JPS58150426A - Contact of liquid and gas - Google Patents

Contact of liquid and gas

Info

Publication number
JPS58150426A
JPS58150426A JP57224113A JP22411382A JPS58150426A JP S58150426 A JPS58150426 A JP S58150426A JP 57224113 A JP57224113 A JP 57224113A JP 22411382 A JP22411382 A JP 22411382A JP S58150426 A JPS58150426 A JP S58150426A
Authority
JP
Japan
Prior art keywords
liquid
gas
liquid jet
rate
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57224113A
Other languages
Japanese (ja)
Other versions
JPS632210B2 (en
Inventor
イストバン・ゲンイエレス
レヘル・コチ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KETSUPONTEI BARUTOOESU HIRUTER
KETSUPONTEI BARUTOOESU HIRUTERUBANKU AARU TEE
Original Assignee
KETSUPONTEI BARUTOOESU HIRUTER
KETSUPONTEI BARUTOOESU HIRUTERUBANKU AARU TEE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KETSUPONTEI BARUTOOESU HIRUTER, KETSUPONTEI BARUTOOESU HIRUTERUBANKU AARU TEE filed Critical KETSUPONTEI BARUTOOESU HIRUTER
Publication of JPS58150426A publication Critical patent/JPS58150426A/en
Publication of JPS632210B2 publication Critical patent/JPS632210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • C02F3/1294"Venturi" aeration means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2341Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
    • B01F23/23413Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere using nozzles for projecting the liquid into the gas atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Water Supply & Treatment (AREA)
  • Animal Husbandry (AREA)
  • Hydrology & Water Resources (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Nozzles (AREA)
  • Activated Sludge Processes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本尭v1はノズルからの#!集性頗体をカス層を経て高
速で液体内に導入することによって献体tガスに1i!
触させる方法に関するものでめる0近年、主として薪水
を浄化する量の増大中生命工学の進歩の結果として、ガ
スと液体とtII鵬畜せる新Mな方法に対する要求が着
るしく増大して匹る◎その方法とは従来一般に使用され
た混合反応装置に対し装置の容量を増大し、特定の投資
額やエネルギーコスト1減少し、反応時間中滞留時間を
減少するというような種々の要求に経済的に合致する方
法である。単一の既知の方法で#i実際よ、これ等のす
べての要求を満たすことはできないO 8ohug@l、 K、 (Ch@w、 −IW、 T
@ck、 52.951−965(1980年)参照)
は既知の方法をよく調査した〇このl1lfによれは、
既知のガス液体111!1システム紘エネルギー移送の
方法によって次のグループに分割することができる・即
ち慎砿的システムと、圧縮機システムと、ボン1システ
ムと、更にこれ等の組合せとである。
[Detailed Description of the Invention] Honya v1 is # from the nozzle! By introducing the concentrating body into the liquid at high speed through the waste layer, 1i!
In recent years, mainly as a result of the increase in the amount of water to be purified, and as a result of advances in biotechnology, the demand for new methods of interfering with gases and liquids has increased steadily. ◎The method is economical in meeting various requirements such as increasing the capacity of the equipment compared to conventionally commonly used mixing reactors, reducing specific investment and energy costs, and reducing residence time during the reaction time. This method is consistent with the following. In fact, no single known method can satisfy all these requirements.
@ck, 52.951-965 (1980))
has thoroughly researched known methods, and according to this l1lf,
Known gas-liquid 111!1 systems can be divided into the following groups depending on the method of energy transfer: compact systems, compressor systems, Bon 1 systems, and combinations thereof.

