JPS5840127A - Gas-permeable membrane - Google Patents

Gas-permeable membrane

Info

Publication number
JPS5840127A
JPS5840127A JP11474381A JP11474381A JPS5840127A JP S5840127 A JPS5840127 A JP S5840127A JP 11474381 A JP11474381 A JP 11474381A JP 11474381 A JP11474381 A JP 11474381A JP S5840127 A JPS5840127 A JP S5840127A
Authority
JP
Japan
Prior art keywords
group
gas
permeable membrane
oxygen
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11474381A
Other languages
Japanese (ja)
Other versions
JPS633644B2 (en
Inventor
Shiro Asakawa
浅川 史朗
Yukihiro Saito
斉藤 幸廣
Yoshimasa Ito
伊東 良将
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11474381A priority Critical patent/JPS5840127A/en
Publication of JPS5840127A publication Critical patent/JPS5840127A/en
Publication of JPS633644B2 publication Critical patent/JPS633644B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a selective gas-permeable membrane having selective permeability and a large permeation coefficient, by using a siloxane-phenyl alternating copolymer with a specific structure as the main constituent. CONSTITUTION:As the main constituent of a gas-permeable membrane, a siloxane-phenyl alternating copolymer shown by the formula (wherein R1 and R2 are each a substituent such as alkyl or vinyl, X is a substituent such as hydrogen or alkyl, m is an integer of 1-4) is used. Because this copolymer wherein silicon and an org. group are alternately bonded to oxygen is excellent in selectivity and has sufficient permeation capacity, an excellent gas-permeable membrane is obtained from this copolymer.

Description

【発明の詳細な説明】 本発明は、気体透過膜に関するもので、改善された選択
透過性を有し、さらに透過係数の大なる選択性気体透過
膜を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas permeable membrane, and provides a selective gas permeable membrane having improved permselectivity and a large permeability coefficient.

従来から混合物を膜を用いて分離する方法があるが、こ
れらは逆浸透膜、限外濾過膜等を用いたものであり、主
として液体を対象としていた。一方混合ガスの膜による
分離に関しては、その選択率、透過量が不十分でありた
ためほとんどがかえりみられることがなく、フィルムの
気体透過現象の応用としてはむしろ逆に包装用のガスバ
リヤ−フィルムが中心となりていた。
Conventionally, there are methods for separating mixtures using membranes, but these use reverse osmosis membranes, ultrafiltration membranes, etc., and are mainly intended for liquids. On the other hand, with regard to the separation of mixed gases through membranes, the selectivity and amount of permeation were insufficient, so most of them were not used again, and on the contrary, the application of the gas permeation phenomenon in films was mainly focused on gas barrier films for packaging. It was.

空気の成分のうちの21%をしめる酸素は、生産上はも
ちろん内燃機関、製鉄工業1食品工業。
Oxygen, which makes up 21% of the air's components, is used in internal combustion engines, iron and steel industry, and food industry.

医療機器、廃棄物処理をはじめ産業上鏝も重要な原料で
あり、従りて空気から酸素を効率よく安価に容易に分離
する方法が望まれてきた。
Trowels are important raw materials for medical equipment, waste treatment, and other industrial applications, and therefore there has been a desire for a method to efficiently, inexpensively, and easily separate oxygen from air.

膜を使用しないで空気中より酸素、または窒素を分離す
る方法としては従来ゼオライトまたは特殊なカーボンか
ら成る分離剤に空気を通して分離。する方法が知られて
いる。しかしながら、この方法は連続的に富化酸素、ま
たは窒素を供給できないという欠点を持りている。
The conventional method of separating oxygen or nitrogen from the air without using a membrane is to pass the air through a separation agent made of zeolite or special carbon. There are known ways to do this. However, this method has the disadvantage that enriched oxygen or nitrogen cannot be supplied continuously.

これに対し膜による分離法は、富化酸素または窒素を連
続的に供給できるため産業上きわめて大きな利点を有し
ている。
On the other hand, the separation method using membranes has an extremely large industrial advantage because enriched oxygen or nitrogen can be continuously supplied.

このため選択分離性の高く、かつ透過量の犬なる分離膜
が望まれており、現在捷で高分子薄膜を用いた方法が既
にいくつか報告されている。
For this reason, a separation membrane with high selective separation and a high permeation rate is desired, and several methods using thin polymer membranes have already been reported.

高分子薄膜を用いて空気中から酸素捷たは窒素を分離す
る場合には、高分子薄膜の酸素、または窒素に対する透
過係数の大小、薄膜としての機械的強度および薄膜化技
術が重要な問題となる。
When separating oxygen or nitrogen from the air using a polymer thin film, important issues are the permeability coefficient of the polymer thin film for oxygen or nitrogen, the mechanical strength of the thin film, and the thin film technology. Become.

