JPS58150495A - Apparatus of circulating type aeration - Google Patents

Apparatus of circulating type aeration

Info

Publication number
JPS58150495A
JPS58150495A JP57033108A JP3310882A JPS58150495A JP S58150495 A JPS58150495 A JP S58150495A JP 57033108 A JP57033108 A JP 57033108A JP 3310882 A JP3310882 A JP 3310882A JP S58150495 A JPS58150495 A JP S58150495A
Authority
JP
Japan
Prior art keywords
pipe
air
waste water
wastewater
descending pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57033108A
Other languages
Japanese (ja)
Other versions
JPS6352560B2 (en
Inventor
Masayasu Nunokawa
布川 正保
Masahiko Toikawa
樋川 政彦
Toshiaki Nakazawa
俊明 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP57033108A priority Critical patent/JPS58150495A/en
Publication of JPS58150495A publication Critical patent/JPS58150495A/en
Publication of JPS6352560B2 publication Critical patent/JPS6352560B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To save the costs of power and construction work, by providing a vertical straight descending pipe having a nozzle for the injection of aerating air at its lower part and a vertical straight ascending pipe parallelly in a distance apart from or adjacent to each other. CONSTITUTION:Waste water A together with returned sludge B is supplied to the side of the descending pipe 1 of a deaerating tank 5. In the deaerating tank 5, the part of the waste water rising through an ascending pipe 4 is circulated to the side of the descending pipe and let flow downwards together with newly supplied waste water A through the descending pipe 1. Air for aeration and circulation is injected downwards into the waste water through an air- injecting nozzle 2 in the vicinity of the lower part of the descending pipe 1. The flow speed in the descending pipe is made larger than the rising speed of air bubbles. Accordingly, the injected air does not flow backwards into the waste water above the air-injecting nozzle 2 inside the descending pipe 1, while the substantial amount of air is present in the ascending pipe 4. Consequently, the difference of apparent specific gravity is formed between them and utilized as the power to promote the circulation of the waste water through a reactor pipe 3.

Description

【発明の詳細な説明】 本発明は水深による圧力下で廃水と酸素を含む気体を循
環により混合攪拌し、溶解する酸素量を増加させ、廃水
中の有機質の生物化学的酸化速度を高める循環式曝気装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a circulating system that mixes and stirs wastewater and oxygen-containing gas under pressure depending on the water depth, increases the amount of dissolved oxygen, and increases the rate of biochemical oxidation of organic matter in the wastewater. Regarding aeration equipment.

従来生物化学的酸化速度を高める廃水処理方法としては
、超深層曝気法、加圧曝気法及び強制循環曝気法等が知
られている。
Conventionally, known wastewater treatment methods for increasing the biochemical oxidation rate include an ultra-deep aeration method, a pressurized aeration method, and a forced circulation aeration method.

第7の超深層曝気法は地中に深さ頁末以上の垂直深孔を
穿設し上昇管、下降管となし空気吹込みによる見掛けの
比重差を利用して廃水を循環させて同じ吹込んだ空気に
より水深による圧力下で曝気酸化するものであるが、地
中に深さ頁末以上の垂直深孔を穿設するには高度の土木
技術が必要なこと且つその工費も莫大なこと等のため廃
水量が多い場合にはスケールメリットもあり経済性はあ
石が廃水量が中規模以下の場合は経済的に不利となる。
The seventh ultra-deep aeration method is to drill deep vertical holes deeper than the end of the page into the ground, create rising and descending pipes, and circulate wastewater using the difference in apparent specific gravity caused by air blowing. Although this method involves aeration and oxidation under pressure due to the water depth, drilling deep vertical holes deeper than the bottom of the page requires advanced civil engineering technology and the cost of construction is enormous. Therefore, if the amount of wastewater is large, there is an economy of scale, but if the amount of wastewater is less than medium, it becomes economically disadvantageous.

又軟弱な地盤には不向なこと、廃水中の有機質濃度が高
い場合はその酸化熱の除去が困難であ°る等の問題があ
る。
Further, there are problems such as it is not suitable for soft ground, and when the concentration of organic matter in wastewater is high, it is difficult to remove the oxidation heat.

