JPS632210B2 - - Google Patents

Info

Publication number
JPS632210B2
JPS632210B2 JP57224113A JP22411382A JPS632210B2 JP S632210 B2 JPS632210 B2 JP S632210B2 JP 57224113 A JP57224113 A JP 57224113A JP 22411382 A JP22411382 A JP 22411382A JP S632210 B2 JPS632210 B2 JP S632210B2
Authority
JP
Japan
Prior art keywords
liquid
liquid jet
gas
jet
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57224113A
Other languages
Japanese (ja)
Other versions
JPS58150426A (en
Inventor
Genieresu Isutoban
Kochi Reheru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOZUHONTEI BARUTO ESU HITERUBANKU AARU TEII INNOBASHIOSU ARATSUPU
Original Assignee
KOZUHONTEI BARUTO ESU HITERUBANKU AARU TEII INNOBASHIOSU ARATSUPU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOZUHONTEI BARUTO ESU HITERUBANKU AARU TEII INNOBASHIOSU ARATSUPU filed Critical KOZUHONTEI BARUTO ESU HITERUBANKU AARU TEII INNOBASHIOSU ARATSUPU
Publication of JPS58150426A publication Critical patent/JPS58150426A/en
Publication of JPS632210B2 publication Critical patent/JPS632210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • C02F3/1294"Venturi" aeration means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/042Introducing gases into the water, e.g. aerators, air pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2341Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
    • B01F23/23413Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere using nozzles for projecting the liquid into the gas atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 本発明はノズルからの凝集性液体ジエツトをガ
ス層を経て高速で液体内に導入することによつて
液体をガスに接続させる方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of connecting a liquid to a gas by introducing a cohesive liquid jet from a nozzle into the liquid at high velocity through a gas layer.

近年、主として排水を浄化する量の増大や生命
工学の進歩の結果として、ガスと液体とを接触さ
せる新規な方法に対する要求が著るしく増大して
いる。その方法とは従来一般に使用された混合反
応装置に対し装置の容量を増大し、特定の投資額
やエネルギーコストを減少し、反応時間や滞留時
間を減少するというような種々の要求に経済的に
合致する方法である。単一の既知の方法では実際
上、これ等のすべての要求を満たすことはできな
い。
In recent years, the demand for new methods of contacting gases and liquids has increased significantly, primarily as a result of the increasing volume of wastewater purification and advances in biotechnology. The method is an economical way to meet various requirements such as increasing the capacity of the equipment, reducing specific investment and energy costs, and reducing reaction and residence times compared to conventional mixing reactors. This is a matching method. No single known method can practically meet all these requirements.

Schu¨gel、K.(Chem.―Ing.Tech.52、951―965
(1980年)参照)は既知の方法をよく調査した。
この調査によれば、既知のガス液体接触システム
はエネルギー移送の方法によつて次のグループに
分割することができる。即ち機械的システムと、
圧縮機システムと、ポンプシステムと、更にこれ
等の組合せとである。
Schu¨gel, K. (Chem.—Ing. Tech. 52 , 951—965
(1980)) conducted a thorough survey of known methods.
According to this study, known gas-liquid contact systems can be divided into the following groups according to the method of energy transfer: i.e. mechanical systems;
compressor systems, pump systems, and combinations thereof.

実際上、物質移動の速度と、物質移動の比エネ
ルギー消費量と、これ等2つの因子による粘性と
に基づいて異なるガス液体接触システムの比較が
行なわれる。一般に、既知のシステムに関して
は、粘性の高い液体の場合、高速で物質移動を行
なわせることと、最少の動力におさえることとの
両方を同時に満すことはできないと言うことがで
きる。
In practice, comparisons of different gas-liquid contacting systems are made on the basis of the rate of mass transfer, the specific energy consumption of mass transfer, and the viscosity due to these two factors. In general, it can be said that with known systems, in the case of highly viscous liquids, it is not possible to achieve both a high mass transfer rate and a minimum power consumption at the same time.

