JP4544017B2 - Air diffuser - Google Patents

Air diffuser Download PDF

Info

Publication number
JP4544017B2
JP4544017B2 JP2005128569A JP2005128569A JP4544017B2 JP 4544017 B2 JP4544017 B2 JP 4544017B2 JP 2005128569 A JP2005128569 A JP 2005128569A JP 2005128569 A JP2005128569 A JP 2005128569A JP 4544017 B2 JP4544017 B2 JP 4544017B2
Authority
JP
Japan
Prior art keywords
gas
liquid
passage
air
passage pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005128569A
Other languages
Japanese (ja)
Other versions
JP2006281180A (en
Inventor
久夫 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anemos Co Ltd
Original Assignee
Anemos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anemos Co Ltd filed Critical Anemos Co Ltd
Priority to JP2005128569A priority Critical patent/JP4544017B2/en
Publication of JP2006281180A publication Critical patent/JP2006281180A/en
Application granted granted Critical
Publication of JP4544017B2 publication Critical patent/JP4544017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Physical Water Treatments (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Treating Waste Gases (AREA)

Description

本発明は、産業排水、上下水および湖沼、河川、地下水等の水処理と浄化および気体中の異種物質の除去、回収や生物反応装置(バイオリアクター)などに利用される散気処理装置に関する。詳しくは、気体と液体とを混合、攪拌させて気液接触させる操作であり、空気を水中で曝気させて空気中の酸素を水中に溶解させたり、水中に溶存しているアンモニア、トリクロロエタン、塩化メチレン、塩素、トリハロメタン等の揮発性物質の放散および気体中の塩化水素、二酸化硫黄、粉麈などの異種物質を反応吸収、捕集による除去、回収、更に酵素反応および微生物反応などに利用される散気処理装置に関する。  The present invention relates to an aeration treatment apparatus used for water treatment and purification of industrial wastewater, water and sewage, lakes, rivers, groundwater, etc., removal and recovery of foreign substances in gas, and bioreactors (bioreactors). Specifically, it is an operation of mixing gas and liquid, stirring them and bringing them into gas-liquid contact. Aeration of air in water to dissolve oxygen in the air, ammonia dissolved in water, trichloroethane, chloride Emission of volatile substances such as methylene, chlorine, trihalomethane, and other substances such as hydrogen chloride, sulfur dioxide, and powder in the reaction are absorbed, removed by collection, recovered, and used for enzyme reactions and microbial reactions. The present invention relates to an air diffuser.

従来の散気処理装置は、大別すると、散気式(気泡式)、機械攪拌式(表面攪拌)である。特に、散気式による曝気処理装置110は、図16に示すように、曝気槽111の底部に散気板112、散気筒等を多数配置して、これらに送風機113および気送ライン114を介して加圧空気を供給して曝気処理を行っている。又、液体中に溶存しているアンモニア等の窒素化合物を放散して浄化・回収する場合は、図17に示すように、充填塔や棚段塔等が多く利用されている。充填塔方式による放散処理装置115の場合、充填塔116上部から液体が供給され、塔下部より気体が供給される。塔内に配置されている充填物117を向流で気液接触しながら、液体中のアンモニア(NH )、有機溶媒等の揮発性物質は気体側に放散されて、液体の浄化・回収処理が行われている。Conventional air diffusion treatment devices are roughly classified into an air diffusion type (bubble type) and a mechanical stirring type (surface stirring). In particular, as shown in FIG. 16, the aeration type aeration processing apparatus 110 has a large number of aeration plates 112, diffusion cylinders, and the like arranged at the bottom of the aeration tank 111, and these are connected via a blower 113 and an air supply line 114. Then, aeration processing is performed by supplying pressurized air. In addition, when a nitrogen compound such as ammonia dissolved in a liquid is diffused to be purified and recovered, a packed tower or a plate tower is often used as shown in FIG. In the case of the dispersal treatment apparatus 115 using a packed tower system, a liquid is supplied from the upper part of the packed tower 116 and a gas is supplied from the lower part of the tower. While the packing 117 arranged in the tower is in gas-liquid contact in countercurrent, volatile substances such as ammonia (NH 4 + ) and organic solvent in the liquid are diffused to the gas side to purify and recover the liquid. Processing is in progress.

又、粉麈と亜硫酸ガスを含む排ガスの処理装置の気液接触反応装置として、多数のガス噴出孔を有する筒状の排ガス分散管が使用されている。この排ガス分散管を利用した排ガス処理方法が特開平7−308536号、特開平9−865号に開示されているが、液体と多数のガス噴出孔から吹出す気泡との気液接触効率は低い。又、反応生成物である石膏の付着成長による閉塞の問題がある。  Moreover, a cylindrical exhaust gas dispersion pipe having a large number of gas ejection holes is used as a gas-liquid contact reaction device of a processing device for exhaust gas containing powder and sulfurous acid gas. An exhaust gas treatment method using this exhaust gas dispersion pipe is disclosed in Japanese Patent Application Laid-Open No. 7-308536 and Japanese Patent Application Laid-Open No. 9-865, but the gas-liquid contact efficiency between the liquid and the bubbles blown out from many gas injection holes is low. . Moreover, there is a problem of clogging due to adhesion growth of gypsum which is a reaction product.

更に、従来の静止型混合器を利用した散気処理装置(特開昭59−206096号、特開2001−269692号、特開2001−62269号、非特許文献1および2参照。)は、構造上の問題から酸素吸収(溶解)効率は低く、又、大口径(直径で500mm以上)の散気処理装置の製作は難しく、製作可能でも気液接触効率は低い。更に製作加工費も高価となる。
更に又、従来の静止型混合器の下方に配置されている空気供給用気送管の空気吹出孔の口径は10〜40mmの範囲である。この気送管の上面に1つ又は複数個の吹出孔を有している。
この吹出孔から供給される気泡径は空気吹出孔の口径と同一の為に、気液接触効率は低く、酸素吸収効率も低くなり、混合器内での気液接触時間すなわち滞留時間を長くする必要がある。
この結果、静止型混合器すなわち散気処理装置の全長は高くなり、設備費は高価となる。
又、通気抵抗の増加により、ブロワーなどの空気供給装置の電力費も高価になる。
更に、従来の散気板,散気筒,静止型混合器等からなる散気処理装置の構成材料は、プラスチック,ゴム等が多く利用されている。その為に、材質の劣化,老化等により散気処理装置の寿命は短期間である。又、新品との交換時には、多量の廃棄物が発生して、その廃棄物処理費用も高価となる。更に、交換工事の際は操業を停止する必要がある。このために、予備槽が必要となり、設備費が高価になる。
Further, the conventional diffuser processing apparatus using a static mixer (see Japanese Patent Laid-Open Nos. 59-206096, 2001-269692, 2001-62269, and Non-Patent Documents 1 and 2) has a structure. Oxygen absorption (dissolution) efficiency is low due to the above problems, and it is difficult to manufacture a diffuser with a large diameter (500 mm or more in diameter), and even if it can be manufactured, the gas-liquid contact efficiency is low. Furthermore, the manufacturing cost is also expensive.
Furthermore, the diameter of the air outlet hole of the air supply pipe arranged below the conventional static mixer is in the range of 10 to 40 mm. One or a plurality of blowout holes are provided on the upper surface of the air pipe.
Since the bubble diameter supplied from the air outlet is the same as the air outlet, the gas-liquid contact efficiency is low, the oxygen absorption efficiency is low, and the gas-liquid contact time in the mixer, that is, the residence time is lengthened. There is a need.
As a result, the total length of the static mixer, that is, the diffuser is high, and the equipment cost is high.
In addition, the increase in ventilation resistance increases the power cost of an air supply device such as a blower.
Furthermore, plastics, rubbers, and the like are often used as constituent materials of conventional diffuser treatment apparatuses including diffuser plates, diffuser cylinders, static mixers, and the like. For this reason, the life of the diffuser is short due to material deterioration, aging, and the like. In addition, when a new one is exchanged, a large amount of waste is generated, and the waste disposal cost becomes expensive. Furthermore, it is necessary to stop the operation during replacement work. For this reason, a spare tank is required, and the equipment cost becomes expensive.

特開平2−198694号公報    Japanese Patent Laid-Open No. 2-198694 特開昭44−8290号公報    JP-A-44-8290 特開昭53−36182号公報    JP-A-53-36182 特開平5−168882号公報    JP-A-5-168882 特開平7−284642号公報    Japanese Patent Laid-Open No. 7-284642 特開平7−308536号公報    JP-A-7-308536 特開平9−865号公報    JP-A-9-865 特開平10−80627号公報    Japanese Patent Laid-Open No. 10-80627 特開平10−85721号公報    Japanese Patent Laid-Open No. 10-85721 特開2001−62269号公報    JP 2001-62269 A 特開昭59−206096号公報    JP 59-206096 A 特開2001−26969号公報    JP 2001-26969 A S.J.チェン,他「スタティック・ミキシング・ハンドブック」総合化学研究所、1973年6月発行,P62〜82,P199〜217    S. J. et al. Chen, et al. "Static Mixing Handbook", Research Institute for Chemical Research, June 1973, P62-82, P199-217 松村 輝一郎,森島 泰,他 「静止型混合器−基礎と応用−」日刊工業新聞社、1981年9月30日発行,P1〜18,P81〜95    Teruichiro Matsumura, Yasushi Morishima, et al. "Static mixer-Basics and applications-" Nikkan Kogyo Shimbun, published September 30, 1981, P1-18, P81-95

従来の散気処理装置は、酸素の溶存および吸収効率が低く、散気板1台あたりの供給空気量は小さいので広大な面積を必要としている。又、曝気槽内の混合攪拌の為に、必要酸素量以上の空気を散気板等に加圧供給している。更に散気板を通過する空気抵抗は大きい。その為に、多大の電力を消費している。又、従来の充填塔、棚段塔等の放散処理装置は、充填物や棚段に液体中のカルシウム化合物や微生物等が付着成長して目詰まりを起こし、定期的な保守管理を必要としている。更に、従来の静止型混合器を利用した散気処理装置は酸素吸収効率が低く、大型化が困難であった。そこで、本発明の課題は、気液接触効率の向上と曝気、放散および反応処理を極めて効果的に省エネルギー、省スペース、低コスト、メンテナンスフリーで排水等を浄化し、又気体中の異種物質の吸収除去又は放散除去および放散回収等に利用される散気処理装置を提供することである。更に、高効率の酵素反応および微生物反応に利用できる生物反応装置(バイオリアクター)を提供することである。  The conventional air diffuser has a low oxygen dissolution and absorption efficiency and requires a large area because the amount of air supplied per air diffuser is small. In addition, for the purpose of mixing and stirring in the aeration tank, air exceeding the required oxygen amount is pressurized and supplied to a diffuser plate or the like. Furthermore, the air resistance passing through the diffuser plate is large. For this reason, a large amount of power is consumed. In addition, conventional diffusion treatment apparatuses such as packed towers and tray towers cause clogging due to the growth of calcium compounds and microorganisms in the liquid on the packings and trays and require regular maintenance management. . Furthermore, the conventional air diffuser using a static mixer has a low oxygen absorption efficiency and is difficult to increase in size. Therefore, the object of the present invention is to improve the efficiency of gas-liquid contact and aeration, release and reaction treatment, effectively purify wastewater etc. with energy saving, space saving, low cost, maintenance-free, An object of the present invention is to provide an air diffusion treatment device used for absorption removal or emission removal and emission recovery. It is another object of the present invention to provide a bioreactor that can be used for highly efficient enzyme reactions and microbial reactions.