第2の加圧曝気法は加圧した密閉タンク内で廃水を曝気
するものであるが、廃水の攪拌を空気攪拌によっている
ため多量の加圧空気が必要でその昇圧のだめの動力費が
多大となること、さらに廃水の処理量が大きくなった場
合は容器の形状がタン岑 り型であるため耐圧構造上その容器の製造コストが非常
に増加するという欠点がある。
The second pressurized aeration method involves aerating wastewater in a pressurized closed tank, but since the wastewater is stirred by air agitation, a large amount of pressurized air is required, and the power cost for the tank for pressurization is large. Moreover, when the amount of wastewater to be treated becomes large, the container has a tank-shaped shape, which has the drawback of significantly increasing the manufacturing cost of the container due to its pressure-resistant structure.

第3の強制循環曝気法は加圧下の循環系の配管内で廃水
をポンプにより強制循環させその配管内の乱流により廃
水を攪拌し生物酸化するものであるが廃水及び酸化に必
要な空気は反応器内の圧力以上に昇圧して供給する必要
がありこの昇圧のためとポンプ循環の動力費が嵩むとい
う問題を有している。
The third type of forced circulation aeration method uses a pump to forcefully circulate wastewater within the piping of a pressurized circulation system, and the turbulent flow within the piping agitates the wastewater for biological oxidation. It is necessary to increase the pressure above the pressure inside the reactor and supply it, which poses a problem in that the power cost for this pressure increase and pump circulation increases.

本発明は以上述べた如〈従来の生物化学的酸化速度を高
める廃水処理方法に見られる問題点を解決して改良され
た循環式曝気法による廃水処理装置を提供するものであ
ってその要旨とするところは廃水を加圧下で生物化学的
酸化を行う廃水処理に於て、曝気用の空気吹込管を下部
に有する垂直な直管よりなる下降管と垂直な直管よりな
る上昇管とを離隔又は隣接して並設し、前記下降管の下
端部と前記上昇管の下端部を水−半々0字型流路を形成
する反応管にて連通し、且つ前記下降管及び上昇管の夫
々の上端を脱気槽の底部に装着したことを特徴とする循
環式曝気装置である。
As stated above, the present invention provides an improved wastewater treatment device using a circulating aeration method that solves the problems seen in conventional wastewater treatment methods that increase the rate of biochemical oxidation. In wastewater treatment where wastewater is subjected to biochemical oxidation under pressure, a descending pipe consisting of a vertical straight pipe with an air blowing pipe for aeration at the bottom is separated from a rising pipe consisting of a vertical straight pipe. or adjacently arranged in parallel, the lower end of the downcomer pipe and the lower end of the riser pipe are connected by a reaction tube forming a water-half-0-shaped flow path, and each of the downcomer pipe and the riser pipe is This is a circulating aeration device characterized by having its upper end attached to the bottom of the deaeration tank.

以下本発明の構成について説明する。第1図は本発明の
装置を適用した一実施例を示す系統図である。図におい
て(1)は下降管であって鋼管製又はコンクリート製の
垂直管よりなり架構により支持して地上に設置するか又
は半地下式である。下降管(1)の上端は後述の脱気槽
(5)の底部に接続し、下部には曝気及び循環用の空気
吹込管(2)が下向に取付られている。下降管(1)の
下端は反応管(3)の一端と接続している。反応管(3
)は鋼管製又はコンクリート製の水平管よりなりその形
状は直管部の長い1字管状である。
The configuration of the present invention will be explained below. FIG. 1 is a system diagram showing an embodiment to which the apparatus of the present invention is applied. In the figure, (1) is a downcomer pipe, which is a vertical pipe made of steel or concrete, and is supported by a frame and installed above ground, or is semi-underground. The upper end of the downcomer pipe (1) is connected to the bottom of a deaeration tank (5), which will be described later, and an air blowing pipe (2) for aeration and circulation is attached downward to the lower part. The lower end of the downcomer tube (1) is connected to one end of the reaction tube (3). Reaction tube (3
) is a horizontal pipe made of steel or concrete, and its shape is a single-shaped pipe with a long straight pipe section.

