
によって除去し、紫外吸収法で妨害となる着色や有機物
成分等を活性炭処理によって取り除いたあと、硝酸イオ
ン(以後NO3−と記す)は302 nm、亜硝酸イオ
ン(以後NO2−と記す)は355 nmの紫外領域に
おいて極大吸収波長を有することを応用して、各々の吸
収を測定する紫外吸収測定法を基本とするものである。
In the present invention, nitrate ions (hereinafter referred to as NO3-) are removed after removing precipitates and turbidity contained in factory wastewater through filtration treatment, and removing coloring and organic components that interfere with ultraviolet absorption method through activated carbon treatment. The method is based on an ultraviolet absorption measurement method that measures each absorption by applying the fact that nitrite ion (hereinafter referred to as NO2-) has a maximum absorption wavelength in the ultraviolet region of 355 nm.

第1図〜第3図に示す本発明実施例装置等の説明図によ
って本発明の詳細な説明をする。
The present invention will be explained in detail with reference to explanatory diagrams of an embodiment of the present invention shown in FIGS. 1 to 3.

本発明実施例装置は第1図に示すように、工場排水中に
含まれる逃散物を除去する沈殿物分離部1〜8、排水の
着色や有機物等を除去する活性炭処理部9〜13、NO
3及びNO2−濃度を紫外吸収法で測定する検出測定部
14〜18を主体に構成される。
As shown in FIG. 1, the apparatus according to the present invention includes sediment separation sections 1 to 8 for removing fugitives contained in factory wastewater, activated carbon treatment sections 9 to 13 for removing colored wastewater and organic matter, and NO.
The main components are detection and measurement sections 14 to 18 that measure NO.3 and NO2 concentration using an ultraviolet absorption method.

1は試料採取管であり、工場排水の排出個所等に連結さ
れるものであり、2は送液ポンプ、3は採取した排水試
料を連続ろ過装置4に供給する管である。
Reference numeral 1 denotes a sample collection pipe, which is connected to a discharge point of industrial wastewater, etc., 2 a liquid pump, and 3 a pipe for supplying the collected wastewater sample to a continuous filtration device 4.

5は連続ろ過装置の主要部であり、紫外吸収測定の妨害
あるいは活性炭カラムの目づまりを起す排水中の沈殿物
や濁りをろ別するろ過ドラムである。
5 is the main part of the continuous filtration device, and is a filtration drum that filters out sediment and turbidity in the wastewater that may interfere with ultraviolet absorption measurement or clog the activated carbon column.

8は吸引ポンプであり、試料吸引管7aを介してろ過ド
ラムよりろ過された清浄な試料溶液を吸引して試料受器
9に移送するためのものである。
Reference numeral 8 denotes a suction pump, which sucks the clean sample solution filtered from the filter drum through the sample suction tube 7a and transfers it to the sample receiver 9.

ろ適用ドラム5は密閉状横長円筒の外周側面に多数の小
孔を開孔し、その上にろ布を巻き付けたものであり、そ
のろ布を巻き付けた円筒の内周面に下向きに試料吸引管
7aの吸引口を設置し、この試料吸引管7aは円筒側面
より外部に出し、吸引ポンプ8に接続しである。
The filtration application drum 5 is a sealed oblong cylinder with a large number of small holes drilled on the outer circumferential side and a filter cloth wrapped around the holes, and the sample is sucked downward onto the inner circumferential surface of the cylinder around which the filter cloth is wrapped. A suction port for a tube 7a is installed, and this sample suction tube 7a is brought out from the side of the cylinder and connected to a suction pump 8.

沈殿物を含む工場排水は試料供給管3より、ろ過ドラム
5の外周のろ布面上に落下する如く供給する。
Factory wastewater containing sediment is supplied from the sample supply pipe 3 so as to fall onto the filter cloth surface around the outer periphery of the filtration drum 5.

ろ過ドラム内部を吸引ポンプ8によって減圧とすること
により、供給される排水中の沈殿物はろ布表面上に残存
し、沈殿物が取り除かれて透明となったろ過液が試料吸
引管7aを経て吸引ポンプに吸引されて受器9に送られ
る。
By reducing the pressure inside the filtration drum with the suction pump 8, the precipitates in the supplied wastewater remain on the surface of the filter cloth, and the filtrate, which has become transparent after the precipitates are removed, is sucked through the sample suction tube 7a. It is sucked into the pump and sent to the receiver 9.