現在報告されている材料で比較的透過能のすぐれている
物質としては、天然ゴム、ポリブタジェンのような合成
ゴムや、更にすぐれたものではシリコーンゴムなどがあ
る。このうちノリコーンゴムに関しては、はとんど全て
の気体に対して他のいかなる高分子材料よりもすぐれた
透過能を示し、各気体の分離比は小さくなるが実用上好
都合な高分子材料と考えられる。シリコーンすなわちポ
リオルガノシロキサンは、分子間相互作用が低くシロキ
サン結合の屈曲性が大きいという性質を有しているが、
これが気体透過能にすぐれる要因として解釈されている
。しかしこの反面上記性質は、機械的強度の低下と密接
な関係を有(〜ており、高分子鎖間の相互作用の小さい
ことは、全体として高分子を″非晶質化すると共に更に
進んで機械的強度を著るしく低下させる原因ともなって
いる。従ってシリコーンの場合には加硫処理によって架
橋し、ノリコーンゴムとしてでしか分離膜への利用はで
きない。一般的な構造材料としてのシリコーンゴムは、
周知のように非常にすぐれた耐候性と十分な機械的強度
を有しているが、これを気体透過用薄膜として用いるた
めには上記の加硫処理が薄膜製造上大きな欠点となりて
いた。
Currently reported materials with relatively good permeability include natural rubber, synthetic rubbers such as polybutadiene, and even more excellent materials such as silicone rubber. Among these, noricorn rubber shows superior permeability to almost all gases than any other polymer material, and although the separation ratio of each gas is small, it is considered to be a polymer material that is convenient for practical use. . Silicone, or polyorganosiloxane, has the property of low intermolecular interactions and high flexibility of siloxane bonds.
This is interpreted as a factor contributing to the excellent gas permeability. However, on the other hand, the above properties are closely related to a decrease in mechanical strength. It also causes a significant decrease in mechanical strength.Therefore, in the case of silicone, it can only be crosslinked through vulcanization and used for separation membranes as noricorn rubber.Silicone rubber, as a general structural material,
As is well known, it has excellent weather resistance and sufficient mechanical strength, but in order to use it as a thin film for gas permeation, the above-mentioned vulcanization treatment is a major drawback in the production of the thin film.

上記した欠点を克服し、製膜法を容易ならしめるために
、たとえばポリジメチルシロキサン−ポリカーボネート
のごときシリコーンと他の高分子とのプロ□ツク共重合
体が提案されている。この様な共重合体は、ポリジメチ
ルシロキサン単体に他の高分子が導入されるため、シリ
コーンゴムと比較して気体透過能は低下するが、高分子
全体としては加硫処理を行なわなくても薄膜化が可能な
機械的強度をもち、しかも有機溶剤可溶性の高分子とな
るため、製膜にキャスト法、その他の一般的な方法が利
用で冬薄膜化が非常に容易となる。
In order to overcome the above-mentioned drawbacks and to facilitate the film forming method, professional copolymers of silicone and other polymers, such as polydimethylsiloxane-polycarbonate, have been proposed. In such copolymers, other polymers are introduced into the polydimethylsiloxane alone, so the gas permeability is lower than that of silicone rubber, but the polymer as a whole remains stable even without vulcanization. Since it is a polymer that has mechanical strength that allows it to be made into a thin film and is soluble in organic solvents, it is very easy to make a thin film by using the casting method or other common methods.

しかし、気体透過性能はシリ、コーンゴムにくらべて低
下しており、酸素、窒素に対する選択性はシリコーンゴ
ムと同程度の2程度と低く濃縮性に難臭がある。
However, its gas permeability is lower than that of silicone or corn rubber, and its selectivity for oxygen and nitrogen is low at about 2, which is about the same as that of silicone rubber, and its condensability is unpleasant.

本発明者らは上記の選択性の向上を向上させるために種
々の検討を行りた結果、前記のブロック共重合体ではな
く、硅素原子と有機基を交互に酸素原子と結合させた交
互共重合体が選択性にすぐれ、かつ十分な透過性能を有
していることを見出した。すなわち、一般式が で示さ・−れる交互共重合体から本質的に成る気体透過
膜がすぐれた気体透過性と選択性を示すことを見出した
。ここに、R,、R2はそれぞれアルキル基、ビニル基
、ハロゲン置換アルキル基、およびフェニル基より選ば
れる置換基を示し、Xは水素。
The present inventors conducted various studies to improve the selectivity described above, and as a result, instead of using the block copolymer described above, we developed an alternating copolymer in which silicon atoms and organic groups are alternately bonded to oxygen atoms. It has been found that the polymer has excellent selectivity and sufficient permeability. That is, it has been found that a gas permeable membrane consisting essentially of an alternating copolymer represented by the general formula - exhibits excellent gas permeability and selectivity. Here, R, and R2 each represent a substituent selected from an alkyl group, a vinyl group, a halogen-substituted alkyl group, and a phenyl group, and X is hydrogen.