実際上、物質移動の速度と、物質移動の比エネルギー消
費型と、これ等2つの因子による粘性とに基づいて異な
るガス准体接触システムの比軟が行なわれる〇一般に、
既知のシステムに関しては、粘性の高い液体の場合、高
速で物質移1Ibt″行なわせることと、最少の動力に
2さえることとの両方tlW1w#−に満すことはでき
ないと言うことができる〇ガスと液体と1−接#!1避
せるこれ等システムの大部分では、気相と液相との間の
物質移動の速度はIIk−遍いプロセスで6り、この速
度線また他の反応時間を規定する。物質移動の速度が増
大すれば多くの場合、反応時間を著るしく減少すること
ができ、システムの作動容積tも減少させることができ
る◎物質移動の速度の増大Vこよって歯度の増大が可能
になり、それにより粘性を増大し得る場合には、システ
ムの作動が限られた程度のみ液相の粘性にぶって左右さ
れるようにすることは非常に1賛である〇一般に既知の
システ^はこの賛求に応じることができな一〇 ポンプ上ベースとする既知のシステムでは突進する液体
ジェット、即ち衝撃を与える液体ジェットを有する種類
の装置が徐々に採用されている0このようなシステムの
特性は上方からset与える突進するジェットの助けに
よgttスt−液体内に通し、一方液体自身を循環させ
る0このようなシステムの2つの型式が知られている0 即ちその1つはガスの同伴を液体ジェットポンプによっ
て行なう◎この場合、衝撃を加える前にガスを液体ジェ
ット内に分散させる(ドイツ民主共和1ffi%許明#
lF第56,763号参照)0他の1つはガス層に通る
自由#条性液体ジェットの表面粗さの作用によってガス
を横槍的に液体内に運ぶ0仁の場合、衝撃を加えた俊に
、ガスO1次分散が行なわれる( Sahugerl、
 K、* Chew−IqT@ch、 !$2956 
(1980年)参照)0後肴の原理を使用するこの既知
のプロセスの根本的な欠点は液体ジェットの速度の増大
によって単位エネルギーミル溶鵡するガスの童が濾歩的
に減少することであると共に(V&El d@8ome
、 i、及びSm1th、 J、M、、 Chew、 
′EDI1. J、 10.225−233(1975
年)l@6図参照)、液体ジェットのエネルギーにとっ
て有利な低速の範囲で献体ジェットの貫入深さが非常に
小さいため、実際の使用、特に大規模産業上の使用は着
るしく制約を受けることである( Chew、 Eal
g、 J、 10.231 (1975年)参照)0こ
のこと蝶このプロセスで実際に達成され・る効率が他の
形式のカス液体II触装置の効率より低いことに起因す
る( Chew、 IQr、 T@ch、 52.95
1−965(1980年)表1#照)0 本発明の目的はIIf、仰の解決策の欠点を除去X線減
少させ、液体とガスとを簡単、安価に接触させると共に
、従来のものより物質移−の速さを増大し、エネルギー
消費を少なくした液体とガスとの接触方法を得るにある
0 本発明は液体ジェットの速度が20m/秒の速度に遍す
るか或は超過し、ジェットノズルを去る際の液体ジェッ
トのレイノルズ数が400,000に運するか或は超過
すると、システムの効率と特性とを着るしく改善するこ
とができるという着想に基づくもので6る0このN想は
、液体ジェットO速度と比ガス吸収量との間の既知の関
係に基づくとこのような液体ジェットの速度憧では溶解
したガスの量が増大せず減少することが予想される故に
、驚くべきことで6る〇 本実@扛更に凝集性液体ジェットの自由通路の長さが液
体ジェットの直径の15倍に達するか又は16倍を越え
ると、単位エネルギー轟9溶解できるカスの量を更に増
大させることができるという着想に基づくものである。
In practice, different softening of gas quasi-body contacting systems is performed based on the rate of mass transfer, the specific energy consumption type of mass transfer, and the viscosity due to these two factors. In general,
Regarding known systems, it can be said that in the case of highly viscous liquids, it is not possible to achieve both a high mass transfer rate of 1 Ibt'' and a minimum power of 2. In most of these systems, where contact with liquids and liquids is avoided, the rate of mass transfer between the gas and liquid phases is a constant process, and this rate line and other reaction times Increasing the rate of mass transfer can in many cases significantly reduce the reaction time and also reduce the working volume t of the system ◎Increasing the rate of mass transfer V thus increases the It is highly advisable to make the operation of the system dependent only to a limited extent on the viscosity of the liquid phase, when it is possible to increase the viscosity and thereby increase the viscosity. Known systems in general cannot meet this demand; in known systems based on pumps, devices of the type with rushing or impacting liquid jets are gradually being adopted. The characteristics of such a system are that it passes through the GTT-st liquid with the help of an onrushing jet that feeds it from above, while circulating the liquid itself. Two types of such systems are known, viz. One is to entrain the gas by means of a liquid jet pump. In this case, the gas is dispersed within the liquid jet before the impact is applied.
(Refer to IF No. 56,763) The other one is that the free streak liquid jet passing through the gas layer transports the gas horizontally into the liquid by the action of the surface roughness. , first-order dispersion of gas O takes place (Sahugerl,
K, * Chew-IqT@ch, ! $2956
(1980)) A fundamental drawback of this known process, which uses the principle of zero afterglow, is that by increasing the velocity of the liquid jet, the amount of gas per unit of energy molten metal decreases exponentially. Together (V&El d@8ome
, i, and Sm1th, J.M., Chew.
'EDI1. J, 10.225-233 (1975
(see Figure 6), the penetration depth of the body jet is very small in the low velocity range, which is advantageous for the energy of the liquid jet, so its practical use, especially in large-scale industrial applications, is severely restricted. ( Chew, Eal
This is due to the fact that the efficiency actually achieved with this process is lower than that of other types of liquid II contactors (see Chew, IQr., 10.231 (1975)). T@ch, 52.95
1-965 (1980) Table 1 #Reference) 0 The purpose of the present invention is to eliminate the drawbacks of the above solutions, reduce X-rays, bring liquids and gases into contact easily and inexpensively, and to improve the The object of the present invention is to obtain a method of contacting a liquid with a gas that increases the speed of mass transfer and reduces energy consumption. This idea is based on the idea that if the Reynolds number of the liquid jet as it leaves the nozzle is brought to or exceeds 400,000, the efficiency and performance of the system can be significantly improved. This is surprising since, based on the known relationship between liquid jet O velocity and specific gas uptake, one would expect that at such a liquid jet velocity the amount of dissolved gas would decrease rather than increase. In addition, when the length of the free path of the cohesive liquid jet reaches 15 times or exceeds 16 times the diameter of the liquid jet, the amount of scum that can be dissolved by unit energy 9 is further increased. It is based on the idea that it is possible to