反応管(3)は地面上に水平に設置するか又は地下に見
えなくなる程度に浅く埋設してもよい。(4)は上昇管
であり下降管と同じ高さを有する垂直管であって下降管
(1)と離隔又は隣接して並設され下端は前記反応管(
3)の他の一端と接続され上端は下降管(1)と同じく
脱気槽(5)の底部に接続される。上昇管(4)の中間
部には循環始動用の始動用空気吹込管(6)が上向に取
付られている。(5)は脱気槽であって下降管(1)と
上昇管(4)の各上端に両者を連接する形で載架され大
気開放型の丸型又は長方型の水槽である。(7)は大気
開放型の水深の浅い槽からなる脱泡槽であり、廃水中に
残存している細い気泡を機械的攪拌により泡を破壊して
除去するものである。
The reaction tube (3) may be installed horizontally on the ground, or may be buried underground so shallowly that it cannot be seen. (4) is an ascending pipe, which is a vertical pipe having the same height as the downcomer pipe, which is arranged in parallel with or apart from the downcomer pipe (1), and whose lower end is connected to the reaction pipe (
3) It is connected to the other end, and the upper end is connected to the bottom of the degassing tank (5) like the downcomer pipe (1). A starting air blowing pipe (6) for circulation starting is installed upward in the middle of the riser pipe (4). Reference numeral (5) denotes a deaeration tank, which is a round or rectangular water tank that is mounted on the upper ends of the downcomer pipe (1) and the riser pipe (4) so as to connect them, and is open to the atmosphere. (7) is a defoaming tank consisting of a shallow tank open to the atmosphere, which destroys and removes fine air bubbles remaining in wastewater by mechanical stirring.

(8)は汚泥分離槽であり、通常の重力沈降式が用いら
れ、汚泥外は底部より濃縮スラリーとして抜き出され、
上澄水はオーバーフローの形で上部より流出する。(9
)は返送汚泥ポンプであり通常のオーブンインペラ一式
のスラリーポンプが用いられる。
(8) is a sludge separation tank, which uses a normal gravity settling system, and the outside of the sludge is extracted from the bottom as a concentrated slurry.
The supernatant water flows out from the top in the form of overflow. (9
) is a return sludge pump, and a normal slurry pump with a set of oven impellers is used.

以上の構成の装置において、廃水に)は返送汚泥の)と
ともに脱気槽(5)の下降管(1)側に供給される。脱
気槽(5)においては上昇管(4)を上昇してくる廃水
の一部が下゛降管側に循環し上記の新しく供給された廃
水(4)とともに下降管(1)中を下降する。
In the apparatus configured as described above, the wastewater () is supplied to the downcomer pipe (1) side of the deaeration tank (5) together with the returned sludge (). In the degassing tank (5), part of the wastewater that has ascended through the riser pipe (4) circulates to the downcomer side and descends in the downcomer pipe (1) together with the newly supplied wastewater (4). do.

循環及び曝気用の空気は下降管(1)の下部付近で空気
吹込管(2)により下向に廃水中に注入される。下降管
の流速は空気泡の上昇速度(一般には0.3m/8θC
)以上になる様にする、このため下降管(1)内の空気
吹込管(2)より上部の廃水中には吹込んだ空気は逆流
しないが、上昇管(4)中には空気が相当あるためこれ
により両者の間に見掛は比重差を生じこれが反応管(3
)中を廃水が循環するだめの推進力となる。従って両者
の見掛は比重差による水頭力差が反応管(3)内の循環
時の圧損失より大きければ廃水を循環できることになる
。又下降管(1)、上昇管(4)の垂直高さを決定する
際は以上の循環の推進力とともに反応管(3)内の水頭
圧による圧力をも考慮しなければならない、この圧力が
高ければ高い程廃水中の空気(酸素)の分圧が大きくな
り廃水に溶解する酸素濃度は比例して増大するので生物
酸化速度も高められる。下降管(1)、上昇管(4)の
垂直高さは以上の観点から総合的に最適高さが決められ
るが実際には10米以上が望ましい。
Air for circulation and aeration is injected downward into the wastewater by an air blowing pipe (2) near the bottom of the downcomer pipe (1). The flow velocity in the downcomer is the rising velocity of air bubbles (generally 0.3 m/8θC
), so that the air blown into the wastewater above the air blowing pipe (2) in the descending pipe (1) does not flow back, but there is a considerable amount of air in the rising pipe (4). This causes an apparent difference in specific gravity between the two, which causes the reaction tube (3
) This is the driving force for the sump through which wastewater circulates. Therefore, wastewater can be circulated if the difference in head force between the two is larger than the pressure loss during circulation in the reaction tube (3). In addition, when determining the vertical height of the downcomer pipe (1) and riser pipe (4), it is necessary to take into account the above-mentioned circulation propulsion force as well as the pressure due to the head pressure in the reaction pipe (3). The higher the pressure is, the higher the partial pressure of air (oxygen) in the wastewater becomes, and the concentration of oxygen dissolved in the wastewater increases proportionally, thereby increasing the rate of biological oxidation. The optimum vertical height of the downcomer pipe (1) and riser pipe (4) can be comprehensively determined from the above points of view, but in reality, it is desirable that the height be 10 m or more.

