JPS5814929A - Gas-permeable membrane - Google Patents

Gas-permeable membrane

Info

Publication number
JPS5814929A
JPS5814929A JP11246081A JP11246081A JPS5814929A JP S5814929 A JPS5814929 A JP S5814929A JP 11246081 A JP11246081 A JP 11246081A JP 11246081 A JP11246081 A JP 11246081A JP S5814929 A JPS5814929 A JP S5814929A
Authority
JP
Japan
Prior art keywords
membrane
selectivity
polyorganosiloxane
gas
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11246081A
Other languages
Japanese (ja)
Other versions
JPS6256774B2 (en
Inventor
Yukihiro Saito
斉藤 幸廣
Yoshimasa Ito
伊東 良将
Shiro Asakawa
浅川 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11246081A priority Critical patent/JPS5814929A/en
Publication of JPS5814929A publication Critical patent/JPS5814929A/en
Publication of JPS6256774B2 publication Critical patent/JPS6256774B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a gas-permeable membrane having a high gas permeation coefficient and excellent in selectivity, by a method wherein a membrane is prepared from a material comprising polyorganosiloxane and supported by a porous support film directly or after formed into an extremely thin membrane to prepare a composite membrane. CONSTITUTION:Polymethylhydrogensiloxane and an olefine such as pentene -1 are reacted in the presence of a platinum catalyst to obtain polyorganosiloxane having structure shown by the general formula (wherein R is a 4-9C alkyl group, n is an integer exclusive of zero, m is an integer inclusive of zero). When the carbon number of the substituent R is 3 or less, the selectivity of the obtained polymer is low and when it exceeds 9, selectivity thereof is saturated and oxygen permeability is lowered. In addition, the polymerization degree n of said polymer should be at least 10. The above polyorganosiloxane is soluble in an aromatic solvent and can be formed into a membrane by a casting method and, after the membrane is formed into an extremely thin membrane with a thickness of 1mum or less, this thin membrane is supported by a porous film to make it possible to form a composite membrane.

Description

【発明の詳細な説明】 本発明は混合気体より、特定の成分をより多く透過させ
る気体透過膜に関する。特に本発明は、1μ以下の超薄
膜製造が容易であり、気体透過係数が大きく、選択性の
改善された気体透過膜を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas permeable membrane that allows more of a specific component to pass through than a mixed gas. In particular, the present invention provides a gas permeable membrane that is easy to manufacture as an ultra-thin membrane of 1 μm or less, has a large gas permeability coefficient, and has improved selectivity.

混合気体から、ある特定の気体を分離、濃縮する手段と
して、最近高分子薄膜を用いる連続濃縮法が注目されつ
つある。例えば、空気中より、酸素、または窒素を分離
゛する場□合、・従来の深冷液化法やゼオライト吸着を
利用したバッチ式の分離法などにくらべて、高分子薄膜
を用いた連続濃縮法は、省エネルギー化、製造装置の小
型簡易化などが期待され、したがって容易に低コスト酸
素富化空気を製造しうる。この方式は、一般に、空気よ
りの酸素、窒素の分離のみ、ならず、各種気体の混合物
から特定の気体を分離する場合にも共通して使用し得る
長所を佇している。
Continuous concentration methods using thin polymer films have recently been attracting attention as a means of separating and concentrating a specific gas from a gas mixture. For example, when separating oxygen or nitrogen from the air, a continuous concentration method using a thin polymer membrane is preferable to the conventional cryogenic liquefaction method or batch separation method using zeolite adsorption. It is expected that energy saving and production equipment will be made smaller and simpler, and therefore oxygen-enriched air can be easily produced at low cost. This method generally has the advantage that it can be used not only for separating oxygen and nitrogen from air, but also for separating a specific gas from a mixture of various gases.

高分子膜を通して気゛体を透過させる場合、その透過性
を左右する因子は、目的とする気体と高分子膜との相互
作用、すなわち拡散係数と溶解能であ、るといわれてい
る。前記したように膜分離法が数々の長所を有すると期
待されているにもかかわらず、まだ実用化されていない
のは、この2つの因子によって左右される気体の透過性
と選択性のバランスが十分に発揮されていないからであ
る。
When a gas is permeated through a polymer membrane, the factors that influence the permeability are said to be the interaction between the target gas and the polymer membrane, that is, the diffusion coefficient and solubility. As mentioned above, although membrane separation methods are expected to have many advantages, the reason why they have not yet been put into practical use is that the balance between gas permeability and selectivity, which is influenced by these two factors, is This is because it is not fully demonstrated.