ガスと液体とを接触させるこれ等システムの大
部分では、気相と液相との間の物質移動の速度は
最も遅いプロセスであり、この速度はまた他の反
応時間を規定する。物質移動の速度が増大すれば
多くの場合、反応時間を著るしく減少することが
でき、システムの作動容積をも減少させることが
できる。物質移動の速度の増大によつて濃度の増
大が可能になり、それにより粘性を増大し得る場
合には、システムの作動が限られた程度のみ液相
の粘性によつて左右されるようにすることは非常
に重要である。一般に既知のシステムはこの要求
に応じることができない。
In most of these gas-liquid contacting systems, the rate of mass transfer between the gas and liquid phases is the slowest process, and this rate also dictates the other reaction times. Increasing the rate of mass transfer can often significantly reduce reaction time and can also reduce the working volume of the system. Making the operation of the system dependent only to a limited extent on the viscosity of the liquid phase, where an increase in the rate of mass transfer would allow an increase in concentration, thereby increasing the viscosity. This is very important. Generally known systems cannot meet this requirement.

ポンプをベースとする既知のシステムでは突進
する液体ジエツト、即ち衝撃を与える液体ジエツ
トを有する種類の装置が徐々に採用されている。
このようなシステムの特性は上方から衝撃を与え
る突進するジエツトの助けによりガスを液体内に
通し、一方液体自身を循環させる。このようなシ
ステムの2つの型式が知られている。
Known systems based on pumps are increasingly employing devices of the type with thrusting or impacting liquid jets.
The nature of such a system is to pass gas into the liquid with the aid of a protruding jet that impinges from above, while circulating the liquid itself. Two types of such systems are known.

即ちその1つはガスの同伴を液体ジエツトポン
プによつて行なう。この場合、衝撃を加える前に
ガスを液体ジエツト内に分散させる(ドイツ民主
共和国特許明細書第56763号参照)。
One of them is to entrain the gas by means of a liquid jet pump. In this case, the gas is dispersed in the liquid jet before the impact (see German Democratic Republic Patent Specification No. 56 763).

他の1つはガス層に通る自由凝集性液体ジエツ
トの表面粗さの作用によつてガスを機械的に液体
内に運ぶ。この場合、衝撃を加えた後に、ガスの
1次分散が行なわれる(Schu¨gel、K.、Chem―
Ing Tech.52956(1980年)参照)。この場合すな
わち自由凝集性液体の場合、ジエツトはノズルと
衝撃地点の間の全経路において円柱状または僅か
な円錐状(角度3゜以下)の連続液体流としてその
同一性を保つものである。第1図に典型的な凝集
性液体ジエツトの例を示す。同図中、1がノズ
ル、2が液体ジエツト、3がジエツトの輪郭境界
線である。
The other is mechanical transport of gas into the liquid by the action of the surface roughness of a freely cohesive liquid jet passing through the gas layer. In this case, after the impact, a first dispersion of the gas takes place (Schugel, K., Chem.
Ing Tech. 52 956 (1980)). In this case, i.e. in the case of freely cohesive liquids, the jet maintains its identity as a cylindrical or slightly conical (angle less than 3°) continuous liquid stream over the entire path between the nozzle and the point of impact. FIG. 1 shows an example of a typical cohesive liquid jet. In the figure, 1 is a nozzle, 2 is a liquid jet, and 3 is a contour boundary line of the jet.

後者の原理を使用するこの既知のプロセスの根
本的な欠点は液体ジエツトの速度の増大によつて
単位エネルギー当り溶解するガスの量が段歩的に
減少することであると共に(Van de Sonde、E.
及びSmith、J.M.、Chem.Eng.J.10、225―233
(1975年)第6図参照)、液体ジエツトのエネルギ
ーにとつて有利な低速の範囲で液体ジエツトの貫
入深さが非常に小さいため、実際の使用、特に大
規模産業上の使用は著るしく制約を受けることで
ある(Chem.Eng.J.10、231(1975年)参照)。こ
のことはこのプロセスで実際に達成される効率が
他の形式のガス液体接触装置の効率より低いこと
に起因する(Chem.Ing.Tech.52、951―965(1980
年)表参照)。
The fundamental drawback of this known process, which uses the latter principle, is that the amount of gas dissolved per unit of energy decreases step by step by increasing the velocity of the liquid jet (Van de Sonde, E. .
and Smith, J.M., Chem.Eng.J. 10 , 225-233.
(1975) (see Figure 6), the penetration depth of the liquid jet is very small in the low velocity range where the energy of the liquid jet is favorable, making practical use, especially large-scale industrial use, extremely difficult. (See Chem.Eng.J. 10 , 231 (1975)). This is because the efficiency actually achieved with this process is lower than that of other types of gas-liquid contactors (Chem.Ing.Tech. 52 , 951-965 (1980).
year) (see table).