上記の課題を解決するための本発明の第1の散気処理装置は、長手方向に実質的に垂直に配置された静止型混合器を内設した流体が通流する筒状の通路管と前記通路管の下端側に気体を前記通路管内に気送ラインを介して噴出供給する筒状の気体噴出部を配置し、前記気体噴出部に気体噴出ノズルを配設し、前記気送管の気体噴出部に気体を供給し、前記気体のエアリフト効果により前記通路管の液体導入部から液体は前記通路管内に無動力で導入されて、前記気体および前記液体の両者は前記通路管内を並流で上昇し、両者は前期通路管の内部で気液接触し、前記通路管の上端側から液体中に排出される散気処理装置。これらの散気処理装置は、混合攪拌動力を必要としない流体の流動エネルギーを利用して前記流体の混合攪拌を行なう静止型混合器を配置し、その下方に気体噴出部を配置し、上昇するその気体によるエアリフト効果により前記液体は気体噴出部の下方から導入される。前記液体および前記気体は通路管の下端側から上端側に並流で通流して気液接触混合し、曝気,放散および反応処理が行なわれる。なお、前記流体は気体および液体から構成される2成分系、あるいは固体を含む3成分系から構成されている。  In order to solve the above problems, a first air diffusion treatment device of the present invention comprises a cylindrical passage tube through which a fluid flows, which is provided with a static mixer disposed substantially perpendicular to the longitudinal direction. A cylindrical gas ejection portion that supplies gas to the lower end side of the passage pipe through the air feeding line is disposed in the passage pipe, and a gas ejection nozzle is disposed in the gas ejection section. Gas is supplied to the gas ejection part, and liquid is introduced into the passage pipe from the liquid introduction part of the passage pipe without power by the air lift effect of the gas, and both the gas and the liquid flow in the passage pipe in parallel. The gas diffuser is in contact with the gas and liquid inside the passage pipe in the previous period, and is discharged into the liquid from the upper end side of the passage pipe. These aeration processing devices are arranged by disposing a static mixer that performs mixing and stirring of the fluid using flow energy of fluid that does not require mixing and stirring power, and by disposing a gas ejection section below the mixer. The liquid is introduced from below the gas ejection portion by the air lift effect of the gas. The liquid and the gas flow in a parallel flow from the lower end side to the upper end side of the passage tube and are gas-liquid contact mixed to perform aeration, dissipation, and reaction processing. The fluid is composed of a two-component system composed of a gas and a liquid, or a three-component system containing a solid.

又、前記の課題を解決するための本発明の第2の散気処理装置は、長手方向を実質的に垂直にして配置された静止型混合器を内設した流体が通流する筒状の通路管と前記通路管の下端側に気体を前記通路管内に供給する気体噴出部を配置し、前記気体噴出部に静止型混合器を配設し、前記気体噴出部に気体を供給し、上昇するその気体によるエアリフト効果により、前記通路管の液体導入部から液体を前記通路管内に導入される。前記気体および前記液体の両者は前記通路管内を並流で上昇し、両者は前記通路管の内部で気液接触混合し、前記通路管の上端側から液体中に排出される散気処理装置。  In addition, a second air diffusion treatment device of the present invention for solving the above-described problems is a cylindrical shape through which a fluid flows, which is provided with a static mixer arranged with its longitudinal direction substantially vertical. A gas ejection part for supplying gas into the passage pipe is disposed on the lower end side of the passage pipe and the passage pipe, a static mixer is disposed in the gas ejection part, gas is supplied to the gas ejection part, and the gas is ejected. The liquid is introduced into the passage pipe from the liquid introduction portion of the passage pipe by the air lift effect by the gas. Both the gas and the liquid rise in a parallel flow in the passage tube, both of which are in gas-liquid contact and mixing inside the passage tube, and are discharged into the liquid from the upper end side of the passage tube.

更に、前記通路管内および前記気体噴出部に配置される前記静止型混合器は、右捻り又は左捻りの螺旋状の少なくとも2個以上の羽根体を内設して、複数個の流体通路を形成し、流体通路同士は羽根体の長手方向の開口部を介して連通し、前記羽根体は多孔板で形成されている。又、前記静止型混合器は少なくとも1種類以上の右捻り又は左捻りの前記羽根体を配置して形成されている。  Further, the static mixer disposed in the passage tube and in the gas jetting portion includes at least two or more spirally wound right-handed or left-handed to form a plurality of fluid passages. The fluid passages communicate with each other through an opening in the longitudinal direction of the blade body, and the blade body is formed of a perforated plate. The static mixer is formed by arranging at least one type of right-handed or left-handed blades.

本発明の散気処理装置によれば、低い圧力損失で気液接触効率の高効率化による酸素吸収効率の向上により、消費電力が大幅に削減できる。又、気液接触効率の向上により、曝気,放散および反応処理時間は短縮される。更に又、散気処理装置は単位面積あたりの気体供給速度の向上により、水平方向の設置面積が小さくなって、省スペースとなり、建築土木費、設備費も安価になる。又、空気供給用配管等の工事費も低減される。更に又、目詰まりによる運転停止の発生もないので、保守管理費や生産管理費も安価になる。又、流体の淀み部(死領域)がないので大型化が容易になる。更に又、本発明による散気処理装置の構成材料を、例えば、鉄,ステンレス,チタン,ハステロイ等の金属を利用することで、半永久的に使用可能となり、処理コストを大幅に低減でき、廃棄物処理費用を削減することが可能となる。  According to the diffuser of the present invention, power consumption can be greatly reduced by improving oxygen absorption efficiency by increasing gas-liquid contact efficiency with low pressure loss. Moreover, aeration, dissipation, and reaction processing time are shortened by improving the gas-liquid contact efficiency. Furthermore, the diffuser processing apparatus is improved in the gas supply speed per unit area, the installation area in the horizontal direction is reduced, the space is saved, and the civil engineering and equipment costs are reduced. In addition, construction costs such as air supply piping are reduced. Furthermore, since there is no outage due to clogging, maintenance management costs and production management costs are also reduced. Further, since there is no fluid stagnation part (dead region), it is easy to increase the size. Furthermore, the constituent material of the diffuser according to the present invention can be used semi-permanently by using, for example, a metal such as iron, stainless steel, titanium, hastelloy, etc., and the processing cost can be greatly reduced, and the waste Processing costs can be reduced.

以下、本発明の実施例について、添付の図面を参照して具体的に説明する。
図1は本発明に係る第1実施例を示す模式図である。図2は本発明に係る第2実施例を示す模式図である。図3は本発明に係る第3実施例を示す模式図である。図4は本発明の第1実施例から第3実施例で使用される静止型混合器2,9,13および17の例を示すもので、(a)図は右捻り螺旋状羽根体を有する通路管の概略斜視図。(b)図は、左捻り螺旋状羽根体を有する通路管の概略斜視図である。図5は本発明の第1実施例から第3実施例で使用される静止型混合器2,9,13および17の1例を示す図である。図6は本発明の第1の実施例(図1参照。)に係る散気処理装置の概略図である。図7は本発明の第1の実施例(図1参照。)で使用される気体噴出ノズルの1例を示す斜視図である。図8は本発明の第2の実施例(図2参照。)に係る散気処理装置の概略図である。図9は本発明の第2の実施例(図2参照。)に係る散気処理装置の部分概略底面図である。図10は本発明の第2の実施例(図2参照。)に係る気体噴出部の部分概略斜視図である。図11は本発明の第3の実施例(図3参照。)に係る散気処理装置の概略断面図である。図12は本発明に係る散気処理装置を活性汚泥法の曝気処理に適用した場合の例を示す図である。図13は本発明に係る散気処理装置を排水の放散処理に適用した場合の例を示す図である。図14は本発明に係る散気処理装置を排ガス処理装置に適用した場合の例を示す図である。図15は本発明に係る散気処理装置を酵素又は微生物を利用した生物反応装置に適用した場合の例を示す図である。図16は従来の散気板方式による曝気処理装置を示す模式図である。図17は従来の充填物方式による放散処理装置を示す模式図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic view showing a first embodiment according to the present invention. FIG. 2 is a schematic view showing a second embodiment according to the present invention. FIG. 3 is a schematic view showing a third embodiment according to the present invention. FIG. 4 shows an example of the static mixers 2, 9, 13 and 17 used in the first to third embodiments of the present invention. (A) The figure has a right-handed spiral blade. The schematic perspective view of a passage pipe. (B) The figure is a schematic perspective view of a passage tube having a left twisted spiral blade. FIG. 5 is a diagram showing an example of the static mixers 2, 9, 13, and 17 used in the first to third embodiments of the present invention. FIG. 6 is a schematic view of the air diffusion processing apparatus according to the first embodiment (see FIG. 1) of the present invention. FIG. 7 is a perspective view showing an example of a gas ejection nozzle used in the first embodiment (see FIG. 1) of the present invention. FIG. 8 is a schematic view of an air diffuser according to a second embodiment (see FIG. 2) of the present invention. FIG. 9 is a partial schematic bottom view of the air diffuser according to the second embodiment (see FIG. 2) of the present invention. FIG. 10 is a partial schematic perspective view of a gas ejection portion according to a second embodiment (see FIG. 2) of the present invention. FIG. 11 is a schematic cross-sectional view of an aeration treatment apparatus according to a third embodiment (see FIG. 3) of the present invention. FIG. 12 is a view showing an example in the case where the aeration treatment apparatus according to the present invention is applied to the aeration process of the activated sludge method. FIG. 13 is a diagram showing an example in the case where the aeration treatment apparatus according to the present invention is applied to drainage diffusion treatment. FIG. 14 is a view showing an example in the case where the aeration treatment apparatus according to the present invention is applied to an exhaust gas treatment apparatus. FIG. 15 is a view showing an example in which the aeration treatment apparatus according to the present invention is applied to a biological reaction apparatus using an enzyme or a microorganism. FIG. 16 is a schematic view showing an aeration processing apparatus using a conventional diffuser plate method. FIG. 17 is a schematic view showing a conventional diffusion treatment apparatus using a packing method.