アルキル基、スルホン酸基、カルボキシル基、およびカ
ルボキシルメチル基より選ばれる置換基、mは1〜4の
整数、nは重合度を示す。
A substituent selected from an alkyl group, a sulfonic acid group, a carboxyl group, and a carboxylmethyl group, m is an integer of 1 to 4, and n represents the degree of polymerization.

上記化合物は、例えばジクロロジメチルシランあるいは
ジアニリノジフェニルシランのよりな二官能性基を有す
るシラン化合物と、P−ヒドロキノンのようなジヒドロ
キシフェニル化合物とを縮合させることにより容易に得
ることができる。二官能性シラン化合物の官能基として
は、クロル基。
The above compound can be easily obtained by condensing a silane compound having a difunctional group such as dichlorodimethylsilane or dianilinodiphenylsilane with a dihydroxyphenyl compound such as P-hydroquinone. The functional group of the bifunctional silane compound is a chlorine group.

ジメチルアミノ基、ジエチルアミノ基、およびアニリノ
基(フェニルアミノ基)などが有用であり、R4,R2
としては、メチル基、エチル基、プロピル基、ビニル基
、フルオロプロピル基およびフェニル基などが好適であ
る。一方、これと交互共重合するジヒドロキシフェニル
化合物は、2メチルハイドロ、キノ5ン、2,6ジメチ
ルノ・イドロキノン。
Dimethylamino group, diethylamino group, anilino group (phenylamino group), etc. are useful, and R4, R2
Suitable examples include a methyl group, an ethyl group, a propyl group, a vinyl group, a fluoropropyl group, and a phenyl group. On the other hand, the dihydroxyphenyl compounds that are alternately copolymerized with this are 2-methylhydro, quinone, and 2,6-dimethylhydroquinone.

2メチル、6ブロピルノ・イドロキノンなどが利用でき
、またP−ヒドロキノンと交互共重合の後フ□  リー
デルクラフッ型反応によりて置換基が導入出来、任意の
アルキル基、スルホン酸基、カルホキシル基、カルボキ
シメチル基などが有用である。
2-methyl, 6-bropyrno-hydroquinone, etc. can be used, and after alternating copolymerization with P-hydroquinone, a substituent can be introduced by a Riedelkraff type reaction, and any alkyl group, sulfonic acid group, carboxyl group, carboxyl Methyl groups are useful.

得られた交互共重合体は、テトラヒドロフラン。The resulting alternating copolymer is tetrahydrofuran.

1.4ジオキサンのような環状エーテル、ジメチルホル
ムアミド、ジメチルスルホキシドなどの有機溶媒に可溶
で、これらの溶液から容易にキャスト製膜が可能である
。こうして作成した交互共重合体による気体透過膜は、
酸素透過率が10−8〜1o−9(CC−crn/Cr
l8eC−crnHq)と比較的大きく、かつ酸素、窒
素の選択率が2〜6と大きい値を示した。
It is soluble in cyclic ethers such as 1.4 dioxane, and organic solvents such as dimethylformamide and dimethyl sulfoxide, and can be easily cast into films from these solutions. The gas permeable membrane made of alternating copolymers thus created is
Oxygen permeability is 10-8 to 1o-9 (CC-crn/Cr
18eC-crnHq), and the selectivity for oxygen and nitrogen showed a large value of 2 to 6.

以下実施例について説明する。Examples will be described below.

〈実施例−1〉 J、 E、 Curryらの方法(L Appl、 P
o1y、Set。
<Example-1> Method of J, E, Curry et al. (L Appl, P
o1y, Set.

9 295 1965年)に従りて、ジフェニルジアニ
リノシランと、P−ヒドロキノンヲ等モル量加熱融解し
、減圧状態で生成するアニリンを回収しつつ6時間反応
させた。得られたポリマーをテトラヒドロフランに溶解
し、メタノールにて再沈澱精製して再びテトラヒドロフ
ランに溶解した。
9, 295, 1965), equimolar amounts of diphenyldianilinosilane and P-hydroquinone were heated and melted, and reacted for 6 hours while recovering the produced aniline under reduced pressure. The obtained polymer was dissolved in tetrahydrofuran, purified by reprecipitation with methanol, and then dissolved in tetrahydrofuran again.