ろ布としては目孔径の小さいろ紙(5種Bなど)を内側
に、目孔径の大きいろ布(フェルトなど)を外側に重ね
たものを、ろ過ドラム5の円筒に巻きつけて用いた。
The filter cloth used was one in which a filter paper with a small pore size (such as Type 5 B) was layered on the inside and a filter cloth with a large pore size (such as felt) was layered on the outside, which was wrapped around the cylinder of the filtration drum 5.

一般に工場排水は沈殿物を含み、多少なりとも濁りをも
っているが、上記のろ過方法によれば目づまりやもれを
起さずに速い応答でろ過処理を連続的に行なうことがで
きた。
Generally, industrial wastewater contains sediment and has some turbidity, but according to the above filtration method, the filtration process could be carried out continuously with a quick response without causing clogging or leakage.

また、酸洗排水など鉄イオンを多く含む排水の中和処理
水のように水酸化鉄の沈殿で懸濁状態の排水の場合にお
いても試料供給管3からろ布面上に落下供給されるため
、排水が打ち当ったろ布表面は沈殿物が堆積せず、常に
清浄なろ布面を現わすために目づまりは起らず円滑な連
続ろ過が実施できた。
In addition, even in the case of neutralized wastewater containing a large amount of iron ions, such as pickling wastewater, which is in a suspended state due to the precipitation of iron hydroxide, the sample supply pipe 3 drops onto the filter cloth surface. No sediment was deposited on the surface of the filter cloth that was hit by the wastewater, and the surface of the filter cloth always appeared clean, so that no clogging occurred and smooth continuous filtration could be carried out.

一方、吸引ろ過にあずからなかった余分の排水は、除去
された沈殿物と共に試料残液排出管6より外部に排出さ
れる。
On the other hand, excess waste water that has not been subjected to suction filtration is discharged to the outside from the sample residual liquid discharge pipe 6 together with the removed precipitate.

10aは連続ろ過装置から送られろ過して清浄となり、
試料受器9に受けられた排水試料を活性炭カラムに送り
込むための定流量ポンプである。
10a is sent from a continuous filtration device and is filtered and cleaned,
This is a constant flow pump for sending the wastewater sample received in the sample receiver 9 to the activated carbon column.

10bは上記の排水試料に一定量の塩類溶液を混合する
ための溶液供給用の定流量ポンプである。
Reference numeral 10b denotes a constant flow pump for supplying a solution to mix a certain amount of salt solution with the above-mentioned wastewater sample.

12は排水試料と塩類溶液を混合するためのY字形の3
方分岐ジヨイントである。
12 is Y-shaped 3 for mixing the wastewater sample and the saline solution.
It is a bifurcation joint.

13は活性炭を充填したカラムである。13 is a column filled with activated carbon.

前記の連続ろ過装置によって工場排水中に含まれる沈殿
物や濁りは除去されたが、排水の着色や共存する有機化
合部は紫外部吸収を示すことが多く、NO3−やNO2
−の濃度を正確に測定するためにはこれらをも除去する
必要がある。
Although the above-mentioned continuous filtration equipment removed the sediments and turbidity contained in the factory wastewater, the colored wastewater and coexisting organic compounds often exhibit ultraviolet absorption, and NO3- and NO2
In order to accurately measure the concentration of -, it is necessary to remove these as well.

これらの着色や共存有機化合物イオンの除去は活性炭処
理で可能であることは知られているが、NO3−及びN
O2−も活性炭に吸着されてしまう問題があった。
It is known that activated carbon treatment can remove these coloring and coexisting organic compound ions, but NO3- and N
There was a problem that O2- was also adsorbed by the activated carbon.