図1は本発明に係る第1実施例を示す模式図である。長手方向を実質的に垂直にして配置された筒状の流体が通流する通路管1内において、右捻り又は左捻り羽根体で形成されている静止型混合器2が内設され、その下方の空間部3内に気送ライン4を介して気体が供給される気体噴出ノズルを配設した気体噴出部5を配置し、更に通路管1の下端側に液体(FL)を供給する液体導入部6が配置されている。このように構成された散気処理装置7においては、気体(FG)は通路管1内の静止型混合器2の下端部に空間部3を介して気体噴出部5から上方向に噴出、供給される。その気体(FG)の浮力により発生するエアリフト効果により通路管1の下端側の液体導入部6から液体(FL)は無動力で通路管1内の空間部3内に導入される。その気体(FG)と同伴する液体(FL)とは、並流で上昇しながら静止型混合器2内を通流して、微細化されながら気液接触して液体中に排出される。これにより、液体と気体とが十分に気液接触して、曝気,放散又は化学反応が進行する。なお、気体(FG)の供給圧力は水深に100mmHO程度を足した圧力でよい。
なお、気体噴出部5の位置は静止型混合器2の下端から静止型混合器2の直径の0.2倍から3倍の範囲の距離に配置することが好ましい。又、液体導入部6は通路管1の下部の管壁に開口部を設けて液体を通流させて使用してもよい。これにより、液体導入部6の開口面積が増加して、液体の循環量が向上する。更に、液体導入部6の縦方向の断面形状を末広がり(例えば扇子状。)にして使用してもよい。液体導入部6の開口面積の拡大により、液体(FL)の導入量は向上する。
FIG. 1 is a schematic view showing a first embodiment according to the present invention. A stationary mixer 2 formed of right-handed or left-handed blades is provided in a passage pipe 1 through which a cylindrical fluid arranged with the longitudinal direction substantially vertical flows, and below that A gas injection part 5 in which a gas injection nozzle to which a gas is supplied via an air feed line 4 is disposed in the space part 3 of the gas, and a liquid introduction for supplying liquid (FL) to the lower end side of the passage pipe 1 is further provided. Part 6 is arranged. In the diffuser 7 thus configured, gas (FG) is jetted and supplied upward from the gas jetting part 5 to the lower end part of the static mixer 2 in the passage pipe 1 via the space part 3. Is done. Due to the air lift effect generated by the buoyancy of the gas (FG), the liquid (FL) is introduced into the space 3 in the passage tube 1 without power from the liquid introduction portion 6 on the lower end side of the passage tube 1. The gas (FG) and the accompanying liquid (FL) flow through the static mixer 2 while rising in parallel flow, and are discharged into the liquid in a gas-liquid contact while being refined. As a result, the liquid and the gas are sufficiently in gas-liquid contact, and aeration, emission, or chemical reaction proceeds. The supply pressure of the gas (FG) may be a pressure obtained by adding about 100 mmH 2 O to the water depth.
In addition, it is preferable to arrange | position the position of the gas ejection part 5 in the range of 0.2 times-3 times the diameter of the static mixer 2 from the lower end of the static mixer 2. Further, the liquid introducing portion 6 may be used by providing an opening in the tube wall below the passage tube 1 and allowing the liquid to flow therethrough. Thereby, the opening area of the liquid introducing | transducing part 6 increases, and the circulation amount of a liquid improves. Further, the liquid introduction section 6 may be used with the longitudinal cross-sectional shape widened (for example, a fan shape). By increasing the opening area of the liquid introduction part 6, the amount of liquid (FL) introduced is improved.

本実施例においては、静止型混合器2の下方から気送ライン4を介して、気体噴出部5の気体噴出ノズルから気体(FG)を上方向に噴出、供給することで、上昇する気体(FG)の浮力により発生するエアリフト効果により通路管1の液体導入部6から供給される液体(FL)を巻き込みながら上昇する気体(FG)と液体(FL)とを並流で静止型混合器2内を通流させている。この結果、気体(FG)と液体(FL)は、混合,攪拌機能により連続的に気液接触して曝気,放散又は化学反応処理等が行なわれる。この気液混合、攪拌操作は無動力かつ高効率で行なわれるため、省エネルギーとなる。  In the present embodiment, the gas (FG) that rises by jetting and supplying gas (FG) upward from the gas jet nozzle of the gas jet part 5 through the air feed line 4 from below the stationary mixer 2 ( The gas (FG) and the liquid (FL) that rise while entraining the liquid (FL) supplied from the liquid introduction part 6 of the passage tube 1 by the air lift effect generated by the buoyancy of the FG) and the liquid (FL) are cocurrently flown in the static mixer 2. The inside is flowing. As a result, the gas (FG) and the liquid (FL) are continuously in gas-liquid contact by a mixing and stirring function and subjected to aeration, release, chemical reaction processing, or the like. This gas-liquid mixing and stirring operation is performed with no power and high efficiency, thus saving energy.

図2は、本発明の第2実施例を示す模式図である。長手方向を実質的に垂直にして配置された流体が通流する筒状の通路管8内において、第1静止型混合器9が内設され、その下方の空間部10内に気送ライン11を介して気体(FG)を供給する気体噴出部12が配置されている。気体噴出部12には第2静止型混合器13が内設されている。更に、通路管8の下端側に液体(FL)を供給する液体導入部14が配置されている。このように構成された散気処理装置15においては、気体(FG)は通路管8内の第1静止型混合器9の下端部に空間部10を介して気体噴出部12内に配設されている第2静止型混合器13から微細化されて噴出、供給される。その噴出した気体(FG)の浮力により発生するエアリフト効果により液体(FL)は無動力で通路管8の下端側の液体導入部14から空間部10内に導入される。微細化された気体(FG)と同伴する液体(FL)とは並流で上昇しながら第1静止型混合器9内を通流して連続的に気液接触しながら液体中に排出される。これにより、液体と気体とが十分に気液接触して曝気,放散および化学反応処理等が進行する。なお、第1静止型混合器9および第2静止型混合器13は本実施例に限定されることなく、羽根体の回転角度、枚数および開口率等は種々の静止型混合器が適宜選択使用される。又、気体噴出部12に供給する気体(FG)の供給圧力は水深に300〜11000Pa程度を足した圧力でよい。更に、気送ライン11の配管位置は通路管8の側壁を貫通して空間部10内に配置して気体(FG)を供給してもよい。更に又、液体導入部14の縦方向の断面形状を末広がり(例えば扇子状。)にして使用してもよい。液体導入部14の開口面積の拡大により、液体(FL)の導入量は向上して、処理時間は短縮される。  FIG. 2 is a schematic view showing a second embodiment of the present invention. A first static mixer 9 is provided in a cylindrical passage tube 8 through which a fluid arranged with the longitudinal direction substantially vertical flows, and an air feed line 11 is provided in a space 10 below the first static mixer 9. The gas ejection part 12 which supplies gas (FG) via is arrange | positioned. A second static mixer 13 is provided in the gas ejection part 12. Further, a liquid introduction part 14 for supplying liquid (FL) is disposed on the lower end side of the passage pipe 8. In the air diffusion processing device 15 configured as described above, the gas (FG) is disposed in the gas ejection portion 12 through the space portion 10 at the lower end portion of the first static mixer 9 in the passage tube 8. The second static mixer 13 is sprayed and supplied after being refined. The liquid (FL) is introduced into the space 10 from the liquid introduction part 14 on the lower end side of the passage pipe 8 without power by the air lift effect generated by the buoyancy of the jetted gas (FG). The atomized gas (FG) and the accompanying liquid (FL) flow in the first static mixer 9 while rising in parallel flow, and are discharged into the liquid while continuously contacting with gas and liquid. As a result, the liquid and the gas are sufficiently in gas-liquid contact, and aeration, dissipation, chemical reaction processing, and the like proceed. The first static mixer 9 and the second static mixer 13 are not limited to this embodiment, and various stationary mixers can be selected and used as appropriate for the rotation angle, the number of blades, the aperture ratio, etc. Is done. The supply pressure of the gas (FG) supplied to the gas ejection part 12 may be a pressure obtained by adding about 300 to 11000 Pa to the water depth. Furthermore, the piping position of the air feed line 11 may pass through the side wall of the passage pipe 8 and be disposed in the space portion 10 to supply gas (FG). Furthermore, the longitudinal cross-sectional shape of the liquid introducing portion 14 may be widened (for example, a fan shape). By increasing the opening area of the liquid introducing portion 14, the amount of liquid (FL) introduced is improved and the processing time is shortened.

図3は、本発明に係る第3実施例を示す模式図である。流体が通流する筒状の通路管16内に静止型混合器17が内設され、その下方の空間部18内には気送ライン19を介して気体(FG)を供給する気体噴出部20が複数個配置されている。気送ライン19は静止型混合器17の中心部の長手方向の開口部を介して上方から下方に配管されている。なお、気送ライン19は通路管16の下端側から配管してもよい。
このように構成された散気処理装置21においては、静止型混合器17の下方から気送ライン19を介して気体噴出部20から気体(FG)を上方向に噴出、供給することで、前記同様に、通路管16の下端側の液体導入部22より導入された液体(FL)は上昇する気体(FG)と共に静止型混合器17内を並流で通流して連続的に気液接触が進行する。
なお、気体噴出部20に、本発明の第2実施例同様に、静止型混合器17を配設して利用することで気液接触効率はより向上する。気体噴出部20の個数は目的に応じて適宜加減できる。
FIG. 3 is a schematic view showing a third embodiment according to the present invention. A static mixer 17 is provided in a cylindrical passage pipe 16 through which a fluid flows, and a gas ejection part 20 for supplying gas (FG) through an air feed line 19 in a space 18 below the static mixer 17. Are arranged. The air feed line 19 is piped from above to below through a longitudinal opening in the center of the static mixer 17. The air feeding line 19 may be piped from the lower end side of the passage pipe 16.
In the air diffusion treatment device 21 configured as described above, the gas (FG) is ejected upward from the gas ejection unit 20 via the air feeding line 19 from below the stationary mixer 17, thereby supplying the gas Similarly, the liquid (FL) introduced from the liquid introduction part 22 on the lower end side of the passage pipe 16 flows in the static mixer 17 together with the rising gas (FG) and continuously contacts the gas-liquid. proceed.
Note that the gas-liquid contact efficiency is further improved by disposing and using the static mixer 17 in the gas ejection portion 20 as in the second embodiment of the present invention. The number of gas ejection portions 20 can be appropriately adjusted according to the purpose.

又、気体噴出部20を複数個設けることにより、大口径(直径500mm以上)の通路管16の利用が可能となり、1基あたりの気体供給能力が大幅に向上して、処理時間および反応時間が短縮される。更に、気送ラインの配管数量も低減して配管工事費および保守管理費も安価となる。更に又、設備の大型化が容易となる。  Further, by providing a plurality of gas ejection portions 20, it is possible to use the passage pipe 16 having a large diameter (diameter of 500 mm or more), and the gas supply capacity per unit is greatly improved, and the processing time and reaction time are increased. Shortened. In addition, the piping quantity of the pneumatic line is reduced, and the piping work cost and the maintenance management cost are also reduced. Furthermore, the size of the facility can be easily increased.