従って、本実f!#は凝果性液体tノズルから馬遍でガ
ス層に通して液体内に導入し、液体tガスにw!触させ
る方法に関するもので6る0本発明によれば、液体ジェ
ットt20〜38m/秒の11度で、好1しくは24〜
28m/秒の速度で、少なくとも400,000のレイ
ノルズ数でノズルかう噴出させ、この液体ジェットの自
由通路の長さ【液体ジェットの[l!の少なくとも15
倍、好筐しく扛20〜25倍の置にII侍する〇 本発明方法は大部分の槽々の液体、内えば溶液又はS濁
液及びガス又#2s合ガスの黴底的なII!11のため
非常に広亀囲に過用することができる◎可能な用途のガ
としては好気醗酵、好気性生物による薪水浄化、養魚池
の通気、触媒のガス液体反応、?1.tは接触水系龜〃
口及び吸収によるガスの浄化である@ 不発一方法の王畳な利点は次の通りである◎(&)  
既知の方法に地積し、物質移動の速さを着るしく増大す
ることができる。空気からの酸素の移動速度を最高50
〜5511101/−・時にすることができ、これは既
知の装置で浴解できる酸素の量の数倍である。
Therefore, the real f! # is introduced into the liquid from the congealing liquid T nozzle through the gas layer, and turns into liquid T gas! According to the present invention, the liquid jet t is 11 degrees at 20 to 38 m/sec, preferably 24 to 38 m/sec.
The nozzle ejects with a velocity of 28 m/s and a Reynolds number of at least 400,000, and the free path length of the liquid jet [l! at least 15 of
The method of the present invention can be applied to liquids in most tanks, including solutions or S suspensions, gases, and #2S mixture gas. 11, so it can be used extensively. Possible uses include aerobic fermentation, firewood water purification by aerobic organisms, aeration of fish ponds, catalytic gas-liquid reactions, etc. 1. t is contact water system
The advantages of the gas purification method by mouth and absorption are as follows:
In addition to known methods, the rate of mass transfer can be dramatically increased. Increase the rate of oxygen transfer from the air by up to 50%
~5511101/- hours, which is several times the amount of oxygen that can be bath-dissolved with known equipment.

ψ) この物質移動の速度が早いことにより反応容積を
着るしく減少することができ、それに地内して、生産物
の濃度を増大することができる・((1)  有利な比
エネルキー消費重が可能である。
ψ) This high rate of mass transfer makes it possible to significantly reduce the reaction volume, which in turn increases the concentration of the product. It is.