本発明者らの検討結果によれば、NO3及びNO2−の
活性炭への吸着はNO3−、NO2−の濃度や溶液のp
H,活性炭の量などによって影響を受けるが、NO3−
及びN02=を約10ppm含む溶液100m1中に椰
子殻粉末活性炭量10gを加えて処理すると約40%の
NO3及びNO2−は活性炭に吸着されてしまうことが
判明した。
According to the study results of the present inventors, the adsorption of NO3 and NO2- onto activated carbon is affected by the concentration of NO3- and NO2- and the pH of the solution.
It is affected by the amount of H, activated carbon, etc., but NO3-
It was found that when 10 g of coconut shell powder activated carbon was added to 100 ml of a solution containing about 10 ppm of NO3 and NO2=, about 40% of NO3 and NO2- were adsorbed by the activated carbon.

溶液のpHが4以下の場合には更に吸着捕捉率は高くな
り、活性炭量の増加も同様な傾向を示した。
When the pH of the solution was 4 or less, the adsorption capture rate became even higher, and the same tendency was observed when the amount of activated carbon was increased.

そこで、溶液の着色や有機化合物イオン等を選択的に除
去し、NO3及びNO2−は吸着されない条件について
種々検討を行なった結果、排水試料中にある一定量以上
のNa+、に+。
Therefore, as a result of various studies on conditions in which coloring of the solution, organic compound ions, etc. were selectively removed and NO3 and NO2- were not adsorbed, it was found that more than a certain amount of Na+ and + in the wastewater sample was present.

Ca2+2Mg2+等のアルカリ金属イオンあるいはア
ルカリ土類金層イオンを共存させることによってその目
的が達成できることが明らかになった。
It has become clear that this objective can be achieved by coexisting alkali metal ions such as Ca2+2Mg2+ or alkaline earth gold layer ions.

Na+を添加した場合の活性炭処理におけるNO,及び
NOiの回収率についての試験結果の例を第2図に示し
た。
FIG. 2 shows an example of test results regarding the recovery rate of NO and NOi in activated carbon treatment when Na+ is added.

第2図はNO3−及びNO2−を10ppm含む溶液1
00WLlにNaC1を用いてNa+としてO〜0.8
%相当添加したのち、活性炭量2gを加えて処理し、吸
引ろ過し、得られたろ液中のNO3−及びNO2−量を
定量して回収率を求めた結果である。
Figure 2 shows solution 1 containing 10 ppm of NO3- and NO2-.
O~0.8 as Na+ using NaCl in 00WLl
% was added, treated by adding 2 g of activated carbon, filtered under suction, and the amount of NO3- and NO2- in the obtained filtrate was determined to determine the recovery rate.

この結果によればNa+をほとんど含まない場合にはN
O,及びNO「は60%きり回収できないが、0,4%
以上含む場合には100%回収することができた。
According to this result, when almost no Na+ is included, N
O, and NO" cannot be recovered by more than 60%, but 0.4%
In cases where the content exceeds 100%, it was possible to recover 100%.

第2図の実験においてNa+の代りに:に+、 Mg2
+、 Ca2+あるいはNH4+を添加した場合も第2
図と同様の結果が得られ、これらの元素を含む塩化物、
硫酸塩などの無機塩類の溶液を排水試料に添加混合する
ことによって排水試料の着色や有機化合物イオンを活性
炭に吸着捕捉し、NO3−及びNO2−を100%回収
することが可能となった。
In the experiment shown in Figure 2, instead of Na+: ni+, Mg2
+, also when Ca2+ or NH4+ is added, the second
Results similar to those shown in the figure were obtained, and chlorides containing these elements,
By adding and mixing a solution of inorganic salts such as sulfates to a wastewater sample, it has become possible to color the wastewater sample and adsorb and capture organic compound ions on activated carbon, thereby recovering 100% of NO3- and NO2-.

塩類溶液タンク11には、上述のような塩類溶液を貯え
ておき、試料受器9から定流量ポンプ10aによって活
性炭カラム13に送り込まれる排水試料の流れに、塩類
溶液タンク11から定流量ポンプ10bで吸引した塩類
溶液を所定の濃度になるように3方分岐ジヨイントを介
して一定流量で添加供給する。
A salt solution as described above is stored in the salt solution tank 11, and a constant flow pump 10b is used from the salt solution tank 11 to feed the wastewater sample from the sample receiver 9 to the activated carbon column 13 by a constant flow pump 10a. The sucked salt solution is added and supplied at a constant flow rate through a three-way branch joint so as to have a predetermined concentration.