図4は、本発明の第1実施例から第3実施例で使用される静止型混合器2,9,13および17の例を示すもので、(a)図は右捻り(時計方向)螺旋状の羽根体を有する通路管の概略斜視図、(b)図は、左捻り(反時計方向)羽根体を有する通路管の概略斜視図である。(a)図においては、筒状の通路管23内に配置されている静止型混合器24内には3枚の右捻り羽根体25が内設されている。その羽根体25は多数の穿孔された孔26を有する多孔板で形成されている。又、3つの流体通路27を有し、その流体通路27同士は開口部28を介して羽根体25の長手方向の全長に亘り連通している。
(b)図においては、同様に、筒状の通路管29内に配置されている静止型混合器30内には3枚の左捻り羽根体31が内設されている。その羽根体31は多数の穿孔された孔32を有する多孔板で形成されている。又3つの流体通路33を有し、その流体通路33同士は開口部34を介して羽根体31の長手方向の全長に亘り連通している。静止型混合器24,30を配置した(a)図又は(b)図のように構成された通路管23,29においては、通路管23,29の下方から並流で上昇する気体(FG)と液体(FL)とは右捻り又は左捻りの螺旋状の羽根体を通流する間に右又は左方向の回転および分割、合流、反転並びに剪断応力作用を連続的に繰り返しながら、両者は気液接触されて、液中に排出される。
FIG. 4 shows an example of the static mixers 2, 9, 13 and 17 used in the first to third embodiments of the present invention. FIG. 4 (a) shows a right-handed (clockwise) spiral. FIG. 4B is a schematic perspective view of a passage tube having a left-hand twisted (counterclockwise) blade body. (A) In the figure, three right-handed blade bodies 25 are provided in a static mixer 24 arranged in a cylindrical passage tube 23. The blade body 25 is formed of a perforated plate having a large number of perforated holes 26. Further, the fluid passage 27 has three fluid passages 27, and the fluid passages 27 communicate with each other over the entire length of the blade body 25 through the opening 28.
(B) In the figure, similarly, three left twist blade bodies 31 are provided in a static mixer 30 disposed in a cylindrical passage tube 29. The blade body 31 is formed of a perforated plate having a large number of perforated holes 32. Three fluid passages 33 are provided, and the fluid passages 33 communicate with each other over the entire length of the blade body 31 through the opening 34. In the passage pipes 23 and 29 having the stationary mixers 24 and 30 arranged as shown in (a) or (b), the gas (FG) rising in parallel flow from below the passage pipes 23 and 29. And liquid (FL), while flowing through right or left-handed spiral blades, rotate and split in the right or left direction, merging, reversing and shearing stress action continuously, The liquid is contacted and discharged into the liquid.

本発明の散気処理装置内に内設される静止型混合器の混合撹拌性能を左右する通路管29内に内設される羽根体31の表面積(m)の総和は、通路管29の単位容積(m)当り、10〜150m/mの範囲が好ましい。より好ましくは25〜80m/mの範囲である。なお、羽根体25、31に穿孔された孔(26,32)径は5〜30mmの範囲が好ましく、又、孔(26,32)の開口率は5〜80%の範囲が好ましい。更に,通路管(23,29)内の気体の上昇速度は0.1〜10m/sの範囲が好ましく、より好ましくは0.5〜5m/sの範囲である。更に又、羽根体25,31の捻り角度(回転角度)は90°,180°,270°が好ましいが、15°,30°,45°,60°などでも使用できる。大口径(直径500mm以上)の通路管を製作する場合は、15°,30°などの小さな捻り角度の羽根体(25,31)を製作して、例えば3枚の羽根体を接続して30°+30°+30°=90°のように配置して使用してもよい。こうすることで、製作加工も容易になり、製作加工費も安価となる。なお、捻り角度の異なる羽根体の組合せは用途に応じて適宜選択使用できる。The sum total of the surface area (m 2 ) of the blade body 31 installed in the passage tube 29 that influences the mixing and stirring performance of the static mixer installed in the air diffusion treatment device of the present invention is as follows. A range of 10 to 150 m 2 / m 3 is preferable per unit volume (m 3 ). More preferably, it is the range of 25-80 m < 2 > / m < 3 >. The diameter of the holes (26, 32) drilled in the blade bodies 25, 31 is preferably in the range of 5 to 30 mm, and the aperture ratio of the holes (26, 32) is preferably in the range of 5 to 80%. Furthermore, the rising speed of the gas in the passage pipe (23, 29) is preferably in the range of 0.1 to 10 m / s, more preferably in the range of 0.5 to 5 m / s. Furthermore, the twisting angles (rotation angles) of the blade bodies 25 and 31 are preferably 90 °, 180 °, and 270 °, but can also be used at 15 °, 30 °, 45 °, 60 °, and the like. When manufacturing a passage tube having a large diameter (diameter 500 mm or more), a blade body (25, 31) having a small twist angle such as 15 ° or 30 ° is manufactured, and for example, three blade bodies are connected to each other. You may arrange | position and use so that (degree) +30 degree + 30 degree = 90 degree. By doing so, the manufacturing process becomes easy, and the manufacturing process cost is also reduced. A combination of blades having different twist angles can be appropriately selected and used depending on the application.

図5は、本発明の第1から第3実施例で使用される静止型混合器2,9,13および17の他の例を示す図である。
図5においては、筒状の通路管35内には複数個の流体通路を有する螺旋状の右捻りおよび左捻りの羽根体36,37が筒状の空間部38を介して多段に内設されている。又、左捻り羽根体37の下方には筒状の空間部39が形成されている。なお、右捻りおよび左捻り羽根体36、37の通路管35内での配置は、この図5に限定されることなく、羽根体36,37を多段に配置する組合せは、用途に応じて、例えば、右+左+右、右+左+右+左など種々利用可能である。このように構成された筒状の通路管35内においては、通路管35の下方から空間部39を介して並流で上昇する気体(FG)と液体(FL)とは、左捻り羽根体37,空間部38、右捻り羽根体36を通流する間に、両者は左方向、右方向の回転および分割、合流、反転、並びに剪断応力作用を連続的に繰り返しながら気液接触されて、液中に排出される。
FIG. 5 is a diagram showing another example of the static mixers 2, 9, 13 and 17 used in the first to third embodiments of the present invention.
In FIG. 5, spiral right-handed and left-handed blades 36 and 37 having a plurality of fluid passages are provided in a cylindrical passage pipe 35 in multiple stages through a cylindrical space 38. ing. A cylindrical space 39 is formed below the left twisted blade body 37. The arrangement of the right and left twisted blade bodies 36 and 37 in the passage pipe 35 is not limited to this FIG. 5, and the combination of arranging the blade bodies 36 and 37 in multiple stages depends on the application. For example, various uses such as right + left + right and right + left + right + left are possible. In the cylindrical passage pipe 35 configured as described above, the gas (FG) and the liquid (FL) rising in parallel from the lower side of the passage pipe 35 through the space portion 39 are the left twisted blade body 37. , While flowing through the space 38 and the right twisted blade body 36, they are in gas-liquid contact while continuously repeating the rotation and division in the left direction and the right direction, merging, reversing, and shear stress action, Discharged inside.

図6は、本発明の第1の実施例(図1参照。)に係る散気処理装置の概略図である。散気処理装置40は静止型混合器41を内設し、その下方に空間部42を有する筒状の通路管43と気体噴出部44を有して気体を供給する気送管45とを接続させる2枚の支持板46で構成されている。気送管45は気体を垂直方向に噴出させる気体噴出ノズル48を配設した気体噴出部44を有し、又、気体の入口側の反対側は閉止されている。このように構成された散気処理装置40は、液中に配置され、気体(FG)はブロワー又はコンプレッサーなどにより気送管45を介して気体噴出部44から加圧気体(FG)が通路管43の空間部42内に供給される。供給された気体(FG)の浮力によるエアリフト効果により通路管43の下端部の液体導入部47から液体(FG)を巻き込み、同伴させながら並流で静止型混合器41内を通流させて気液接触を行ない、液体中に排出させて曝気、放散および反応処理が進行する。気体噴出部44に気体噴出ノズル48を使用することで、気体(FG)は効率よく液体(FG)中に分散されて、気液接触効率は向上する。この気体噴出ノズル48は例えば、円錐状および多重膜状で気体を噴出できる構造を有する図7に示す形状の気体噴出ノズル48の使用が好ましい。なお、加圧気体(FG)の気体噴出部44への供給圧力は水深に気送管45の圧力損失を足した圧力でよい。例えば、水深が5mであれば供給圧力は50000Pa程度でよい。  FIG. 6 is a schematic view of the air diffusion processing apparatus according to the first embodiment (see FIG. 1) of the present invention. The air diffuser 40 has a stationary mixer 41 provided therein, and a cylindrical passage pipe 43 having a space 42 and a gas supply section 45 having a gas ejection section 44 are connected to the lower part of the static mixer 41. It is comprised by the two support plates 46 to be made. The air feed tube 45 has a gas ejection part 44 provided with a gas ejection nozzle 48 for ejecting gas in the vertical direction, and the opposite side of the gas inlet side is closed. The diffuser 40 thus configured is disposed in the liquid, and the gas (FG) is sent from the gas jetting part 44 through the air feed pipe 45 by a blower or a compressor, and the pressurized gas (FG) is passed through the passage pipe. 43 is supplied into the space 42. The liquid (FG) is entrained from the liquid introduction part 47 at the lower end of the passage tube 43 by the air lift effect due to the buoyancy of the supplied gas (FG), and is allowed to flow through the stationary mixer 41 in parallel while being entrained. Liquid contact is performed and discharged into the liquid, and aeration, release, and reaction process proceed. By using the gas ejection nozzle 48 in the gas ejection part 44, the gas (FG) is efficiently dispersed in the liquid (FG), and the gas-liquid contact efficiency is improved. The gas ejection nozzle 48 is preferably, for example, a gas ejection nozzle 48 having the shape shown in FIG. The supply pressure of the pressurized gas (FG) to the gas ejection part 44 may be a pressure obtained by adding the pressure loss of the air pipe 45 to the water depth. For example, if the water depth is 5 m, the supply pressure may be about 50000 Pa.

図8は、本発明の第2の実施例(図2参照。)に係る散気処理装置の概略図である。
散気処理装置49は、図6に示す第1実施例と同様に、第1静止型混合器51を内設し、その下方に空間部52および液体導入部53とを有する筒状の通路管50と、第1静止型混合器51および気体噴出部54を有する筒状の気送管55と、この通路管50と気送管55とを支持する2枚の支持板56から構成されている。気体噴出部54には複数の右捻り又は左捻りの螺旋状の羽根体で形成された第2静止型混合器57が配設されている。気体(FG)と液体(FL)との気液接触作用は、前記図6同様であるので省略するが、気送管55の気体噴出部54に第2静止型混合器57を配設したことで、噴出される気体(FG)は第2静止型混合器57の混合・撹拌機能による乱流の発生により微細化されて空間部52内を液体(FL)と並流で上昇する。気体(FG)と液体(FL)とは第1静止型混合器51内を通流しながら、更に微細化されて、高効率で気液接触が行なわれて、液中に排出され、曝気、放散および反応処理が進行する。なお、第1静止型混合器51および第2静止型混合器57は、本実施例に限定されることなく、前記同様に種々の構成の静止型混合器が適宜選択可能である。
FIG. 8 is a schematic view of an air diffusion treatment device according to a second embodiment (see FIG. 2) of the present invention.
As in the first embodiment shown in FIG. 6, the air diffuser 49 is provided with a first static mixer 51, and a cylindrical passage tube having a space 52 and a liquid introduction portion 53 below the first static mixer 51. 50, a cylindrical air feed pipe 55 having a first static mixer 51 and a gas ejection portion 54, and two support plates 56 that support the passage pipe 50 and the air feed pipe 55. . The gas ejection portion 54 is provided with a second stationary mixer 57 formed of a plurality of right-handed or left-handed spiral blades. The gas-liquid contact action between the gas (FG) and the liquid (FL) is the same as in FIG. 6 and will not be described. However, the second static mixer 57 is disposed in the gas ejection portion 54 of the air feeding tube 55. Thus, the jetted gas (FG) is refined by the generation of turbulence by the mixing / stirring function of the second static mixer 57 and rises in the space 52 in parallel with the liquid (FL). The gas (FG) and the liquid (FL) are further refined while flowing through the first static mixer 51, and the gas-liquid contact is performed with high efficiency, discharged into the liquid, aerated, and diffused. And the reaction process proceeds. The first static mixer 51 and the second static mixer 57 are not limited to the present embodiment, and various types of static mixers can be appropriately selected as described above.