例えば、シリコーン(ポリジメチルシロキサン)は、酸
素に対して10−7〜10−8cc−crry’crl
・sea−cJ(g程度あ透過性を示すが、窒素との選
択性はおよそ2程度と小さく、濃縮率を大きくすること
ができない。
For example, silicone (polydimethylsiloxane) has 10-7 to 10-8 cc-crry'crl for oxygen.
・Although it exhibits permeability of about sea-cJ (g), its selectivity with nitrogen is as small as about 2, and the concentration ratio cannot be increased.

本発明者らは以上の観点から気体の透過性と選択性のす
ぐれた気体透過膜材料を得るべく種々検討した結果、構
造が一般式 で示されるポリオルガノシロキサンより成る材料で製作
した気体透過膜またはこの材料を多孔性支持体膜に支持
させた複合膜が透過性にすぐれかつ選択性を向上させ得
るこgを見出した。ここに、Rは炭素数が4〜9である
アルキル基を示し、nは0を含まない整数、mは0を含
む整数である。
The present inventors conducted various studies in order to obtain a gas-permeable membrane material with excellent gas permeability and selectivity from the above viewpoint, and as a result, a gas-permeable membrane was fabricated using a material made of polyorganosiloxane whose structure is represented by the general formula. We have also found that a composite membrane in which this material is supported on a porous support membrane has excellent permeability and can improve selectivity. Here, R represents an alkyl group having 4 to 9 carbon atoms, n is an integer not including 0, and m is an integer including 0.

これらの材料は、ポリメチル、ハイドロジエンシロキサ
ント、オレフィン、例、tばペンテン−1とを白金触媒
下で反応させて容易に得られる。あるいは、メチル、ア
ルキルジクロルシランを予め合成し、これを通常の方法
で縮重合させてもよい。
These materials are easily obtained by reacting polymethyl, hydrogensiloxant, and olefins such as t-pentene-1 under a platinum catalyst. Alternatively, methyl or alkyldichlorosilane may be synthesized in advance and subjected to condensation polymerization using a conventional method.

前者の方法では、未反応水素が分子内にわずかに残る場
合があり、また後者の方法では重合度が増太し過ぎると
ゲル化する場合があるので、慎重な注意が必要である。
In the former method, a small amount of unreacted hydrogen may remain in the molecule, and in the latter method, gelation may occur if the degree of polymerization increases too much, so careful attention is required.

置換基の効果としては、Rが炭素数3個のプロピルメチ
ルシロキサンでは、例えば酸素、窒素に対しては選択性
情2.2と小さく、かつ、酸素透過性は2.5 X1O
−8cc ham/cram sec @amHqとな
り、単なるポリジメチルシロキサンよりむしろ悪くなる
。しかし、Rが炭素数4個のアルキル基になると、選択
性は2.4と向上しはじめ、炭素数がさらに増大し、か
つ分岐が増えるに従い選択性が一層向上するとやが認め
られた。Rが炭素数9個を越えると、選択性は大体飽和
し、酸素透過性は低下の傾向が見られた。また、水素が
残存している材。
As for the effects of substituents, in propylmethylsiloxane in which R has 3 carbon atoms, the selectivity for oxygen and nitrogen is as small as 2.2, and the oxygen permeability is 2.5
-8cc ham/cram sec @amHq, which is worse than simple polydimethylsiloxane. However, when R became an alkyl group having 4 carbon atoms, the selectivity began to improve to 2.4, and it was observed that as the number of carbon atoms further increased and the number of branches increased, the selectivity improved further. When R exceeds 9 carbon atoms, selectivity is almost saturated and oxygen permeability tends to decrease. Also, materials with residual hydrogen.

わ。、、、ヵ8−oよ□エヤオい。ヶお、エ   □高
分子において、置換基Rがすべて同一である場場合はも
ちろん、部分的に異なっていても炭素数が4〜9であれ
ばよい。
circle. ,,,Ka8-o□Eyao. □In the polymer, all substituents R may be the same, or may be partially different as long as the number of carbon atoms is 4 to 9.