I K4o Os ′f:l1MIFf b OK 0
.17〜0.38 KWh Oエネルギーが必要でめる
に過ぎない〇 (d)  #IIj賞移動は広範囲にわたり液体の粘性
に実際に無関係である。
I K4o Os ′f:l1MIFf b OK 0
.. Only 17-0.38 KWh O energy is required (d) #IIj The transfer is virtually independent of the viscosity of the liquid over a wide range.

(・) 非常に尚いカス利用率が可能な0て、着るしく
僅かな相対ガスを停滞させるだ杖で、即ち容go利用率
を向上させ、所定の物質移動の速度會達成する。
(・) It is possible to achieve a very high waste utilization rate, and it is a key to stagnate a small amount of relative gas, that is, to improve the volume utilization rate and achieve a predetermined mass transfer rate.

(f)  投資額と保守費が少ない非常に簡単な装置で
本発明方法t−実施することができる。物質1#の比エ
ネルギー消費量tS1時に減少させて装置の寸法の増大
を実現することができる〇 凝集性液体ジエツ)1発生するのに適するノズルとして
いかなる既知のノズルでも本発明方法に使用することが
できる。流動損失を減少させるため、ペルトンタービン
に使用される放物双−閲輪郭のいわゆる「ジェットパイ
プ」を使用するのが有利である〇 実施例につき本実明方@【説明する〇 実施1pi11 高さ2.5m%直径0.45mの容器内にO,Sモルの
亜1IeIRナトリウAl14人し、0.001 %h
/ Lの[@:fパルト触媒の存在の許K[410,0
2m(Dノズルに通してこの亜硫酸ナトリウムをlI槙
させ’fe、o 22.5 vn/秒(Re:45G、
Goo)O速度と0.4terの自由通路長さと1有す
る液体ジェットによって、大気圧の空気からのM素の移
送速度は亜硫酸ナトリウムの酸化に基づく方法(Li7
IC,V。
(f) The method of the invention can be carried out in a very simple device with low investment and maintenance costs. Any known nozzle suitable for generating cohesive liquids can be used in the method of the invention to reduce the specific energy consumption tS1 of substance 1 and to realize an increase in the size of the device. I can do it. In order to reduce flow losses, it is advantageous to use so-called "jet pipes" with a parabolic double-view profile, which are used in Pelton turbines. In a container with a diameter of 0.45 m, 2.5 m% O, S moles of 1IeIR sodium Al were placed, and 0.001% h
/ L's [@:f K [410,0
2 m (pass this sodium sulfite through the D nozzle and mix it with lI'fe, o 22.5 vn/sec (Re: 45G,
The transport rate of M from air at atmospheric pressure is determined by the method based on the oxidation of sodium sulfite (Li7
I.C., V.

及びVae@に、 v、l Ch@m、 Eng、 S
ci、 36.1747−68(19811参照)K 
! ff 14足L、49.2に40*/#lj時で6
.った0この罐は0.18KWh/MOmO比エネルギ
ー消費童に相当する。
and Vae@, v, l Ch@m, Eng, S
ci, 36.1747-68 (see 19811) K
! ff 14 feet L, 40*/#lj at 49.2 and 6
.. This can corresponds to 0.18KWh/MOmO specific energy consumption.

実mカ2 実m?I11で説明したチノーを繰返したが、異なるの
は液体ジェットの速度を34.8m/秒(R・:556
.000)Kし、直径0.016m0/ズkf使用した
ことでるる0酸素溶解ili度は55.0−〇!/一時
であった。これは0.38 Kwh/1llo*の比エ
ネルギー消費型に相当する◎ 実施M3 *m91i1(Dj うに0.001 モル/10硫酸
:zパルト触縄の存在の軒に直径0.06mのノズル【
通して高さ6.5m、厘111mの容器内で2.5−の
0.5モルの亜硫酸ナトリウムを循環させ友。液体シェ
ツトの自由通路長さは0.9N@であり、その速度は2
5.4購/秒(Re: 1,524,000 )  で
6りた〇鍍素溶解速度は54.5110m/一時でip
、これは0.17KWh/す0.の比エネルギー消費型
に相当する〇 特許出願人 ケツポンチィ バルトーエス ヒルチルバンク アール、チー。
Real mka 2 Real m? The chino described in I11 was repeated, but the difference was that the velocity of the liquid jet was changed to 34.8 m/s (R.:556
.. 000)K and using a diameter of 0.016m0/zkf, the Ruru 0 oxygen dissolution degree is 55.0-〇! / It was temporary. This corresponds to a specific energy consumption type of 0.38 Kwh/1llo* ◎ Implementation M3 * m91i1 (Dj sea urchin 0.001 mol/10 sulfuric acid: z A nozzle with a diameter of 0.06 m at the eave of the presence of the Palt touch rope [
0.5 mol of sodium sulfite was circulated through a container 6.5 m high and 111 m wide. The free path length of the liquid shet is 0.9N@, and its velocity is 2
The dissolution rate of chloride at 5.4 units/sec (Re: 1,524,000) is 54.5110 m/hour at ip
, which is 0.17KWh/s0. Corresponding to the specific energy consumption type of 〇Patent Applicant Ketsuponchi Bartos Hilchirbank R, Chee.