本発明の目的は既知の解決策の欠点を除去又は
減少させ、液体とガスとを簡単、安価に接触させ
ると共に、従来のものより物質移動の速さを増大
し、エネルギー消費を少なくした液体とガスとの
接触方法を得るにある。
The object of the invention is to eliminate or reduce the disadvantages of known solutions and to provide a simple and inexpensive contact between liquid and gas, with increased mass transfer rates and lower energy consumption than in the prior art. There is a way to get in contact with the gas.

本発明は液体ジエツトの速度が20m/秒の速度
に達するか或は超過し、ジエツトノズルを去る際
の液体ジエツトのレイノルズ数が400000に達する
か或は超過すると、システムの効率と特性とを著
るしく改善することができるという着想に基づく
ものである。この着想は、液体ジエツトの速度と
比ガス吸収量との間の既知の関係に基づくとこの
ような液体ジエツトの速度値では溶解したガスの
量が増大せず減少することが予想される故に、驚
くべきことである。
The present invention improves the efficiency and performance of the system when the velocity of the liquid jet reaches or exceeds a velocity of 20 m/s and the Reynolds number of the liquid jet as it leaves the jet nozzle reaches or exceeds 400,000. It is based on the idea that it is possible to improve The idea is that, based on the known relationship between liquid jet velocity and specific gas uptake, one would expect that at such liquid jet velocity values the amount of dissolved gas would decrease rather than increase. That's surprising.

本発明は更に凝集性液体ジエツトの自由通路の
長さが液体ジエツトの直径の15倍に達するか又は
15倍を越えると、単位エネルギー当りで溶解でき
るガスの量を更に増大させることができるという
着想に基づくものである。
The invention further provides that the length of the free path of the cohesive liquid jet reaches 15 times the diameter of the liquid jet or
This is based on the idea that exceeding 15 times the amount of gas that can be dissolved per unit energy can be further increased.

従つて、本発明は凝集性液体をノズルから高速
でガス層に通して液体内に導入し、液体をガスに
接触させる方法に関するものである。本発明によ
れば、液体ジエツトを20〜30m/秒の速度で、好
ましくは24〜28m/秒の速度で、少なくとも
400000のレイノルズ数でノズルから噴出させ、こ
の液体ジエツトの自由通路の長さを液体ジエツト
の直径の少なくとも15倍、好ましくは20〜25倍の
値に維持する。
Accordingly, the present invention relates to a method of introducing a cohesive liquid through a nozzle at high speed through a gas layer into the liquid and bringing the liquid into contact with the gas. According to the invention, the liquid jet is applied at a speed of from 20 to 30 m/s, preferably from 24 to 28 m/s, at least
A Reynolds number of 400,000 is ejected from the nozzle, maintaining the free path length of the liquid jet at a value of at least 15 times, preferably 20 to 25 times, the diameter of the liquid jet.

本発明方法は大部分の種々の液体、例えば溶液
又は懸濁液及びガス又は混合ガスの徹底的な接触
のため非常に広範囲に適用することができる。可
能な用途の例としては好気醗酵、好気性生物によ
る排水浄化、養魚池の通気、触媒のガス液体反
応、例えば接触水素添加及び吸収によるガスの浄
化である。
The method according to the invention can be very widely applied due to the thorough contact of most different liquids, such as solutions or suspensions, and gases or gas mixtures. Examples of possible applications are aerobic fermentation, wastewater purification with aerobic organisms, aeration of fishponds, gas purification by catalytic gas-liquid reactions, such as catalytic hydrogenation and absorption.

本発明方法の主要な利点は次の通りである。 The main advantages of the method of the invention are as follows.

(a) 既知の方法に比較し、物質移動の速さを著る
しく増大することができる。空気からの酸素の
移動速度を最高50〜55KgO2/m3・時にするこ
とができ、これは既知の装置で溶解できる酸素
の量の数倍である。
(a) The rate of mass transfer can be significantly increased compared to known methods. Transfer rates of oxygen from the air can be up to 50-55 KgO 2 /m 3 ·hr, which is several times the amount of oxygen that can be dissolved with known devices.