空気を充分に含んで下降管(1)の最下端に達した廃水
は反応管(3)の一端に入り、前記推進力により反応管
内を乱流域になる様選ばれた流速で環流し、気液攪拌に
より酸素移動速度を向上し生物化学的酸化反応を効率よ
く行いながら他の一端に到達し上昇管(4)の下端に入
る。反応管の長さは廃水中の有機質の生物化学的酸化分
解の所要程度に応じて任意の滞留時間になる様に選定す
る。
The wastewater that has reached the bottom end of the downcomer tube (1) and contains enough air enters one end of the reaction tube (3), and due to the above-mentioned driving force, it circulates through the reaction tube at a flow rate selected to create a turbulent region. The oxygen transfer rate is improved by stirring the liquid, and while the biochemical oxidation reaction is efficiently performed, the liquid reaches the other end and enters the lower end of the riser pipe (4). The length of the reaction tube is selected so as to provide an arbitrary residence time depending on the required degree of biochemical oxidative decomposition of organic matter in the wastewater.

反応管(3)の形状は任意でよく例えば廃水処理場の境
界に沿って地上に設置してもよく若しくは処理場の道路
に沿ってちょうど下水管の様に地中に浅く埋設してもよ
い。これらの形状は直管、曲管等を適宜組み合せること
によって形成できる。
The shape of the reaction tube (3) may be arbitrary, and for example, it may be installed on the ground along the boundary of the wastewater treatment plant, or it may be buried shallowly in the ground along the road of the treatment plant, just like a sewage pipe. . These shapes can be formed by appropriately combining straight pipes, curved pipes, etc.