ポリオルガノシロキサンの重合度nは少なくとも10量
体以上必要で、ゲル化し々い限り重合度nは高い方がよ
い。
The degree of polymerization n of the polyorganosiloxane must be at least 10 mer or more, and the higher the degree of polymerization n, the better as long as gelation is possible.

また、ポリオルガノシロキサンを得るために置換モノマ
ーから出発する場合は、良く知られそい暮ように共加水
分解が可能であり、この時共加水分解の相手としてオリ
ゴ環状ジメチルシロキサンを使用し重合度を向上させる
ことができる。
In addition, when starting from substituted monomers to obtain polyorganosiloxane, co-hydrolysis is possible as is well known, and at this time, oligocyclic dimethylsiloxane is used as a partner for co-hydrolysis to control the degree of polymerization. can be improved.

得られたポリオルガノシロキサンは、一般的芳香族炭化
水素、例えばベンゼン、トルエン、キシレンなどに可溶
であり、容易にキャスト法によって製膜が可能である。
The obtained polyorganosiloxane is soluble in common aromatic hydrocarbons such as benzene, toluene, xylene, etc., and can be easily formed into a film by a casting method.

また、本発明によるポリオルガノシロキサンは厚さが1
μm以下の超薄膜とすることもできる。
Moreover, the polyorganosiloxane according to the present invention has a thickness of 1
It can also be made into an ultra-thin film of μm or less.

すなわち、ポリオルガノシロキサンと芳香族系溶媒とか
ら成る稀薄溶液を水面上に展開すると、水面上に早い展
開速度で一様にひろがり、0.1μm以下の超薄膜の製
造も可能である。このような超薄膜は機械強度が弱くな
るので通常これを保持する支持膜が必要であり、このよ
うな支持膜としては多孔性膜、たとえばポリプロピレン
多孔材より成る日本ポリプラスチック社製の商品名ジュ
ラガート′などが好適である。本発明による高分子材料
はこの多孔膜に対しての接着性にもすぐれ、水面上に・
展開された高分子超薄膜上に上記多孔性膜を単に接触さ
せるだけで、十分な強度をもつ一体化された複合膜を得
ることができる。
That is, when a dilute solution consisting of polyorganosiloxane and an aromatic solvent is spread on a water surface, it spreads uniformly on the water surface at a fast spreading speed, making it possible to produce an ultra-thin film of 0.1 μm or less. Since such ultra-thin films have weak mechanical strength, they usually require a support film to hold them, and such support films include porous films, such as Nippon Polyplastics' product name DURAGAT, which is made of porous polypropylene material. ' etc. are suitable. The polymer material according to the present invention has excellent adhesion to this porous membrane, and can be easily attached to the water surface.
By simply bringing the porous membrane into contact with the developed ultra-thin polymer membrane, an integrated composite membrane with sufficient strength can be obtained.

以下本発明の具体的な実施例について説明する。Specific examples of the present invention will be described below.

〈実施例1〉 ポリメチルハイドロジエンシラン(17量体)38部、
1−ブテン15部および塩化白金酸6係のプロパツール
液1 meを封管し、60’Cの湯浴中で8時間反応さ
せた。その後封管を室温まで冷却し、開封後内容物を減
圧蒸留して低沸点化合物を留去して残った粘稠液体をメ
タノール洗浄した。
<Example 1> 38 parts of polymethylhydrodiene silane (17-mer),
15 parts of 1-butene and 1 me of a propatool solution containing 6 parts of chloroplatinic acid were sealed in a sealed tube, and reacted in a water bath at 60'C for 8 hours. Thereafter, the sealed tube was cooled to room temperature, and after opening, the contents were distilled under reduced pressure to remove low-boiling compounds, and the remaining viscous liquid was washed with methanol.

これをベンゼンに溶解後退酸化ベンゾイルを加え、ガラ
ス板上にキャストして100℃で1時間加熱生成してフ
ィルムを得た。このフィルム・をガラス板よりはが腰気
体透過量を測牽したところ、酸素透過量は2.3x10
−”cc−cm/cm’set・cmHq 、酸素と窒
素との分離係数は2.4であった。
This was dissolved in benzene, added with backward benzoyl oxide, cast on a glass plate, and heated at 100° C. for 1 hour to obtain a film. When this film was removed from a glass plate, the amount of gas permeation was measured, and the amount of oxygen permeation was 2.3 x 10
-"cc-cm/cm'set·cmHq, and the separation coefficient between oxygen and nitrogen was 2.4.