図9は、本発明の第2の実施例(図2参照。)に係る散気処理装置の部分概略底面図である。
散気処理装置58の底面は筒状の通路管59内に内設された静止型混合器9を形成している3枚の右捻り羽根体60と筒状の気送管61で構成されている。羽根体60は厚み方向に穿孔された多数の孔62を有する多孔板で形成され、又、羽根体60の長手方向の全長に亘って開口部63を有している。
FIG. 9 is a partial schematic bottom view of the air diffusion treatment device according to the second embodiment (see FIG. 2) of the present invention.
The bottom surface of the air diffuser 58 is composed of three right-handed blade bodies 60 and a cylindrical air feed pipe 61 forming a static mixer 9 installed in a cylindrical passage pipe 59. Yes. The blade body 60 is formed of a perforated plate having a large number of holes 62 perforated in the thickness direction, and has an opening 63 over the entire length of the blade body 60 in the longitudinal direction.

図10は、本発明の第2の実施例(図2参照。)に係る静止型混合器13から成る気体噴出部の部分概略斜視図である。気送管64は逆T字型に構成されており、筒状の気体噴出部65は3枚の右捻りの螺旋状の羽根体66が内設された3個の流体通路67を形成、この流体通路67は開口部68を介して羽根体66の長手方向の全長に亘って連通している。羽根体66は厚み方向に穿孔された多数の孔69を有する多孔板で形成されている。このような第2の静止型混合器13を内設された気送管64においては、噴出される気体(FG)の流れは、開口部68を直進する直進流と3枚の螺旋状の羽根体66に沿って流れる螺旋流および羽根体66の孔69を通過してくる分割流の相互作用により液体(FL)内で乱流が発生して、気体(FG)は微細化される。液体(FL)中で微細化された気体(FG)を利用することで、低い供給圧力の気体(FG)で気液接触効率はより向上する。なお、気体噴出部65の配置位置は、前記通路管内59に設置された静止型混合器の下端側からの離間距離は、前記通路管の直径の0.2倍から5倍の範囲が好ましい。更に、気体噴出部65内に供給される気体量の供給速度は気体と液体の物性および使用目的に応じて、2000〜14000Nm/(m・時間)の範囲が好ましい。なお、気体噴出部65に、3枚の左捻りの螺旋状の羽根体を内設してもよい。これにより、気体噴出部65で左方向に回転しながら噴出される気体(FG)は、気体噴出部65の上部に配設されている右捻りの羽根体66により、気体(FL)と液体(FG)との上昇流は左方向から右方向への反転作用により大きな剪断応力が発生してより微細化されて、気体(FG)の吸収効率はより向上する。又、羽根体66の捻り角度(回転角度)、捻り方向等の組合せ、および孔径、孔の開口率等は用途に応じて適宜選択可能である。FIG. 10 is a partial schematic perspective view of a gas ejection portion including the static mixer 13 according to the second embodiment (see FIG. 2) of the present invention. The air feed pipe 64 is configured in an inverted T shape, and the cylindrical gas ejection portion 65 forms three fluid passages 67 in which three right-handed spiral blade bodies 66 are provided. The fluid passage 67 communicates with the entire length in the longitudinal direction of the blade body 66 through the opening 68. The blade body 66 is formed of a perforated plate having a large number of holes 69 perforated in the thickness direction. In the air feed pipe 64 in which the second stationary mixer 13 is installed, the flow of the gas (FG) to be ejected is a straight flow straight through the opening 68 and three spiral blades. Turbulent flow is generated in the liquid (FL) by the interaction of the spiral flow flowing along the body 66 and the split flow passing through the hole 69 of the blade body 66, and the gas (FG) is refined. By using the gas (FG) refined in the liquid (FL), the gas-liquid contact efficiency is further improved with the gas (FG) having a low supply pressure. In addition, as for the arrangement position of the gas ejection part 65, the separation distance from the lower end side of the static mixer installed in the passage pipe 59 is preferably in the range of 0.2 to 5 times the diameter of the passage pipe. Furthermore, the supply rate of the amount of gas supplied into the gas ejection part 65 is preferably in the range of 2000 to 14000 Nm 3 / (m 2 · hour) depending on the physical properties of the gas and the liquid and the purpose of use. It should be noted that the gas ejection portion 65 may be internally provided with three left-handed spiral blades. As a result, the gas (FG) ejected while rotating in the left direction by the gas ejection part 65 is caused to flow between the gas (FL) and the liquid (by the right twisted blade body 66 disposed on the upper part of the gas ejection part 65. The upward flow with FG) is further refined by generating a large shear stress by the reversal action from the left direction to the right direction, and the absorption efficiency of the gas (FG) is further improved. Further, the combination of the twist angle (rotation angle) and twist direction of the blade body 66, the hole diameter, the opening ratio of the holes, and the like can be appropriately selected according to the application.

図11は、本発明の第3の実施例(図3参照。)に係る散気処理装置の概略断面図である。散気処理装置70は筒状の流体が通流する通路管71内に2枚以上の90°右捻り羽根体72が内設されて第1静止型混合器73を形成し、その第1静止型混合器73内の開口部74を介して気体を供給する筒状の気送管75が配置され、2個の気体噴出部76が配設され、その気体噴出部76内は第2静止型混合器77が内設されている。羽根体72は多数の穿設された孔78を有している多孔板で形成されている。このように構成された散気処理装置70においては、気体(FG)はブロワーやコンプレッサー、ガスボンベ(不図示)等の気体供給手段により加圧された気体(FG)を気送管75,気体噴出部76,空間部79を介して第1静止型混合器73の下方から上方向に噴出供給される。その気体(FG)の浮力により発生するエアリフト効果により通路管71の下端部の液体導入部80から液体(FL)は通路管71内の空間部79内に導入される。その気体(FG)と同伴する液体(FL)とは、通路管71内を並流で上昇しながら第1静止型混合器73内を通流して、混合・攪拌により、連続的に微細化されて気液接触して液体中に排出される。これにより、液体と気体とは高効率で気液接触して、曝気、放散又は化学反応等が連続的に進行する。なお、前記同様に、本実施例で使用される螺旋状の羽根体の捻り方向、捻り角度(回転角度)、枚数、孔径、多孔板の開口率、直径、高さ等は用途に応じて適宜選択使用できる。本実施例の散気処理装置70は、通路管71の大口径(直径500mm以上)化により、1基あたりの気体供給速度は向上し、反応処理時間の短縮による省エネルギー化、および曝気槽、放散槽等の容積の縮小による省スペース化、更に、散気処理装置70内で流体の淀み部(死領域)が発生しない構造によるメンテナンスフリーが達成可能となる。    FIG. 11 is a schematic cross-sectional view of a diffuser according to a third embodiment (see FIG. 3) of the present invention. In the air diffuser 70, two or more 90 ° right twist blade bodies 72 are provided in a passage pipe 71 through which a cylindrical fluid flows to form a first stationary mixer 73, and the first stationary mixer 73 is formed. A cylindrical air supply pipe 75 that supplies gas through an opening 74 in the mold mixer 73 is disposed, two gas ejection portions 76 are disposed, and the inside of the gas ejection portion 76 is a second stationary type. A mixer 77 is provided inside. The blade body 72 is formed of a perforated plate having a number of perforated holes 78. In the air diffuser 70 configured as described above, the gas (FG) is gas (FG) pressurized by a gas supply means such as a blower, a compressor, a gas cylinder (not shown), etc. From the lower part of the first static mixer 73, the liquid is jetted and supplied through the part 76 and the space part 79. The liquid (FL) is introduced into the space 79 in the passage pipe 71 from the liquid introduction section 80 at the lower end of the passage pipe 71 by an air lift effect generated by the buoyancy of the gas (FG). The gas (FG) and the accompanying liquid (FL) are continuously refined by flowing through the first static mixer 73 while rising in a parallel flow in the passage pipe 71 and mixing and stirring. The gas-liquid contacts and is discharged into the liquid. As a result, the liquid and the gas are in gas-liquid contact with high efficiency, and aeration, diffusion, chemical reaction, or the like proceeds continuously. Similarly to the above, the twist direction, twist angle (rotation angle), number of sheets, hole diameter, aperture ratio, diameter, height, etc. of the spiral blade used in this embodiment are appropriately determined according to the application. Selectable can be used. In the diffuser 70 according to the present embodiment, the gas supply speed per unit is improved by increasing the diameter of the passage pipe 71 (diameter 500 mm or more), energy saving by shortening the reaction processing time, and the aeration tank, diffusion Space saving can be achieved by reducing the volume of the tank and the like, and further, maintenance-free operation can be achieved with a structure in which no fluid stagnation (dead area) occurs in the diffuser 70.