反応管(3)を出る廃水は次いで上昇管(4)の下端に
入り反応管内を上昇する、上昇に従って水頭圧による圧
力が減少するので溶解している空気が放出されて気泡と
なり気泡の粒径も大きくなり上昇管の上部においては相
当数になり脱気槽(5)に入る。脱気槽(5)は大気開
放であるため廃水中の大半の気泡を脱離し、廃水の一部
は前記の様にその活性汚泥とともに下降管(1)に循環
流下する。装置の運転開始時には始動用空気吹込管(6
)より空気を注入し上昇管(4)の上半部に積極的に気
泡を存在せしめ見掛けの比重を減少せしめ循環の推進力
とする。脱気槽(5)を流出する廃水は次いで脱泡槽(
7)に入り廃水中に残存している微細な泡を機械的攪拌
により破壊し脱泡する。脱泡した廃水は次いで汚泥分離
槽(8)に入り前記反応管(3)内で有機質を分解して
生成した汚泥分を重力沈降法により汚泥分離槽(8)′
下部に沈降せしめ底部より抜き出し、その一部は汚泥ポ
ツプ(9)により返送汚泥(ロ)として脱気槽(5)に
供給する。この様にしてBODの根源である有機質成分
、汚泥等の固形分を除去された汚泥分離槽の上澄水は処
理水(D)として放流される。下降管(1)及べ び上昇管(4)の形成としては2本の管を離隔して並設
してもよいし2本の管を隣接して並設してもよいしもし
くは径の大きい1本の管を内部で仕切って2分割した隣
接構造でもよい。
The wastewater leaving the reaction tube (3) then enters the lower end of the riser tube (4) and rises inside the reaction tube. As the water rises, the pressure due to the water head decreases, so the dissolved air is released and becomes bubbles, which reduce the particle size of the bubbles. The gas also increases in size, reaching a considerable number in the upper part of the riser pipe and entering the degassing tank (5). Since the deaeration tank (5) is open to the atmosphere, most of the bubbles in the wastewater are removed, and a portion of the wastewater is circulated down to the downcomer pipe (1) together with its activated sludge as described above. When the equipment starts operating, the starting air blowing pipe (6
) to actively create air bubbles in the upper half of the riser pipe (4) to reduce the apparent specific gravity and provide a driving force for circulation. The wastewater flowing out of the deaeration tank (5) is then transferred to the deaeration tank (
7), the fine bubbles remaining in the wastewater are destroyed and defoamed by mechanical stirring. The defoamed wastewater then enters the sludge separation tank (8) and the sludge produced by decomposing organic matter in the reaction tube (3) is transferred to the sludge separation tank (8)' by gravity sedimentation.
The sludge settles to the bottom and is extracted from the bottom, and a part of it is supplied to the deaeration tank (5) as return sludge (b) through the sludge pot (9). The supernatant water of the sludge separation tank from which organic components, which are the source of BOD, and solid content such as sludge have been removed in this manner, is discharged as treated water (D). The descending pipe (1) and rising pipe (4) may be formed by placing two pipes in parallel and spaced apart, or by placing two pipes in parallel adjacently, or depending on the diameter. An adjacent structure in which one large pipe is internally partitioned into two parts may be used.

以上の構成、作用を有する本発明により廃水を処理した
場合は従来の高速酸化方法に比して次の効果が得られる
When wastewater is treated according to the present invention having the above-described structure and function, the following effects can be obtained compared to conventional high-speed oxidation methods.

(1)  廃水及び生物酸化用の空気を系の最大圧力迄
昇圧する必要がないので動力費を節減できる。
(1) Power costs can be reduced because there is no need to increase the pressure of wastewater and air for biological oxidation to the maximum pressure of the system.

(2)  気液の攪拌は反応管内の乱流自体によるため
攪拌のだめの動力費を節減できる。
(2) Since the gas-liquid is stirred by the turbulent flow itself within the reaction tube, the power cost for the stirring tank can be reduced.

(3)  反応管は地上設置又は地下埋設でも浅埋めで
あり土木工事費が少くてすむ。
(3) The reaction tube can be installed above ground or buried shallowly, reducing civil engineering costs.

(4)  反応管は処理場の境界又は道路沿いに設置で
きるので装置の設置面積を非常に少くできる。
(4) Since the reaction tube can be installed at the boundary of the treatment plant or along the road, the installation area of the device can be extremely reduced.

実施例: 第1図に示される装置を使用して食品加工廃水(例/)
と船舶用トイレ廃水(例コ)を処理した結果次に示す様
な良好な成績が得られることを確認した。
Example: Food processing wastewater (example/) using the apparatus shown in Figure 1
As a result of treating wastewater from a ship's toilet (example), it was confirmed that the following good results were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置を適用した一実施例を示す系統図
である。 /:下降管、2:空気吹込管、3:反応管、lI:上昇
管、j:脱気槽、6:始動用空気吹込管、7:脱泡槽、
ざ:汚泥分離槽、り:汚泥ポンプ、A:廃水、B:返送
汚泥、C:加圧空気、D=処理水、E:余剰汚泥。 出願人 三菱化工機株式会社 代理人 弁理士 服部賢武
FIG. 1 is a system diagram showing an embodiment to which the apparatus of the present invention is applied. /: descending pipe, 2: air blowing pipe, 3: reaction tube, lI: rising pipe, j: degassing tank, 6: starting air blowing pipe, 7: defoaming tank,
Z: Sludge separation tank, R: Sludge pump, A: Waste water, B: Returned sludge, C: Pressurized air, D = Treated water, E: Excess sludge. Applicant Mitsubishi Kakoki Co., Ltd. Agent Patent Attorney Kentake Hattori