〈実施例2〉 ゛ メチルジクロロシラン35部、イソブチン26部、
塩化白金酸6%のグロパノール液1肩A!ヲ封管し、6
0°Cの湯浴中で8時間反応させた。反応終了後内容物
を蒸留して沸点が61°C/28mmHgのメチル、イ
ソブチルジクロルシランが得られ、これをジオキサンに
溶解し、水50 mlを加えて20″Cで3時間反応さ
せた。反応終了後減圧蒸留し、テトラメチル、テトライ
ソプデルシクロシロキサン(沸点120°C/4tan
 H(1)、を10部得た。得られた生成物をKOH触
媒の下で重合させ、分子量18 、000のポリメチル
、イソブチルシロキサンを得た。このポリマーの気体透
過性は、酸素に対して3.4x 10−8cc−cml
oll・set、・cmH(Jで、窒素との選択性は2
.6であった。
<Example 2> ゛ 35 parts of methyldichlorosilane, 26 parts of isobutyne,
6% chloroplatinic acid gropanol solution 1 shoulder A! Seal the tube, 6
The reaction was carried out in a water bath at 0°C for 8 hours. After the reaction was completed, the contents were distilled to obtain methyl-isobutyldichlorosilane having a boiling point of 61°C/28mmHg.This was dissolved in dioxane, 50ml of water was added, and the mixture was reacted at 20''C for 3 hours. After completion of the reaction, distillation was carried out under reduced pressure to obtain tetramethyl, tetraisopdelcyclosiloxane (boiling point 120°C/4tan
10 parts of H(1) were obtained. The obtained product was polymerized under a KOH catalyst to obtain polymethyl isobutylsiloxane with a molecular weight of 18,000. The gas permeability of this polymer is 3.4x 10-8 cc-cml for oxygen
oll・set,・cmH(J, selectivity with nitrogen is 2
.. It was 6.

〈実施例3〉 実施例1.実施例2と同様の方法によってポリメチルア
ルキルシロキサンを合成した。得られたポリメチルアル
キルシロキサンの透過率を第1表〈実施例4〉 ポリメチルへブチルシロキサンをベンゼンに溶 ・かじ
、10%の溶液を作成した。この高分、子溶液を26°
Cにて静止した水面上に注射器で滴下し展開させた。展
開面積は3odであった。この展開表面に日本ポリプラ
スチック社製のジュラガード膜”を接触させて前記高分
子膜との複合膜を作成した。
<Example 3> Example 1. Polymethylalkylsiloxane was synthesized by the same method as in Example 2. The transmittance of the obtained polymethylalkylsiloxane is shown in Table 1 (Example 4) Polymethylhebutylsiloxane was dissolved in benzene to prepare a 10% solution. This polymer and child solution were heated at 26°
It was dropped with a syringe onto the stationary water surface at C and allowed to spread. The developed area was 3od. This developed surface was brought into contact with "Duraguard Membrane" manufactured by Nippon Polyplastics Co., Ltd. to create a composite membrane with the polymer membrane.

この複合膜の酸素透過率および選択率は第2表のとおシ
であった。
The oxygen permeability and selectivity of this composite membrane were as shown in Table 2.

第    2    表 〈実施例6〉 ポリメチルイソブチルシロキサンをベンゼンに溶解し1
0%溶液を作成した。この高分子溶液を実施例4と同様
の方法で水面上に展開し、日本ミリポアリミテッド社製
のミリポアフィルタニに減圧吸取りにより貼シ合わせ複
合膜を調整゛した。この複合膜の気体透過率および選択
率は第2表のとおりであった。
Table 2 (Example 6) Polymethylisobutylsiloxane was dissolved in benzene and 1
A 0% solution was created. This polymer solution was spread on the water surface in the same manner as in Example 4, and a composite membrane was prepared by adhering it to a Millipore filter tube manufactured by Nippon Millipore Limited by vacuum suction. The gas permeability and selectivity of this composite membrane were as shown in Table 2.