(b) この物質移動の速度が早いことにより反応容
積を著るしく減少することができ、それに比例
して、生産物の濃度を増大することができる。
(b) This high rate of mass transfer allows the reaction volume to be significantly reduced and the product concentration to be increased proportionately.

(c) 有利な比エネルギー消費量が可能である。1
KgのO2を溶解するのに0.17〜0.38KWhのエネ
ルギーが必要であるに過ぎない。
(c) Advantageous specific energy consumption is possible. 1
Only 0.17-0.38KWh of energy is required to dissolve Kg of O2 .

(d) 物質移動は広範囲にわたり液体の粘性に実際
に無関係である。
(d) Mass transfer is practically independent of liquid viscosity over a wide range.

(e) 非常に高いガス利用率が可能なので、著るし
く僅かな相対ガスを停滞させるだけで、即ち容
積の利用率を向上させ、所定の物質移動の速度
を達成する。
(e) Very high gas utilization rates are possible, so that only significantly less relative gas is stagnated, ie the volume utilization is increased, and a given mass transfer rate is achieved.

(f) 投資額と保守費が少ない非常に簡単な装置で
本発明方法を実施することができる。物質移動
の比エネルギー消費量を同時に減少させて装置
の寸法の増大を実現することができる。
(f) The method of the invention can be carried out in very simple equipment with low investment and maintenance costs. An increase in the size of the device can be realized with a simultaneous reduction in the specific energy consumption of mass transfer.

凝集性液体ジエツトを発生するのに適するノズ
ルとしていかなる既知のノズルでも本発明方法に
使用することができる。このようなノズルは業界
において広く使用されているが、そのいくつかの
例を第2図に示す。(a)は円錐状、(b)は楕円状、(c)
は放物双曲面輪郭のルズルである。流動損失を減
少させるため、ベルトンタービンに使用される放
物双曲面輪郭のいわゆる「ジエツトパイプ」を使
用するのが有利である。
Any known nozzle suitable for generating a cohesive liquid jet can be used in the process of the invention. Such nozzles are widely used in the industry, some examples of which are shown in FIG. (a) is conical, (b) is elliptical, (c)
is a ruzzle of a parabolic hyperboloid contour. In order to reduce flow losses, it is advantageous to use so-called "jet pipes" with a parabolic hyperboloid profile, which are used in Belton turbines.

実施例につき本発明方法を説明する。 The method of the invention is illustrated by way of example.

実施例 1 高さ2.5m、直径0.45mの容器内に0.5モルの亜
硫酸ナトリウムを導入し、0.001モル/の硫酸
コバルト触媒の存在の許に直径0.02mのノズルに
通してこの亜硫酸ナトリウムを循環させた。22.5
m/秒(Re:450000)の速度と0.4mの自由通路
長さとを有する液体ジエツトによつて、大気圧の
空気からの酸素の移送速度は亜硫酸ナトリウムの
酸化に基づく方法(Linek、V.及びVacek、V.、
Chem.Eng.Sci.36、1747―68(1981年)参照)に
より測定し、49.2KgO2/m3時であつた。この値は
0.18KWh/KgO2の比エネルギー消費量に相当す
る。
Example 1 0.5 mol of sodium sulfite was introduced into a container 2.5 m high and 0.45 m in diameter and circulated through a 0.02 m diameter nozzle in the presence of 0.001 mol/cobalt sulfate catalyst. Ta. 22.5
By means of a liquid jet with a velocity of m/s (Re: 450000) and a free path length of 0.4 m, the transfer rate of oxygen from air at atmospheric pressure can be determined by a method based on the oxidation of sodium sulfite (Linek, V. et al. Vacek, V.
Chem.Eng.Sci. 36 , 1747-68 (1981)) and found to be 49.2KgO2 / m3h . This value is
This corresponds to a specific energy consumption of 0.18KWh/KgO 2 .