活性炭カラムは内径20〜30mm、長さ500mm程
度の円筒管に50〜100メツシュ程度の椰子殻活性炭
を充填したものを用いた。
The activated carbon column used was a cylindrical tube with an inner diameter of 20 to 30 mm and a length of about 500 mm filled with about 50 to 100 meshes of coconut shell activated carbon.

第1図ではカラムは単数の場合を示したが、複数のカラ
ムを設置しておき吸着能力が低下してきた場合に切替え
、使用済のカラムを再生する方法をとるのが実際的であ
る。
Although FIG. 1 shows the case where a single column is used, it is practical to install a plurality of columns and switch over when the adsorption capacity decreases to regenerate the used column.

14は沈殿物、濁り、着色および有機化合物イオン等が
取り除かれた排水試料を定流量ポンプ10a、10bに
よって紫外線吸収計16a。
14, a wastewater sample from which sediment, turbidity, coloring, organic compound ions, etc. have been removed is passed to an ultraviolet absorber 16a using constant flow pumps 10a and 10b.

16bの流通セル15a、15bに送り込むための試料
移送管である。
This is a sample transfer tube for sending the sample to the flow cells 15a and 15b of 16b.

18は試料排出管、17a。17bは記録計である。18 is a sample discharge tube, 17a. 17b is a recorder.

NO3−及びNO2−は第5図に示すように、いずれも
紫外領域に吸収を示し、それぞれ302 nm及び35
5 nmに極大吸収波長を有している。
As shown in Figure 5, NO3- and NO2- both exhibit absorption in the ultraviolet region, with wavelengths of 302 nm and 35 nm, respectively.
It has a maximum absorption wavelength of 5 nm.

第3図の19に示した曲線はNO3−の吸収スペクトル
で、20に示した曲線はNO2−の吸収スペクトルであ
る。
The curve shown at 19 in FIG. 3 is the absorption spectrum of NO3-, and the curve shown at 20 is the absorption spectrum of NO2-.

従って捉外吸収計16a、16bは302 nm付近及
び355 nm付近の波長における吸収を測定できる構
造としておく必要がある。
Therefore, the out-of-trap absorption meters 16a and 16b need to have a structure that can measure absorption at wavelengths around 302 nm and 355 nm.

第1図では16a、16bの2台の捉外線吸収計を設け
た場合を図示したが、光源を1個とし、測定波長を2種
類有した1台の捉外線吸収計を用いてもよい。
Although FIG. 1 shows a case in which two X-ray absorption meters 16a and 16b are provided, it is also possible to use one X-ray absorption meter with one light source and two types of measurement wavelengths.

また、302 nm及び355 nmの測定波長を正確
に設定できる分光光度計あるいは302 nm付近及び
355 nm付近の測定波長を設定できる干渉フィルタ
ーを用いた紫外線吸収計を使用してもよい。
Alternatively, a spectrophotometer that can accurately set measurement wavelengths of 302 nm and 355 nm or an ultraviolet absorption meter that uses an interference filter that can set measurement wavelengths of around 302 nm and 355 nm may also be used.

ただし、第3図に示すようにN03の吸収スペクトルは
NO2の吸収スペクトルの干渉を受け、正誤差を引き起
すので、NO3−濃度の測定値はNO2−濃度の測定値
によって補正を行なう必要がある。
However, as shown in Figure 3, the absorption spectrum of N03 is interfered with by the absorption spectrum of NO2, causing a positive error, so the measured value of NO3- concentration must be corrected by the measured value of NO2- concentration. .

その補正はNO3−の測定波長におけるNO2−濃度に
よる正誤差の割合を予め調べておいて、その影響された
吸収量を差し引いて補正する。
The correction is made by checking in advance the proportion of correct error due to the NO2 concentration at the NO3 measurement wavelength, and subtracting the amount of absorption affected by this.