以上の!うに、本発明は化学構造が一般式(ここで、R
は炭素数が4〜9のアルキル基を示し、nはOを含まな
い整数であり、mはOを含む整数を示す。)で示される
ポリオルガノシロキサンより成る気体透過膜および上記
ポリオルガノ70キサン膜と多孔性支持体膜とを複合し
て成る気体透過膜で、気体透過性が高く、しかも選択性
のすぐれた気体透過膜を提供し、たとえば空気より酸素
の富化された酸素富化空気を容易に得ることができるの
で、各種内燃機関、諸工業、医療用等に利用価値が極め
て大きい。
More than! However, the chemical structure of the present invention is of the general formula (where R
represents an alkyl group having 4 to 9 carbon atoms, n is an integer not containing O, and m is an integer containing O. ) A gas-permeable membrane made of a polyorganosiloxane shown in For example, oxygen-enriched air, which has more oxygen than air, can be easily obtained, so it has extremely high utility value for various internal combustion engines, various industries, medical applications, etc.

Claims (2)

【特許請求の範囲】[Claims] (1)構造が次の一般式で示されるポリオルガノシロキ
サンよ構成る気体透過膜 (ここに、Rは炭素数が4個以上9個までであるアルキ
ル基を示し、nはOを含まない整数、mは・0又は1以
上の整数を示す。)
(1) A gas permeable membrane composed of polyorganosiloxane whose structure is represented by the following general formula (where R represents an alkyl group having 4 to 9 carbon atoms, and n is an integer not containing O) , m indicates an integer of 0 or 1 or more.)
(2)  ポリオルガノシロキサンが多孔性支持膜に支
持された複合膜として構成された特許請求の範囲第1項
記載の気体透過膜。
(2) The gas permeable membrane according to claim 1, which is constructed as a composite membrane in which the polyorganosiloxane is supported on a porous support membrane.
JP11246081A 1981-07-17 1981-07-17 Gas-permeable membrane Granted JPS5814929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11246081A JPS5814929A (en) 1981-07-17 1981-07-17 Gas-permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11246081A JPS5814929A (en) 1981-07-17 1981-07-17 Gas-permeable membrane

Publications (2)

Publication Number Publication Date
JPS5814929A true JPS5814929A (en) 1983-01-28
JPS6256774B2 JPS6256774B2 (en) 1987-11-27

Family

ID=14587182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11246081A Granted JPS5814929A (en) 1981-07-17 1981-07-17 Gas-permeable membrane

Country Status (1)

Country Link
JP (1) JPS5814929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269938A (en) * 2006-03-31 2007-10-18 Asahi Kasei Chemicals Corp Organopolysiloxane for gas separation membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269938A (en) * 2006-03-31 2007-10-18 Asahi Kasei Chemicals Corp Organopolysiloxane for gas separation membrane

Also Published As

Publication number Publication date
JPS6256774B2 (en) 1987-11-27

Similar Documents

Publication Publication Date Title
Takada et al. Gas permeability of polyacetylenes carrying substituents
JPS5814929A (en) Gas-permeable membrane
JPS6284126A (en) Poly-disubstituted acetylene/polyorganosiloxane graft copolymer anad gas separation membrane
JPS62183837A (en) Gas permeable membrane
JPS61252214A (en) Production of graft copolymer
JPS60257807A (en) Gas separating molded body
JPS5840127A (en) Gas-permeable membrane
JPS5814928A (en) Gas-permeable membrane
JPS5986612A (en) Polymer membrane
JPS61200833A (en) Carbon dioxide permselective membrane
US4755561A (en) Poly(disubstituted acetylene)/polyorganosiloxane graft copolymer and membrane for gas separation
EP0245516A1 (en) Polymer membrane for separating liquid mixture
JPH0692483B2 (en) Polysulfone-based graft copolymer
JPH01119324A (en) Preparation of gas separation membrane
JP2001009249A (en) Oxygen enriching membrane
JPH0436317A (en) Preparation of amorphous modified poly-(2,6-dimethyl-p-oxyphenylene)
JPS60225606A (en) Gas permselective membrane
JPS60110303A (en) Permselective membrane and composite film
JPH0331092B2 (en)
JPH0352926A (en) Amorphous modified poly(2,6-dimethyl-p-oxyphenylene)
JPS63141626A (en) Permselective membrane for gas
JPS6223402A (en) Separation membrane for liquid mixture
JPS61234911A (en) Gas permselective membrane
JPS6168106A (en) Manufacture of ultrathin membrane
JPS6071004A (en) Gas permselective membrane