実施例 2 実施例1で説明した手順を繰返したが、異なる
のは液体ジエツトの速度を34.8m/秒(Re:
556000)にし、直径0.016mのノズルを使用した
ことである。酸素溶解速度は55.0KgO2/m3時であ
つた。これは0.38KWh/KgO2の比エネルギー消
費量に相当する。
Example 2 The procedure described in Example 1 was repeated, except that the velocity of the liquid jet was changed to 34.8 m/s (Re:
556,000) and used a nozzle with a diameter of 0.016 m. The oxygen dissolution rate was 55.0 KgO 2 /m 3 hr. This corresponds to a specific energy consumption of 0.38KWh/ KgO2 .

実施例 3 実施例1のように0.001モル/の硫酸コバル
ト触媒の存在の許に直径0.06mのノズルを通して
高さ6.5m、直径1mの容器内で2.5m3の0.5モルの
亜硫酸ナトリウムを循環させた。液体ジエツトの
自由通路長さは0.9mであり、その速度は25.4
m/秒(Re:1524000)であつた。酸素溶解速度
は54.5KgO2/m3時であり、これは0.17KWh/Kg
O2の比エネルギー消費量に相当する。
Example 3 2.5 m 3 of 0.5 mol sodium sulfite were circulated in a vessel 6.5 m high and 1 m in diameter through a 0.06 m diameter nozzle in the presence of 0.001 mol/cobalt sulfate catalyst as in Example 1. Ta. The free path length of the liquid jet is 0.9 m, and its velocity is 25.4
m/s (Re: 1524000). The oxygen dissolution rate is 54.5KgO 2 / m3h , which is 0.17KWh/Kg
Corresponds to the specific energy consumption of O2 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は典型的な凝集性液体ジエツトを示す模
式図、第2図は凝集性液体ジエツトを形成するた
めのいろいろなノズルの断面図である。 1……ノズル、2……液体ジエツト、3……ジ
エツトの輪郭境界線。
FIG. 1 is a schematic illustration of a typical cohesive liquid jet, and FIG. 2 is a cross-sectional view of various nozzles for forming a cohesive liquid jet. 1... Nozzle, 2... Liquid jet, 3... Outline boundary line of the jet.

Claims (1)

【特許請求の範囲】 1 ノズルからの高速の凝集性液体ジエツトをガ
ス層に通して液体内に導入し液体をガスに接触さ
せるに当り、20〜38m/秒の速度で少なくともレ
イノルズ数400000で前記液体ジエツトを前記ノズ
ルから噴出させ、この液体ジエツトの自由通路長
さをこの液体ジエツトの直径の少なくとも15倍の
値に維持することを特徴とする液体とガスの接触
方法。 2 前記液体ジエツトを24〜28m/秒の速度で前
記ノズルから噴出させる特許請求の範囲第1項に
記載の方法。 3 前記液体ジエツトの前記自由通路長さをこの
液体ジエツトの直径の20〜25倍の値に維持する特
許請求の範囲第1項又は第2項に記載の方法。
[Scope of Claims] 1. Introducing a high velocity cohesive liquid jet from a nozzle through a gas layer into the liquid and bringing the liquid into contact with the gas, at a speed of 20 to 38 m/s and a Reynolds number of at least 400,000, A method for contacting a liquid with a gas, characterized in that a liquid jet is ejected from the nozzle and the free path length of the liquid jet is maintained at a value of at least 15 times the diameter of the liquid jet. 2. The method of claim 1, wherein the liquid jet is ejected from the nozzle at a speed of 24 to 28 m/sec. 3. A method according to claim 1 or 2, wherein the free path length of the liquid jet is maintained at a value between 20 and 25 times the diameter of the liquid jet.
JP57224113A 1981-12-22 1982-12-22 Contact of liquid and gas Granted JPS58150426A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HU3901/81 1981-12-22
HU813901A HU190785B (en) 1981-12-22 1981-12-22 Process for contacting liquids with gases

Publications (2)

Publication Number Publication Date
JPS58150426A JPS58150426A (en) 1983-09-07
JPS632210B2 true JPS632210B2 (en) 1988-01-18

Family

ID=10965981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224113A Granted JPS58150426A (en) 1981-12-22 1982-12-22 Contact of liquid and gas

Country Status (14)