特許出纏代珈人 弁理士 宵木 朗 弁理士 西舘和之 弁理士 古賀哲次 弁理士  山 口 昭 之 手続補正書c方式) 昭和58年4 月lぐ泊 特許庁長官 若杉和夫 殿 1、事件の表示 昭和57年 特許顧  第224113号2、発明の名
称 液体とガスの接触方法 3、補正をする者 事件との関係  特許出願人 4、代理人 6、補正の対象 明細書 7、補正の内容 明細書の浄書(内容に変更なし) 8、添附書類の目録 浄書明細書      1通
Patent attorney Akira Yoiki Patent attorney Kazuyuki Nishitate Patent attorney Tetsuji Koga Aki Yamaguchi (procedural amendment (C method) April 1980) Commissioner of the Japan Patent Office Kazuo Wakasugi 1, of the case Indication 1982 Patent Consultant No. 224113 2, Title of invention Method for contacting liquid and gas 3, Relationship with the person making the amendment Patent applicant 4, Agent 6, Specification to be amended 7, Details of the amendment An engraving of the book (no changes to the contents) 8. An engraving of the attached documents: 1 copy

Claims (1)

【特許請求の範囲】 1、ノズルからの高速のIII!巣性液体ジエツ)tカ
ス層に過して液体内に導入し液体をガスに接触させるに
歯ff、20〜38m/秒の速度で少なくともレイノル
ズ数400,000で前記液体ジェットtIIII配ノ
ズルから噴出させ、この液体ジェットの自由通路長さを
この液体ジェットの直径の少なくとも15倍の値に維持
することを特徴とする液体とガスの接触方法◎ 2、前記液体ジェット’124〜28肩/秒の速度で前
記ノズルから噴出させる特許請求の範a第1項に記載の
方法・ 3、前記液体ジェットの前記自由通路長さ會この液体ジ
ェットの直径の20〜25倍の電に一持する特許請求の
111111@ I JJ又は第2項に記載の方法−
[Claims] 1. High speed III from the nozzle! The liquid jet is introduced into the liquid through the scum layer and brought into contact with the gas, and is ejected from the liquid jet nozzle with a Reynolds number of at least 400,000 at a speed of 20 to 38 m/s and a Reynolds number of at least 400,000. A method for contacting a liquid with a gas, characterized in that the free path length of the liquid jet is maintained at a value of at least 15 times the diameter of the liquid jet. 3. The method according to claim 1, wherein the free path length of the liquid jet is 20 to 25 times the diameter of the liquid jet. 111111@I JJ or the method described in Section 2-
JP57224113A 1981-12-22 1982-12-22 Contact of liquid and gas Granted JPS58150426A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HU813901A HU190785B (en) 1981-12-22 1981-12-22 Process for contacting liquids with gases
HU3901/81 1981-12-22

Publications (2)

Publication Number Publication Date
JPS58150426A true JPS58150426A (en) 1983-09-07
JPS632210B2 JPS632210B2 (en) 1988-01-18

Family

ID=10965981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224113A Granted JPS58150426A (en) 1981-12-22 1982-12-22 Contact of liquid and gas

Country Status (14)