適用例1Application example 1

図12は、本発明に係る散気処理装置を活性汚泥法等の曝気処理に適用した場合の例を示す図である。
散気処理装置81は原水を貯留している曝気槽82の底部に配置され、この散気処理装置81の下部に空気を供給するブロワー83と気送ライン84、原水を供給する原水供給ライン85および処理水を排出する処理水排出ライン86が設けられている。又、散気処理装置81の液体導入部は曝気槽82の底面から50〜200mm離間した位置に設置するのが好ましい。このように構成された散気処理装置81においては、原水はブロワー83および気送ライン84を介して散気処理装置81の下端側から供給される空気の浮力によるエアリフト効果により散気処理装置81内を原水と空気とは並流で通流しながら混合、攪拌されて、空気中の酸素は原水中に溶解し、原水は好気性微生物の働きにより回分又は連続的に浄化処理される。処理水は排出ライン86より排出される。
なお、散気処理装置81内を下方から上方に通流する空気量の供給速度は、処理効率90%以上の場合、曝気槽82内の水深2〜6メートルの範囲で、原水のCOD(化学的酸素要求量),BOD(生物化学的要求量)等の物性によるが、1800〜21000Nm/(m・時間)の範囲が好ましいが、より好ましくは3600〜12000Nm/(m・時間)の範囲である。又、直径150ミリメートルの散気処理装置81を使用した場合の1基あたりの曝気、攪拌受持面積は約3〜8mの範囲である。更に、ブロワー83の吐出圧力は曝気槽82の水深の圧力と気送ライン84の圧力損失とを足した圧力でよい。低い空気供給圧力および低い圧力損失で曝気処理が可能となり、省エネルギーとなる。なお、ここでNはノルマル(標凖状態)の意味で、0℃,1気圧での容積(m)を意味している。
従来の散気板方式と本発明法の通気抵抗(圧力損失)を比較すると、本発明法は従来法の1/5〜3/5である。更に、従来の散気筒内に静止型混合器を使用した従来法A,B,Cと本発明法との性能を比較した結果を表1に示す。表1に示すように、本発明法によれば、散気筒1基あたりの空気供給速度は100Nm/(m・分)に対して、従来法は80,12,17Nm/(m・分)である。又、同様に、水深5mでの酸素吸収効率は15%に対して、8.3,10.5,13.0%である。更に、気液接触効率を左右する単位容積(m)当たりの表面積(m)は55m/mに対して、2,16,8m/mである。
なお、Nm/m・分は、本発明の散気処理装置および従来の散気筒の単位断面積(m)当りの標準状態での空気の供給速度を意味している。
FIG. 12 is a diagram showing an example in which the aeration treatment apparatus according to the present invention is applied to an aeration process such as an activated sludge method.
The air diffuser 81 is disposed at the bottom of the aeration tank 82 that stores the raw water. The blower 83 and the air supply line 84 that supply air to the lower part of the air diffuser 81 and the raw water supply line 85 that supplies the raw water. A treated water discharge line 86 for discharging treated water is also provided. Moreover, it is preferable to install the liquid introduction part of the air diffusion treatment device 81 at a position separated from the bottom surface of the aeration tank 82 by 50 to 200 mm. In the air diffusion treatment device 81 configured as described above, the raw water is diffused by the air lift effect due to the buoyancy of the air supplied from the lower end side of the air diffusion treatment device 81 via the blower 83 and the air feed line 84. The raw water and air are mixed and stirred while passing through the inside in parallel flow, oxygen in the air is dissolved in the raw water, and the raw water is purified by batch or continuously by the action of aerobic microorganisms. The treated water is discharged from the discharge line 86.
Note that the supply rate of the amount of air flowing from the lower side to the upper side in the air diffuser 81 is within a range of 2 to 6 meters in the aeration tank 82 when the processing efficiency is 90% or more, and COD (chemical oxygen demand), depending on physical properties such as BOD (biochemical demand), but is preferably in the range of 1800~21000Nm 3 / (m 2 · h), more preferably 3600~12000Nm 3 / (m 2 · h ). In addition, when the diffuser 81 having a diameter of 150 millimeters is used, the aeration and stirring area per unit is in the range of about 3 to 8 m 2 . Further, the discharge pressure of the blower 83 may be a pressure obtained by adding the pressure of the water depth of the aeration tank 82 and the pressure loss of the air feed line 84. Aeration processing is possible with a low air supply pressure and a low pressure loss, which saves energy. Here, N means normal (indicator state) and means a volume (m 3 ) at 0 ° C. and 1 atm.
Comparing the ventilation resistance (pressure loss) of the conventional diffuser plate method and the method of the present invention, the method of the present invention is 1/5 to 3/5 of the conventional method. Further, Table 1 shows the result of comparing the performances of the conventional methods A, B, C using the static mixer in the conventional cylinder and the method of the present invention. As shown in Table 1, according to the method of the present invention, the air supply speed per one scattering cylinder is 100 Nm 3 / (m 2 · min), whereas the conventional method is 80,12,17 Nm 3 / (m 2・ Min). Similarly, the oxygen absorption efficiency at a water depth of 5 m is 8.3, 10.5, and 13.0% with respect to 15%. Furthermore, it influences the gas-liquid contact efficiency unit volume (m 3) surface area per (m 2) for 55m 2 / m 3, a 2,16,8m 2 / m 3.
Nm 3 / m 2 · min means the air supply speed in the standard state per unit cross-sectional area (m 2 ) of the air diffusion treatment device of the present invention and the conventional air diffusion cylinder.

Figure 0004544017
Figure 0004544017

適用例2Application example 2

図13は、本発明に係る散気処理装置を排水中の揮発性物質等の放散処理に適用した場合の例を示す図である。
本発明に係る散気処理装置87は、前記図12の実施例と同様であるが、筒状の放散槽88内の底部に配置され、この散気処理装置87の下部に空気を供給するブロワー89と気送ライン90、排水を供給する排水供給ライン91、および浄化された処理水を排出する処理水排出ライン92が設けられている。又、排気ライン93には揮発性物質を回収する冷却装置又は吸着装置が設けられている。このように構成された散気処理装置87においては、排水中のトリクロロメタン、トリハロメタン、アンモニア、塩素、クリプトン等の揮発性物質は気液接触により供給した空気側に物質移動して放散処理されて、排水は浄化される。供給された空気は、排気ライン93を介して冷却装置又は吸着装置で揮発性物質は回収され、浄化される。浄化された空気は大気中に放出される。
なお、供給される気体の種類は空気に限定されることなく、窒素、ヘリウム、アルゴン、一酸化炭素ガスなどの不活性ガスも適宜利用可能である。例えば窒素ガスを利用することで液体中の溶存酸素を放散(脱酸)処理することも可能である。散気処理装置87内に供給される気体の単位断面積(m)当りの供給速度は、排水中の揮発性物質の沸点、溶解度、蒸気圧等の物性および含有濃度、放散処理効率等に応じて、放散槽88内の水深1〜5メートルの場合で、3600〜18000Nm/(m・時間)の範囲が好ましいが、より好ましいのは7200〜15000Nm/(m・時間)の範囲である。
FIG. 13 is a diagram showing an example in the case where the air diffusion treatment device according to the present invention is applied to a diffusion treatment of volatile substances in waste water.
The air diffusion treatment device 87 according to the present invention is the same as that of the embodiment of FIG. 12, but is arranged at the bottom of the tubular diffusion tank 88 and supplies air to the lower part of the air diffusion treatment device 87. 89, an air feed line 90, a waste water supply line 91 for supplying waste water, and a treated water discharge line 92 for discharging purified treated water. The exhaust line 93 is provided with a cooling device or adsorption device for recovering volatile substances. In the diffuser processing device 87 configured in this way, volatile substances such as trichloromethane, trihalomethane, ammonia, chlorine, krypton, etc. in the wastewater are diffused by mass transfer to the supplied air side by gas-liquid contact. The drainage is purified. As for the supplied air, volatile substances are collected and purified by a cooling device or an adsorption device through an exhaust line 93. The purified air is released into the atmosphere.
Note that the type of gas supplied is not limited to air, and an inert gas such as nitrogen, helium, argon, or carbon monoxide gas can be used as appropriate. For example, it is possible to dissipate (deoxidize) the dissolved oxygen in the liquid by using nitrogen gas. The supply rate per unit cross-sectional area (m 2 ) of the gas supplied into the diffuser processing device 87 depends on the physical properties such as the boiling point, solubility, vapor pressure, etc. of the volatile substances in the wastewater, the concentration of concentration, the efficiency of the emission treatment, etc. Accordingly, the range of 3600-18000 Nm 3 / (m 2 · hour) is preferable in the case of a water depth of 1 to 5 meters in the stripping tank 88, but more preferably 7200 to 15000 Nm 3 / (m 2 · hour). It is a range.

適用例3Application example 3

図14は、本発明に係る散気処理装置を例えば湿式排煙脱硫装置等の排ガス処理に適用した場合の例を示す図である。
散気処理装置94は筒状の反応槽95内の所定位置に複数個配置され、散気処理装置94の下方にブロワー96を介して排ガスを供給する気送ライン97および水又は吸収液を供給する新液供給ライン98、吸収液99を反応槽95外に排出する排出ライン100、清浄化された排ガスを反応槽95の上部から排気する排気ライン101が設けられている。このように構成された散気処理装置94においては、HCl,SO,NO,NH,HSおよび粉塵などを含んだ排ガスはブロワー96および気送ライン97を介して、散気処理装置94の下方から上方へ供給されて、NaOH,CCO,Ca(OH),Mg(OH)などのアルカリ性水溶液あるいはHSO,HClなどの酸性水溶液からなる吸収液と気液接触されて化学反応処理が進行し、吸収液中に溶解又は捕集され、清浄化された排ガスは排気ライン101を介して大気中に放出される。
このような散気処理装置94を排ガス中の異種物質の除去、捕集処理に適用した場合、例えば、石灰/石膏法による排煙脱硫装置に適用した場合の散気処理装置94内に供給される単位断面積(m)当りの排ガスの供給速度は、反応槽95内の水深0.5〜3メートルの範囲および吸収効率90%以上の場合で、7200〜15000Nm/(m・時間)の範囲が好ましい。従来の散気板,分散管等による気液接触方式と比較して、排ガスと液体とが低い圧力損失下で、高効率で混合・攪拌されて短時間処理が可能となる。又、処理速度の向上により省スペースとなり、設備費も安価となる。更に、大口径(直径500mm以上)の散気処理装置94を配置することで、処理能力の向上とともに、より省スペースとなる。更に又、散気処理装置94内での流体の淀み部(死領域)が発生しにくいので、石灰/石膏法による排煙脱硫装置に適用した場合に、カルシウム化合物などの付着、成長を防止して連続運転が可能となり、保守管理費が低減する。
FIG. 14 is a view showing an example in which the air diffusion treatment device according to the present invention is applied to exhaust gas treatment such as wet flue gas desulfurization device.
A plurality of diffuser treatment devices 94 are arranged at predetermined positions in a cylindrical reaction tank 95, and an air supply line 97 for supplying exhaust gas and a water or absorption liquid are supplied below the diffuser treatment device 94 via a blower 96. There are provided a new liquid supply line 98, a discharge line 100 for discharging the absorbent 99 to the outside of the reaction tank 95, and an exhaust line 101 for exhausting the cleaned exhaust gas from the upper part of the reaction tank 95. In the air diffusion treatment device 94 configured in this way, the exhaust gas containing HCl, SO x , NO x , NH 3 , H 2 S, dust and the like is diffused through the blower 96 and the air feed line 97. An absorbing liquid and gas comprising an alkaline aqueous solution such as NaOH, C a CO 3 , Ca (OH) 2 , Mg (OH) 2 or an acidic aqueous solution such as H 2 SO 4 , HCl supplied from the lower side of the apparatus 94 to the upper side. The chemical reaction process proceeds by contact with the liquid, and the exhaust gas that has been dissolved or collected in the absorbing liquid and purified and discharged is discharged into the atmosphere via the exhaust line 101.
When such an air diffuser 94 is applied to the removal and collection of foreign substances in the exhaust gas, for example, it is supplied into the air diffuser 94 when applied to a flue gas desulfurizer by the lime / gypsum method. The exhaust gas supply rate per unit cross-sectional area (m 2 ) is 7200 to 15000 Nm 3 / (m 2 · hour in the case where the water depth in the reaction tank 95 is in the range of 0.5 to 3 meters and the absorption efficiency is 90% or more. ) Is preferred. Compared with the conventional gas-liquid contact method using a diffuser plate, a dispersion tube, etc., the exhaust gas and the liquid are mixed and stirred with high efficiency under a low pressure loss, thereby enabling a short-time treatment. In addition, the processing speed can be improved to save space and the equipment cost can be reduced. Furthermore, by arranging the diffuser 94 having a large diameter (diameter of 500 mm or more), the processing capacity is improved and the space is further saved. Furthermore, since it is difficult for the stagnation part (dead area) of the fluid to occur in the diffuser 94, it prevents adhesion and growth of calcium compounds when applied to a flue gas desulfurization apparatus using the lime / gypsum method. This enables continuous operation and reduces maintenance costs.