NO3−及びNO2−の測定波長を302 nm及び3
55 nmにした場合はNO3−の測定値は共存してい
たNO2−の測定値の約30%相当分の正誤差を受ける
ので、NO3−の測定値からNO2−の測定値に0.3
付近の数値を乗じた値を差し引いて補正する。
The measurement wavelengths of NO3- and NO2- were set to 302 nm and 3
If the wavelength is set to 55 nm, the measured value of NO3- will receive a positive error equivalent to about 30% of the measured value of NO2-, which was present, so there will be a difference of 0.3% from the measured value of NO3- to the measured value of NO2-.
Correct by subtracting the value multiplied by the nearby value.

この補正は測定値をもとに算出して補正してもよいが、
電気回路を内蔵させておき自動的に補正することは容易
に行える。
This correction may be calculated and corrected based on the measured values, but
Automatic correction can be easily performed by incorporating an electric circuit.

また、NO3の極太吸収波長におけるNO2−の吸収量
は第3図の矢印に示す如く 384 nmにおけるNO
2−の吸収量と同ごであるので、384 nmの波長に
おける吸収を別に測定して302 nmにおけるNO3
−の吸収量からその値を差し引く2波長測光法によって
も容易に補正を行うことができる。
In addition, the absorption amount of NO2- at the thickest absorption wavelength of NO3 is as shown by the arrow in Figure 3.
Since the absorption amount is the same as that of NO3 at 302 nm, the absorption at a wavelength of 384 nm is measured separately.
Correction can also be easily performed by two-wavelength photometry, which subtracts this value from the absorption amount of -.

流通セル15a、15bは石英製のものを用い、試料溶
液の置換を容易にするために内容積のなるべく少ないも
のを用いる。
The flow cells 15a and 15b are made of quartz and have as small an internal volume as possible to facilitate replacement of the sample solution.

光路長40 nmの流通セルを用いた場合のNO3−於
びNO2−濃度測定用の検量線の一例を第4図に示した
An example of a calibration curve for measuring NO3- and NO2- concentrations when using a flow cell with an optical path length of 40 nm is shown in FIG.

以上詳細に説明したように本発明は、試料採取管1によ
って採取された工場排水は連続ろ過装置4において沈殿
物や濁りが除去され、活性炭カラム13において着色や
有機化合物イオン等が除去され、紫外線吸収計16a、
16bにおいてNO3−及びN O2−濃度が同時に連
続的に測定される。
As explained in detail above, the present invention is such that the industrial wastewater collected by the sample collection tube 1 is subjected to a continuous filtration device 4 in which sediments and turbidity are removed, an activated carbon column 13 in which coloring and organic compound ions are removed, and ultraviolet rays are removed. Absorption meter 16a,
NO3- and NO2- concentrations are simultaneously and continuously measured at 16b.

また、共存する可能性のあるz n2 +、 pb2
+、 Cr3 +。
In addition, z n2 +, pb2 that may coexist
+, Cr3 +.

Cu”、Ni”、Co2”@の金属イオンあるいはF
y C1p SO4” tNH4+、 Ca2+等
の各イオンの干渉はない。
Metal ions of Cu'', Ni'', Co2''@ or F
y C1p SO4" tThere is no interference from ions such as NH4+ and Ca2+.

6価クラム及び鉄イオンの共存は正誤差を与えるが、排
水試料採取段階で前者は還元剤を加えて3価クロムに還
元し、後者はアルカリ溶液を加えて水酸化鉄としておけ
ば、その影響を除くことができる。
The coexistence of hexavalent crumb and iron ions gives a positive error, but if the former is reduced to trivalent chromium by adding a reducing agent and the latter is converted to iron hydroxide by adding an alkaline solution during the wastewater sample collection stage, this effect can be avoided. can be excluded.

分析精度も測定方法が極めて簡単なために非常に良好で
あり、応答性にもすぐれている。
The analytical accuracy is also very good because the measurement method is extremely simple, and the response is also excellent.

また、本発明装置は耐久性にすぐれ、原理及び装置の構
造が簡単なために故障、トラブルがなく硝酸イオン、亜
硝酸イオンの同時連続測定装置として有用かつ実用的な
新規装置である。
In addition, the device of the present invention has excellent durability and is free from breakdowns and troubles due to its simple principle and structure, making it a useful and practical new device as a device for simultaneously and continuously measuring nitrate ions and nitrite ions.