Country Link
JP (1) JPS58150426A (en)
AT (1) AT381244B (en)
AU (1) AU555183B2 (en)
BE (1) BE895384A (en)
CA (1) CA1201873A (en)
CH (1) CH657281A5 (en)
DE (1) DE3247266A1 (en)
ES (1) ES8401728A1 (en)
FR (1) FR2518419B1 (en)
GB (1) GB2111844B (en)
HU (1) HU190785B (en)
IT (1) IT1155435B (en)
NL (1) NL8204916A (en)
SE (1) SE444119B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947663A (en) * 1997-08-29 1999-09-07 Mitsubishi Heavy Industries, Ltd. Horizontal hobbing machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU205724B (en) * 1986-11-28 1992-06-29 Istvan Kenyeres Method for incereasing the performance and dissolving degree of impact jet gas-imput
US5211508A (en) * 1992-02-20 1993-05-18 Kaiyo Kogyo Kabushiki Kaisha Total water circulation system for shallow water areas
US6033576A (en) * 1993-11-26 2000-03-07 Hyperno Proprietary Limited Chemical waste treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046564A (en) * 1973-07-30 1975-04-25
JPS5411877A (en) * 1977-06-30 1979-01-29 Agency Of Ind Science & Technol Gas-liquid contactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2128311A (en) * 1935-04-20 1938-08-30 Du Pont Method of carrying out chemical reactions
SE375704B (en) * 1973-09-12 1975-04-28 Volvo Flygmotor Ab

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046564A (en) * 1973-07-30 1975-04-25
JPS5411877A (en) * 1977-06-30 1979-01-29 Agency Of Ind Science & Technol Gas-liquid contactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947663A (en) * 1997-08-29 1999-09-07 Mitsubishi Heavy Industries, Ltd. Horizontal hobbing machine

Also Published As

Publication number Publication date
AU555183B2 (en) 1986-09-18
GB2111844B (en) 1985-07-17
CA1201873A (en) 1986-03-18
SE8207341L (en) 1983-06-23
FR2518419B1 (en) 1988-02-05
DE3247266C2 (en) 1987-06-19
FR2518419A1 (en) 1983-06-24
DE3247266A1 (en) 1983-07-14
AT381244B (en) 1986-09-10
AU9181982A (en) 1983-06-30
CH657281A5 (en) 1986-08-29
GB2111844A (en) 1983-07-13
IT8224898A0 (en) 1982-12-23
ES518485A0 (en) 1984-01-01
IT8224898A1 (en) 1984-06-22
BE895384A (en) 1983-06-17
NL8204916A (en) 1983-07-18
ES8401728A1 (en) 1984-01-01
HU190785B (en) 1986-11-28
SE444119B (en) 1986-03-24
JPS632210B2 (en) 1988-01-18
IT1155435B (en) 1987-01-28
ATA459882A (en) 1986-02-15
SE8207341D0 (en) 1982-12-22

Similar Documents

Publication Publication Date Title
Jiao et al. Applications of high gravity technologies for wastewater treatment: a review
NO943651D0 (en) Method and apparatus for providing gas-liquid contact
CN102107928A (en) Pretreatment technique and equipment for degrading high-concentration organic waste water by power ultrasonic cavitation
Oguz et al. Gas/liquid mass transfer in sparged agitated slurries
CN101148287B (en) Enhanced oxidation process and device for treating organic poison wastewater
Ogut et al. Oxygen transfer into newtonian and non‐newtonian fluids in mechanically agitated vessels
CN207404920U (en) A kind of catalytic ozonation system for organic wastewater with difficult degradation thereby
JPS58150426A (en) Contact of liquid and gas
ATE97013T1 (en) METHOD AND DEVICE FOR CARRYING OUT GAS-LIQUID CONTACT.
JP4544017B2 (en) Air diffuser
CN106111102A (en) It is prone to repeat the efficient class Fenton technology of reaction
CN106166438A (en) A kind of method and device of photodissociation chlorine aqueous solution induced radical removing hydrogen sulfide
CA2317709A1 (en) Process for the continuous production of functionalized polymers
GB2199259A (en)
Leybovych et al. Influence of water salinity on air purification from hydrogen sulfide
CN117399078B (en) High-efficiency catalytic desulfurizing agent particles and preparation method thereof
CN216711791U (en) Acrylonitrile wastewater pretreatment device
CN211111244U (en) Wastewater treatment system
Guoqiang et al. Bacterial desulfurization of the H 2 S-containing biogas
CN212316052U (en) Immersed biogas desulfurization device
CN105195135B (en) A kind of ozone dissolution nano composite material and preparation method thereof
CN218491598U (en) Copper-containing etching waste liquid and tower spraying absorption liquid co-processing device
CN220328341U (en) Multicomponent industrial waste gas coupling processing apparatus
RU2039591C1 (en) Vegetable oils and their substitutions oxidation method
CN206599469U (en) One kind applies color wastewater treatment equipment