適用例4Application example 4

図15は本発明に係る散気処理装置を酵素又は微生物による生物反応装置に適用した場合の例を示す図である。
散気処理装置102は、筒状のバイオリアクター(生物反応装置)103内の所定位置に配置され、散気処理装置102の下方に気体を供給する気送ライン104、原液を供給する原液供給ライン105,反応生成物を排出する反応生成物排出ライン106、バイオリアクター103の頂部から少なくとも1種類以上の気体を排出する排気ライン107、バイオリアクター103の液面から下部に原液を循環させる循環液ライン108が設けられている。又、バイオリアクター103内には、酵素又は微生物を担持した触媒担持体109又は生体触媒が液体中に分散している。このように構成された散気処理装置102においては、気体はブロワー、コンプレッサー、ガスボンベ(不図示)などの気体供給手段により気送ライン104を介して散気処理装置102の下方から上方へ供給される。原液はポンプ又は加圧などの供給手段により原液供給ライン105を介して供給される。
反応生成物および気体は、反応生成物排出ライン106および排気ライン107より外部に排出される。又、原液は、循環液ライン108によりバイオリアクター103の液面から下部に循環流を形成する。気体と原液とは散気処理装置102内を並流で通流して、撹拌されて、原液中の酵素又は微生物の生体触媒機能により生物反応は進行する。本発明の散気処理装置102をバイオリアクターとして適用した場合には、従来の気泡塔方式と比較してバイオリアクター内の気体流速を0.1〜5m/sの高い気体流速域で操作でき、例えば、高い酸素移動速度を達成される。又、バイオリアクター内の流速分布を均一にして、酸素移動速度を均等化して反応生成物の均質化が達成される。更に、混合、攪拌機能を有していることで、バイオリアクター(103)内に死領域(デッドスペース)の発生がなく、大型化が容易になる。更に、気体のチャンネリングの発生を防止して均質な反応を促進し、かつ高粘度液体での気体の分散も均一化される。更に又、反応速度の向上により、省スペース、省エネルギーが達成されて生産費が低減される。なお、生体触媒を使用しない気液反応装置としても利用可能である。なお、従来の気泡塔方式のバイオリアクターにおける気体の空塔速度は0.01〜0.1m/sの範囲である。
FIG. 15 is a view showing an example in which the aeration treatment apparatus according to the present invention is applied to a biological reaction apparatus using enzymes or microorganisms.
The diffuser processing apparatus 102 is disposed at a predetermined position in a cylindrical bioreactor (biological reaction apparatus) 103, an air feed line 104 for supplying gas to the lower side of the diffuser processing apparatus 102, and a stock solution supply line for supplying a stock solution. 105, a reaction product discharge line 106 for discharging the reaction product, an exhaust line 107 for discharging at least one kind of gas from the top of the bioreactor 103, and a circulating liquid line for circulating the stock solution from the liquid level to the bottom of the bioreactor 103 108 is provided. In the bioreactor 103, a catalyst carrier 109 or a biocatalyst carrying an enzyme or a microorganism is dispersed in a liquid. In the air diffusion processing apparatus 102 configured as described above, gas is supplied from the lower side to the upper side of the air diffusion processing apparatus 102 via the air supply line 104 by gas supply means such as a blower, a compressor, and a gas cylinder (not shown). The The stock solution is supplied through the stock solution supply line 105 by a supply means such as a pump or pressurization.
The reaction product and gas are discharged to the outside from the reaction product discharge line 106 and the exhaust line 107. In addition, the stock solution forms a circulating flow from the liquid surface of the bioreactor 103 to the lower part through the circulating liquid line 108. The gas and the undiluted solution flow in the diffuser treatment apparatus 102 in a parallel flow and are stirred, and the biological reaction proceeds by the biocatalytic function of the enzyme or the microorganism in the undiluted solution. When the aeration treatment apparatus 102 of the present invention is applied as a bioreactor, the gas flow rate in the bioreactor can be operated in a high gas flow rate range of 0.1 to 5 m / s as compared with the conventional bubble column system. For example, a high oxygen transfer rate is achieved. Further, the flow rate distribution in the bioreactor is made uniform, the oxygen transfer rate is made uniform, and the reaction product is homogenized. Furthermore, since it has a mixing and stirring function, there is no generation of a dead area (dead space) in the bioreactor (103), and the enlargement is facilitated. Furthermore, the occurrence of gas channeling is prevented to promote a homogeneous reaction, and the gas dispersion in the high viscosity liquid is made uniform. Furthermore, by improving the reaction rate, space saving and energy saving are achieved, and production costs are reduced. In addition, it can utilize also as a gas-liquid reaction apparatus which does not use a biocatalyst. In addition, the superficial velocity of the gas in the conventional bubble column type bioreactor is in the range of 0.01 to 0.1 m / s.

図16は、従来の散気板方式による曝気処理装置を示す模式図である。
従来の曝気処理装置110は、曝気槽111内の底面に多数の散気板112を配設し、空気はブロワー113、気送ライン114を介して多数の散気板112に供給される。散気板112は微細な多孔質体で形成され、微細な気泡を発生させている。一般的な散気板112の吹出し空気量は50〜400NL/minである。又、通気抵抗は1000〜3000Pa(パスカル)である。従来の散気板の構成材料はゴム、プラスチック等である。
FIG. 16 is a schematic view showing an aeration processing apparatus using a conventional diffuser plate method.
In the conventional aeration processing apparatus 110, a large number of diffuser plates 112 are arranged on the bottom surface in the aeration tank 111, and air is supplied to the diffuser plates 112 via the blower 113 and the air supply line 114. The diffuser plate 112 is formed of a fine porous body and generates fine bubbles. The amount of air blown from the general diffuser plate 112 is 50 to 400 NL / min. The ventilation resistance is 1000 to 3000 Pa (Pascal). The constituent material of the conventional diffuser plate is rubber, plastic or the like.

図17は、従来の充填物方式による放散処理装置を示す模式図である。従来の放散処理装置115は、筒状の放散塔116内に規則又は不規則充填物が充填されている。気体と原水は向流で充填物117内を通流し、気液接触して放散処理がされている。一般的な充填物方式の場合、気体の供給速度は10〜100Nm/(m・時間)の範囲である。FIG. 17 is a schematic diagram showing a conventional diffusion treatment apparatus using a packing method. In the conventional radiation treatment apparatus 115, a cylindrical radiation tower 116 is filled with a regular or irregular packing. Gas and raw water flow countercurrently through the filling 117 and come into gas-liquid contact to be diffused. In the case of a general packing method, the gas supply rate is in the range of 10 to 100 Nm 3 / (m 2 · hour).

なお、本発明による散気処理装置の構成材料は、金属,セラミックス,プラスチック,ガラス,FRP等の1種類もしくはこれら材料の複合材料から適宜選択使用できる。ステンレス,チタン等の金属材料を利用することで半永久的に使用可能となる。産業廃棄物の発生が抑制される。従来の散気板,散気筒等の構成材料は、プラスチック,ゴム等が多く使用されている。目詰まりや耐久性に問題がある。  In addition, the constituent material of the diffuser according to the present invention can be appropriately selected and used from one kind of metal, ceramics, plastic, glass, FRP, or a composite material of these materials. By using a metal material such as stainless steel or titanium, it can be used semi-permanently. The generation of industrial waste is suppressed. Conventional constituent materials such as diffuser plates and diffuser cylinders are often made of plastic, rubber or the like. There are problems with clogging and durability.

本発明に係る第1実施例を示す模式図である。  It is a schematic diagram which shows 1st Example based on this invention. 本発明に係る第2実施例を示す模式図である。  It is a schematic diagram which shows 2nd Example based on this invention. 本発明に係る第3実施例を示す模式図である。  It is a schematic diagram which shows 3rd Example based on this invention. 本発明の第1実施例から第3実施例で使用される静止型混合器2,9,13および17の例を示すもので、(a)図は右捻り螺旋状羽根体を有する通路管の概略斜視図。(b)図は、左捻り螺旋状羽根体を有する通路管の概略斜視図である。  FIGS. 1A and 1B show examples of static mixers 2, 9, 13 and 17 used in the first to third embodiments of the present invention. FIG. 4A shows a passage tube having a right-handed spiral blade. FIG. (B) The figure is a schematic perspective view of a passage tube having a left twisted spiral blade. 本発明の第1実施例から第3実施例で使用される静止型混合器2,9,13および17の1例を示す図である。  It is a figure which shows one example of the static mixers 2, 9, 13, and 17 used by 1st Example to 3rd Example of this invention. 本発明の第1の実施例(図1参照。)に係る散気処理装置の概略図である。  BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the aeration process apparatus which concerns on 1st Example (refer FIG. 1) of this invention. 本発明の第1の実施例(図1参照。)で使用される気体噴出ノズルの1例を示す斜視図である。  It is a perspective view which shows one example of the gas ejection nozzle used in the 1st Example (refer FIG. 1) of this invention. 本発明の第2の実施例(図2参照。)に係る散気処理装置の概略図である。  It is the schematic of the aeration process apparatus which concerns on 2nd Example (refer FIG. 2) of this invention. 本発明の第2の実施例(図2参照。)に係る散気処理装置の部分概略底面図である。  It is a partial schematic bottom view of the diffuser processing apparatus which concerns on 2nd Example (refer FIG. 2) of this invention. 本発明の第2の実施例(図2参照。)に係る気体噴出部の部分概略斜視図である。  It is a partial schematic perspective view of the gas ejection part which concerns on 2nd Example (refer FIG. 2) of this invention. 本発明の第3の実施例(図3参照。)に係る散気処理装置の概略断面図である。  It is a schematic sectional drawing of the aeration processing apparatus which concerns on the 3rd Example (refer FIG. 3) of this invention. 本発明に係る散気処理装置を活性汚泥法の曝気処理に適用した場合の例を示す図である。  It is a figure which shows the example at the time of applying the aeration process apparatus which concerns on this invention to the aeration process of an activated sludge method. 本発明に係る散気処理装置を排水の放散処理に適用した場合の例を示す図である。  It is a figure which shows the example at the time of applying the aeration process apparatus which concerns on this invention to the discharge process of waste_water | drain. 本発明に係る散気処理装置を排ガス処理装置に適用した場合の例を示す図である。  It is a figure which shows the example at the time of applying the aeration processing apparatus which concerns on this invention to an exhaust gas processing apparatus. 本発明に係る散気処理装置を酵素又は微生物を利用した生物反応装置に適用した場合の例を示す図である。  It is a figure which shows the example at the time of applying the aeration process apparatus which concerns on this invention to the biological reaction apparatus using an enzyme or microorganisms. 従来の散気板方式による曝気処理装置を示す模式図である。  It is a schematic diagram which shows the aeration processing apparatus by the conventional diffuser board system. 従来の充填物方式による放散処理装置を示す模式図である。  It is a schematic diagram which shows the diffusion processing apparatus by the conventional filler system.