本発明は近年特に重要となってきている工場排水等の環
境分析の分野において、また、排水処理工程や排水のモ
ニターリング、生産工場の工程管分析等の分野に大きく
寄与するものである。
The present invention greatly contributes to the field of environmental analysis of factory wastewater, etc., which has become particularly important in recent years, as well as to fields such as wastewater treatment processes, monitoring of wastewater, and analysis of process pipes in production plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例装置の説明図、第2図は活性炭処
理における塩類添加の効果の説明図、第3図は硝酸イオ
ン及び亜硝酸イオンの紫外吸収スペクトル図、第4図は
本発明装置による検量線を示す図である。 1・・・・・・試料採取管、2・・・・・・送液ポンプ
、3・・・・・・試料供給管、4・・・・・・連続ろ過
装置、5・・・・・・ろ過ドラム、6・・・・・・試料
残液排出管、7a 、7b・・・・・・試料吸引管、8
・・・・・・吸引ポンプ、9・・・・・・試料受器、1
0a、10b・・・・・・定流量ポンプ、11・・・・
・・塩類溶液タンク、12・・・・・・3方分岐ジヨイ
ント、13・・・・・・活性炭カラム、14・・・・・
・試料移送管、15a。 15b・・・・・・流通セル、16a、16b・・・・
・・紫外線吸収計、17a、17b・・・・・・記録計
、18・・・・・・試料排出管、19・・・・・・硝酸
イオン吸収スペクトル、2υ・・・・・・亜硝酸イオン
吸収スペクトル。
Figure 1 is an explanatory diagram of the apparatus according to the present invention, Figure 2 is an explanatory diagram of the effect of salt addition in activated carbon treatment, Figure 3 is an ultraviolet absorption spectrum diagram of nitrate ions and nitrite ions, and Figure 4 is an illustration of the present invention. It is a figure showing a calibration curve by an apparatus. 1...Sample collection tube, 2...Liquid pump, 3...Sample supply tube, 4...Continuous filtration device, 5...・Filtration drum, 6... Sample residual liquid discharge tube, 7a, 7b... Sample suction tube, 8
...Suction pump, 9...Sample receiver, 1
0a, 10b... Constant flow pump, 11...
... Salt solution tank, 12 ... Three-way branch joint, 13 ... Activated carbon column, 14 ...
- Sample transfer tube, 15a. 15b... Distribution cell, 16a, 16b...
... Ultraviolet absorption meter, 17a, 17b ... Recorder, 18 ... Sample discharge tube, 19 ... Nitrate ion absorption spectrum, 2υ ... Nitrous acid Ion absorption spectrum.

Claims (1)

【特許請求の範囲】[Claims] 1 工場排水などの分析試料溶液をろ過し、ろ液にアル
カリ金属あるいはアルカリ土類金属イオンを含む塩類溶
液を添加混合した後、活性炭層を通過させた溶液を紫外
線吸収計の流通セル中に送り込み、302 nm付近及
び355 nm付近の各波長における吸収量を測定し、
355 nm付近の吸収量より亜硝酸イオン濃度を、3
02 nm付近の吸収量から355 nm付近の吸収量
に約0.3を乗じた吸収量を差し引いた吸収量をもとに
硝酸イオン濃度を同時に連続的に求めることを特徴とす
る工場排水中硝酸イオン、亜硝酸イオン濃度の連続測定
方法。
1. Filter the analysis sample solution such as factory wastewater, add and mix a salt solution containing alkali metal or alkaline earth metal ions to the filtrate, and then send the solution that has passed through the activated carbon layer into the flow cell of the ultraviolet absorption meter. , measuring the amount of absorption at each wavelength around 302 nm and around 355 nm,
The nitrite ion concentration was determined from the absorption amount near 355 nm by 3
Nitric acid in factory wastewater characterized by simultaneously and continuously determining the nitrate ion concentration based on the absorption amount obtained by subtracting the absorption amount near 355 nm multiplied by about 0.3 from the absorption amount near 02 nm. Continuous measurement method for ion and nitrite ion concentrations.
JP1153979A 1979-02-03 1979-02-03 Continuous measurement method for nitrate and nitrite ion concentrations in factory wastewater Expired JPS5815064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153979A JPS5815064B2 (en) 1979-02-03 1979-02-03 Continuous measurement method for nitrate and nitrite ion concentrations in factory wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153979A JPS5815064B2 (en) 1979-02-03 1979-02-03 Continuous measurement method for nitrate and nitrite ion concentrations in factory wastewater