Claims (1)

【特許請求の範囲】[Claims] 廃水を加圧下で生物化学的酸化を行う廃水処理に於て、
曝気用の空気吹込管(2)を下部に有する垂直な直管よ
りなる下降管(1)と垂直な直管よりなる上昇管(4)
とを離隔又は隣接して並設し、前記下降管(1)の下端
部と前記上昇管(4)の下端部を水平なU字型流路を形
成する反応管(3)にて連通し、且つ前記下降管(1)
及び上昇管(4)の夫々の上端を脱気槽(5)の底部に
装着したことを特徴とする循環式曝気装置。
In wastewater treatment, where wastewater is biochemically oxidized under pressure,
A descending pipe (1) consisting of a vertical straight pipe with an air blowing pipe (2) for aeration at the bottom, and an ascending pipe (4) consisting of a vertical straight pipe.
The lower end of the descending pipe (1) and the lower end of the rising pipe (4) are connected through a reaction pipe (3) forming a horizontal U-shaped flow path. , and the downcomer pipe (1)
A circulating aeration device characterized in that the upper ends of the rising pipes (4) and the rising pipes (4) are attached to the bottom of the deaeration tank (5).
JP57033108A 1982-03-04 1982-03-04 Apparatus of circulating type aeration Granted JPS58150495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57033108A JPS58150495A (en) 1982-03-04 1982-03-04 Apparatus of circulating type aeration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57033108A JPS58150495A (en) 1982-03-04 1982-03-04 Apparatus of circulating type aeration

Publications (2)

Publication Number Publication Date
JPS58150495A true JPS58150495A (en) 1983-09-07
JPS6352560B2 JPS6352560B2 (en) 1988-10-19

Family

ID=12377462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57033108A Granted JPS58150495A (en) 1982-03-04 1982-03-04 Apparatus of circulating type aeration

Country Status (1)

Country Link
JP (1) JPS58150495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074795U (en) * 1983-10-26 1985-05-25 日本鋼管株式会社 Wastewater treatment equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183186B1 (en) 2020-03-16 2020-11-25 (주)제이엠월드 Cosmetic Composition Comprising High Concentration of Vitamin C

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074795U (en) * 1983-10-26 1985-05-25 日本鋼管株式会社 Wastewater treatment equipment
JPH0312389Y2 (en) * 1983-10-26 1991-03-25

Also Published As

Publication number Publication date
JPS6352560B2 (en) 1988-10-19

Similar Documents

Publication Publication Date Title
US4253949A (en) Sewage treatment-flotation apparatus
US4278546A (en) Treatment of a liquid by circulation and gas contacting
KR100499177B1 (en) Submersible in-situ oxygenator
US4416781A (en) Treatment of biologically-degradable waste
CA1060589A (en) Treatment of solids-liquid-gas mixtures
US4367146A (en) Long vertical shaft bioreactor with modified waste liquor injection
US4279754A (en) Means for separation of gas and solids from waste mixed liquor
Choi et al. Influence of the gas—liquid separator design on hydrodynamic and mass transfer performance of split‐channel airlift reactors
EP2188223B1 (en) Method and apparatus for aeration
DE2404289A1 (en) METHOD OF TREATMENT OF WASTE WATER WITH JET NOZZLES
US4217211A (en) Pressurized treatment of sewage
JPS6359760B2 (en)
JP2008502472A (en) Water treatment process and apparatus by fluid flow
US4629559A (en) Vertical looped reactor tank with delayed air release feature
JPS58150495A (en) Apparatus of circulating type aeration
CA1114962A (en) Long vertical shaft bioreactor of simplified design
US3236767A (en) Waste treatment process
US3696029A (en) Deep tank aeration using eductor tubes of elongate cross-section
US3058908A (en) Method of dispersing gases
JPS6135919B2 (en)
JPS6136474B2 (en)
JPS6218232B2 (en)
JPS62262794A (en) Treatment of waste water
JP3242473B2 (en) Ultra deep aeration method
JPH0312398Y2 (en)