符号の説明Explanation of symbols

1,8,16,23,29,35,43,50,59,71: 通路管
2,9,13,17,24,30,41,
51,57,73,77: 静止型混合器
3,10,18,38,39,42,52,79: 空間部
5,12,20,44,54,65,76: 気体噴出部
6,14,22,47,53,80: 液体導入部
7,15,21,40,49,58,70,
81,87,94,102: 散気処理装置
4,11,19,84,90,97,104: 気送ライン
45,55,61,64,75: 気送管
1, 8, 16, 23, 29, 35, 43, 50, 59, 71: Passage tube 2, 9, 13, 17, 24, 30, 41,
51, 57, 73, 77: Static mixer 3, 10, 18, 38, 39, 42, 52, 79: Space part 5, 12, 20, 44, 54, 65, 76: Gas ejection part 6, 14 , 22, 47, 53, 80: Liquid introduction part 7, 15, 21, 40, 49, 58, 70,
81, 87, 94, 102: Air diffuser 4, 11, 19, 84, 90, 97, 104: Air feed line 45, 55, 61, 64, 75: Air feed tube

Claims (2)

流体が通流する筒状の通路管の内側に右捻り(時計方向)又は左捻り(反時計方向)の螺旋状の複数個の羽根体を有し、前記通路管の内部に複数個の流体通路を形成し、前記流体通路同士は羽根体の長手方向の開口部を介して連通し、前記羽根体は多孔体からなる1の静止型混合器を内設した、長手方向を実質的に垂直にして配置された筒状の通路管と、前記通路管の下端に設けられた液体導入部と、前記液体導入部の上方であって、前記1の静止型混合器の下方に配置され、前記通路管の上端側から接続された気送ラインを介して前記通路管内に気体を噴出供給する、気体が通流する筒状の通路管の内側に右捻り(時計方向)又は左捻り(反時計方向)の螺旋状の複数個の羽根体を有し、気体が通流する筒状の前記通路管の内部に複数個の流体通路を形成し、前記流体通路同士は羽根体の長手方向の開口部を介して連通し、前記羽根体は多孔板からなる他の静止型混合器が内設された複数個の気体噴出部と、を備え、気体供給手段により、流体が通流する筒状の前記通路管内における上昇速度が0.1〜10m/sとなるように前記気体噴出部に気体を供給して、前記液体導入部から液体を前記通路管内に導入し、前記気体および液体は前記通路管内を並流で上昇し、前記1の静止型混合器の内部で気液接触混合し、前記通路管の上端側から排出されることを特徴とする散気処理装置。 A plurality of right-handed (clockwise) or left-handed (counterclockwise) spiral blades are provided inside a cylindrical passage tube through which fluid flows, and a plurality of fluids are contained in the passage tube. A passage is formed, the fluid passages communicate with each other through an opening in the longitudinal direction of the blade body, and the blade body includes one stationary mixer made of a porous body, and the longitudinal direction is substantially vertical. a cylindrical passage pipe disposed in the a liquid introducing portion provided at a lower end of said passage tube, an upper side of the liquid introduction portion, is disposed below the first static mixer, said A right twist (clockwise) or a left twist (counterclockwise) inside a cylindrical passage pipe through which gas flows and supplies gas into the passage pipe through an air feed line connected from the upper end side of the passage pipe. Direction) and a plurality of blades in a spiral shape, and a plurality of pipes inside the tubular passage tube through which gas flows. The body passage is formed, the fluid passage between the communicating through the longitudinal opening of the sail body, said sail body has a plurality of gas ejection portion of another static mixer consisting of a perforated plate is internally provided The gas introduction means supplies the gas to the gas ejection part so that the rising speed in the cylindrical passage tube through which the fluid flows is 0.1 to 10 m / s, and introduces the liquid The liquid is introduced into the passage pipe from the section, and the gas and the liquid rise in a parallel flow in the passage pipe, are in contact with gas-liquid in the static mixer 1 and are discharged from the upper end side of the passage pipe. An aeration process apparatus characterized by being made. 前記通路管の単位容積(m)当りの前記羽根体の表面積(m)の総和は10〜150m/mの範囲であることを特徴とする請求の範囲第1項に記載の散気処理装置。2. The dispersion according to claim 1, wherein a total surface area (m 2 ) of the blades per unit volume (m 3 ) of the passage pipe is in a range of 10 to 150 m 2 / m 3. Qi treatment device.
JP2005128569A 2005-03-31 2005-03-31 Air diffuser Active JP4544017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005128569A JP4544017B2 (en) 2005-03-31 2005-03-31 Air diffuser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005128569A JP4544017B2 (en) 2005-03-31 2005-03-31 Air diffuser

Publications (2)

Publication Number Publication Date
JP2006281180A JP2006281180A (en) 2006-10-19
JP4544017B2 true JP4544017B2 (en) 2010-09-15

Family

ID=37403632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005128569A Active JP4544017B2 (en) 2005-03-31 2005-03-31 Air diffuser

Country Status (1)

Country Link
JP (1) JP4544017B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754248B2 (en) * 2011-06-06 2015-07-29 株式会社デンソー Airlift and culture system
JP5743832B2 (en) * 2011-09-30 2015-07-01 株式会社日立産機システム Inkjet recording device
CN108905567B (en) * 2018-08-15 2023-12-22 佛山赛因迪环保科技有限公司 Flue gas treatment system for ceramic production
JP7175573B2 (en) * 2018-11-27 2022-11-21 株式会社ディスコ Acid exhaust gas treatment equipment
CN115491298B (en) * 2022-10-24 2024-05-24 华北电力大学(保定) On-line monitoring device for biological aerosol

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114453U (en) * 1991-03-25 1992-10-08 株式会社日立製作所 gas dispersion device
JP2001062269A (en) * 1999-08-26 2001-03-13 Ohr:Kk Liquid mixing device
JP2002263678A (en) * 2001-03-05 2002-09-17 Az Shoji Kk Device for producing water which contains fine air bubble
JP2002292390A (en) * 2001-03-30 2002-10-08 Ohr:Kk Underwater aerator and underwater support structure thereof
JP2005111467A (en) * 2003-10-10 2005-04-28 Anemosu:Kk Diffusion treatment apparatus
WO2005039746A1 (en) * 2003-10-29 2005-05-06 Anemos Company Ltd. Air diffusing device
JP2005125302A (en) * 2003-10-27 2005-05-19 Anemosu:Kk Diffuser
JP2005144425A (en) * 2003-11-14 2005-06-09 Anemosu:Kk Diffuser
JP2005211894A (en) * 2004-01-30 2005-08-11 Anemosu:Kk Air diffuser
JP2005219036A (en) * 2004-02-03 2005-08-18 Anemosu:Kk Diffusion treatment process
WO2005077506A1 (en) * 2004-02-16 2005-08-25 Anemos Company Ltd. Mixing element and static fluid mixer using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522102Y2 (en) * 1973-03-08 1977-01-18
JPS5236853A (en) * 1975-09-19 1977-03-22 Bousei Kigyo Kk Aeration tank for sewage disposal using active sludge process
JPS5895293U (en) * 1981-12-21 1983-06-28 斉藤 晃四郎 Intermittent swirl flow air pumping device
JPH0773673B2 (en) * 1985-05-30 1995-08-09 久夫 小嶋 Catalytic reactor
JPS62132719U (en) * 1986-02-17 1987-08-21
JP2686078B2 (en) * 1987-07-16 1997-12-08 久夫 小嶋 Mixing element
JPH0243932A (en) * 1988-08-03 1990-02-14 Hisao Kojima Mixing element
JPH05168882A (en) * 1991-12-17 1993-07-02 Hisao Kojima Mass transfer device and its manufacture
JPH0739893A (en) * 1993-07-30 1995-02-10 Kiyoshi Yoshimura Sewage treatment diffuser

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114453U (en) * 1991-03-25 1992-10-08 株式会社日立製作所 gas dispersion device
JP2001062269A (en) * 1999-08-26 2001-03-13 Ohr:Kk Liquid mixing device
JP2002263678A (en) * 2001-03-05 2002-09-17 Az Shoji Kk Device for producing water which contains fine air bubble
JP2002292390A (en) * 2001-03-30 2002-10-08 Ohr:Kk Underwater aerator and underwater support structure thereof
JP2005111467A (en) * 2003-10-10 2005-04-28 Anemosu:Kk Diffusion treatment apparatus
JP2005125302A (en) * 2003-10-27 2005-05-19 Anemosu:Kk Diffuser
WO2005039746A1 (en) * 2003-10-29 2005-05-06 Anemos Company Ltd. Air diffusing device
JP2005144425A (en) * 2003-11-14 2005-06-09 Anemosu:Kk Diffuser
JP2005211894A (en) * 2004-01-30 2005-08-11 Anemosu:Kk Air diffuser
JP2005219036A (en) * 2004-02-03 2005-08-18 Anemosu:Kk Diffusion treatment process
WO2005077506A1 (en) * 2004-02-16 2005-08-25 Anemos Company Ltd. Mixing element and static fluid mixer using the same

Also Published As

Publication number Publication date
JP2006281180A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4463204B2 (en) Air diffuser
CN101538102B (en) Ozone-bacteria filter system for advanced treatment of hardly-degradable organic wastewater
CN110776085B (en) Hypergravity whirl microbubble ozone oxidation advanced waste treatment system
JP4544017B2 (en) Air diffuser
TWI503289B (en) Gas dispersion apparatus for improved gas-liquid mass transfer
JP2005144425A (en) Diffuser
KR20080071061A (en) Fluid mixer
JP2013522021A (en) Gas collection type gas-liquid reaction device, water treatment device using the same, and gas purification device
CN106830547B (en) A kind of suspension type polyvinyl-chloride polymerization workshop section method of wastewater treatment and device
CN2933554Y (en) Novel micro-electrolysis device capable of working stably
JP4520757B2 (en) Air diffuser
JP2005125302A (en) Diffuser
CN206553358U (en) A kind of annular flow oxidation membrane bioreactor and wastewater treatment equipment
KR100915987B1 (en) Micro bubble diffuser for treatment of wastewater
JP3107882B2 (en) Gas-liquid contact device
JP2005111467A (en) Diffusion treatment apparatus
JP2008194620A (en) Wastewater treating method and apparatus
KR100639296B1 (en) Plant for wastewater treatment
JP2005211894A (en) Air diffuser
CN202164194U (en) Polycyclic aromatic hydrocarbon type polluted soil waste washing liquid treatment system
CN103203195A (en) Gas diffusion treatment device
CN104773810A (en) Catalytic ozonation device
KR20060113903A (en) Air diffusing device
KR20040092843A (en) Process and plant for the solubility of gas and sludge mixing
CN201264942Y (en) Contact oxidation apparatus for sewage treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4544017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250