Country Link
JP (1) JPS58150426A (en)
AT (1) AT381244B (en)
AU (1) AU555183B2 (en)
BE (1) BE895384A (en)
CA (1) CA1201873A (en)
CH (1) CH657281A5 (en)
DE (1) DE3247266A1 (en)
ES (1) ES518485A0 (en)
FR (1) FR2518419B1 (en)
GB (1) GB2111844B (en)
HU (1) HU190785B (en)
IT (1) IT1155435B (en)
NL (1) NL8204916A (en)
SE (1) SE444119B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU205724B (en) * 1986-11-28 1992-06-29 Istvan Kenyeres Method for incereasing the performance and dissolving degree of impact jet gas-imput
US5211508A (en) * 1992-02-20 1993-05-18 Kaiyo Kogyo Kabushiki Kaisha Total water circulation system for shallow water areas
BR9408156A (en) * 1993-11-26 1997-08-05 Hyperno Pty Ltd Method for chemical treatment of waste
JPH1170439A (en) * 1997-08-29 1999-03-16 Mitsubishi Heavy Ind Ltd Horizontal hobbing machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046564A (en) * 1973-07-30 1975-04-25
JPS5411877A (en) * 1977-06-30 1979-01-29 Agency Of Ind Science & Technol Gas-liquid contactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2128311A (en) * 1935-04-20 1938-08-30 Du Pont Method of carrying out chemical reactions
SE375704B (en) * 1973-09-12 1975-04-28 Volvo Flygmotor Ab

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046564A (en) * 1973-07-30 1975-04-25
JPS5411877A (en) * 1977-06-30 1979-01-29 Agency Of Ind Science & Technol Gas-liquid contactor

Also Published As

Publication number Publication date
FR2518419B1 (en) 1988-02-05
SE8207341L (en) 1983-06-23
IT8224898A1 (en) 1984-06-22
CH657281A5 (en) 1986-08-29
SE444119B (en) 1986-03-24
NL8204916A (en) 1983-07-18
GB2111844B (en) 1985-07-17
BE895384A (en) 1983-06-17
IT1155435B (en) 1987-01-28
DE3247266C2 (en) 1987-06-19
ATA459882A (en) 1986-02-15
CA1201873A (en) 1986-03-18
AT381244B (en) 1986-09-10
AU555183B2 (en) 1986-09-18
ES8401728A1 (en) 1984-01-01
SE8207341D0 (en) 1982-12-22
ES518485A0 (en) 1984-01-01
JPS58150426A (en) 1983-09-07
AU9181982A (en) 1983-06-30
HU190785B (en) 1986-11-28
GB2111844A (en) 1983-07-13
DE3247266A1 (en) 1983-07-14
FR2518419A1 (en) 1983-06-24
IT8224898A0 (en) 1982-12-23

Similar Documents

Publication Publication Date Title
US5302325A (en) In-line dispersion of gas in liquid
CN1302838C (en) Method for mixing fluids
US4931225A (en) Method and apparatus for dispersing a gas into a liquid
US4861352A (en) Method of separating a gas and/or particulate matter from a liquid
WO2005039746A1 (en) Air diffusing device
CN114225671B (en) Nitrogen oxide tail gas treatment process
JPS632210B2 (en)
EP3281690B1 (en) System and method for reacting or mixing liquid/gas
US4325923A (en) Contacting of plural phases
CA1332833C (en) Process for contacting gases with liquids
US20070126132A1 (en) Vena contracta
EP3470132A1 (en) A method and a device for oxidizing a solution for ammonia desulfurization
RU2124146C1 (en) Liquid-gas ejector
WO2021047048A1 (en) System and method for treating industrial sludge by micro-interface enhanced wet oxidation method
JP2006281180A (en) Air diffusion treatment device
Tamir et al. Spray-and bubble-type absorption of acetone from air into water in a two-impinging-jets absorber
Hikita et al. Gas Holdup in Bubble Columns (Effect of Liquid Properties)
HRP20220213B1 (en) A system for saturating liquids with gas and a method for saturating liquids with gas using this system
JP4520757B2 (en) Air diffuser
CN209835866U (en) Magnesium tail water recovery unit is used in concentrated nitric acid production
FR2371948A1 (en) Gas-liquid contacting process - by injecting the gas into a liquid stream entering the top of column to create a stable foam
CN219984323U (en) Efficient tail gas absorbing device
BAVARIAN et al. Effect of static liquid height on gas-liquid mass transfer in a draft-tube bubble column and three-phase fluidized bed
GB1596738A (en) Gas/liquid contacting
CN2231576Y (en) Injection-type reactor