Publications (2)

Publication Number Publication Date
JPS55103461A JPS55103461A (en) 1980-08-07
JPS5815064B2 true JPS5815064B2 (en) 1983-03-23

Family

ID=11780758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153979A Expired JPS5815064B2 (en) 1979-02-03 1979-02-03 Continuous measurement method for nitrate and nitrite ion concentrations in factory wastewater

Country Status (1)

Country Link
JP (1) JPS5815064B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691997B2 (en) * 1986-08-30 1994-11-16 環境エンジニアリング株式会社 Biological wastewater treatment method
JPS63106555A (en) * 1986-10-23 1988-05-11 Fuji Electric Co Ltd Apparatus for analyzing nitrogen compound in water
JPS64461A (en) * 1987-03-09 1989-01-05 Minoru Tada Instrument for measuring nitrogen compound in water
JPH04200683A (en) * 1990-11-30 1992-07-21 Ebara Infilco Co Ltd Method for removing nitrate nitrogen
FR2858609B1 (en) * 2003-08-04 2006-10-13 Otv Sa METHOD AND INSTALLATION FOR BIOLOGICAL TREATMENT OF ACTIVATED SLUDGE WATER WITH AERATION CONTROL

Also Published As

Publication number Publication date
JPS55103461A (en) 1980-08-07

Similar Documents

Publication Publication Date Title
KR20090094269A (en) Method for quantitative determination of nickel and/or copper and equipment to be used in the method
EP2131189A1 (en) Method and device using nanoporous membrane for the voltammetric detection and quantification of heavy metal ions in a fluid.
Wallis et al. A portable virus concentrator for testing water in the field
US20160334311A1 (en) Cumulative oxo-anion sampler systems and methods
US5668014A (en) Device and method for estimating three nitrogen-including ionic substances in water
JPS5815064B2 (en) Continuous measurement method for nitrate and nitrite ion concentrations in factory wastewater
JPS5815063B2 (en) Automatic analysis method for trace amounts of nitrate and nitrite ions in factory wastewater
CN106124283B (en) Polymer concentration determines the method for nitrogen detection disturbing factor in a kind of removal Produced Liquid
KR102025141B1 (en) Sample extraction method and apparatus for simultaneous analysis of trace metals in sea water
Kim et al. Competitive adsorption of trace organics on membranes and powdered activated carbon in powdered activated carbon-ultrafiltration system
KR20220019907A (en) Fully Automated On-line Tritium Monitoring Method and Monitoring System
CN107721041A (en) The preprocess method of total halogenated organic matters in a kind of measurement water
CN106139691A (en) A kind of nutrients in sea water online pre-filtrating equipment of anti-halobios adhersion
CN109482069A (en) For the test device of extraordinary tubular membrane
JP2018132479A (en) Piping member, water quality inspection method, and water treatment device
JP3538957B2 (en) Method and apparatus for analyzing three-state nitrogen in water
JP3651821B2 (en) Total nitrogen measuring device
JP7367602B2 (en) Quantification method
CN212198804U (en) Water quality monitoring system waste liquid treatment device
TW201207374A (en) Process for measurements of concentration of dissolved organic nitrogen (DON) with low concentration in water
JP2794758B2 (en) Silver production equipment with low palladium content
JP2020037079A (en) Separation method of hats from desulfurization wastewater specimen or desulfurization absorption liquid specimen and analytical method and operation method of desulfurizer
CN108444933A (en) A method of soluble organic nitrogen concentration in water is measured based on dialysis superposition of electric field mode
Orren The determination of copper, zinc, iron, manganese, potassium, lithium and rubidium in sea water by atomic absorption spectrophotometry
KR20120058819A (en) Tracer Analysis System