これをGPC測定したところ、分子量は約45.000
でありた。この溶液をカラス板上に流延して乾燥し、フ
ィルムを得た。このフィルムの気体透過率は、酸素に対
して4.+ X + 0−9(cc−儒/ crl−s
ea−cm Hg )窒素との選択率は4.2でありた
When this was measured by GPC, the molecular weight was approximately 45,000.
It was. This solution was cast on a glass plate and dried to obtain a film. The gas permeability of this film is 4. + X + 0-9 (cc-Confucian/crl-s
The selectivity with respect to nitrogen (ea-cm Hg) was 4.2.

〈実施例−2〉 メチルハイドロキノンをテトラヒドロフランに溶解し、
等モルのジメチルジクロルシランのテトラヒドロフラン
溶液を滴下し混合して60℃で1時間加熱攪拌した。こ
の間、塩酸ガスがかなり激しく発生した。温度を除々に
上げてテトラヒドロフランを蒸発させ、約100℃で6
時間反応させ、最終的には260℃まで温度を上げた。
<Example-2> Methylhydroquinone was dissolved in tetrahydrofuran,
A solution of equimolar dimethyldichlorosilane in tetrahydrofuran was added dropwise and mixed, followed by heating and stirring at 60° C. for 1 hour. During this time, hydrochloric acid gas was generated quite violently. Gradually raise the temperature to evaporate the tetrahydrofuran and heat at approximately 100℃ for 6 hours.
The reaction was allowed to proceed for several hours, and the temperature was finally raised to 260°C.

得られた固形物をテトラヒドロフランに溶解し、メタノ
ールで再洗精製してGPC測定したところ、分子量は約
35,000であった。これをもとにして実施例−1と
同様の方法でフィルムを作り、気体透過率を測定した。
The obtained solid was dissolved in tetrahydrofuran, washed and purified again with methanol, and measured by GPC, and the molecular weight was approximately 35,000. Based on this, a film was made in the same manner as in Example 1, and the gas permeability was measured.

酸素透過率8.9 X 1O−9(cc −cm / 
crl ・5ec−cmHq)を窒素との選択率は3.
2であった。
Oxygen permeability 8.9 x 1O-9 (cc-cm/
The selectivity of crl ・5ec-cmHq) with nitrogen is 3.
It was 2.

〈実施例−3〉 実施例−1の方法に従りて、ジフェニルジアニリノシラ
ンの代りにジメチルジエチルアミノシランを用いて合成
した。得られたポリマーをGPC測定したところ、分子
量は約60,000でありた。
<Example 3> Synthesis was performed according to the method of Example 1 using dimethyldiethylaminosilane instead of diphenyldianilinosilane. When the obtained polymer was measured by GPC, the molecular weight was about 60,000.

このポリマーをクロロホルムに溶解させ(一部膨潤した
)、これを室温で攪拌させながらクロルスルホン酸のク
ロロホルム溶液を滴下し、2時間室温で攪拌した後−晩
室温放置した。この溶液をメタノール中に投入し、得ら
れた沈澱を濾別した。
This polymer was dissolved in chloroform (partially swollen), and a chloroform solution of chlorosulfonic acid was added dropwise to the solution while stirring at room temperature. After stirring at room temperature for 2 hours, it was left at room temperature overnight. This solution was poured into methanol, and the resulting precipitate was filtered off.

、こうして得られた沈澱物を1,4ジオキサンに溶解し
、カラス板上に流延してフィルムを形成した。
The precipitate thus obtained was dissolved in 1,4 dioxane and cast on a glass plate to form a film.

このポリマーによるフィルムの気体透過率は酸素に対し
て2 X 10  (cc−cm/crd 、5ec−
cmHq )で、窒素との選択率は4.5を示した。
The gas permeability of the film made of this polymer is 2 x 10 (cc-cm/crd, 5ec-cm) for oxygen.
cmHq), the selectivity with respect to nitrogen was 4.5.

以上代表的な実施例を示したが、本発明は上記以外に前
述したような他の置換基を含む共重合体に対してもほぼ
同様の手段で合成が可能であり、−いずれの場合も酸素
透過率が10−8〜1o−9<    0 cc−cm/cA ・5een CrnH9)であり、
また酸素の窒素に対する選択率は2〜6と高い選択率を
示した。
Although typical examples have been shown above, the present invention can also be used to synthesize copolymers containing other substituents such as those described above by almost the same means. The oxygen permeability is 10-8 to 1o-9 < 0 cc-cm/cA 5een CrnH9),
Moreover, the selectivity of oxygen to nitrogen showed a high selectivity of 2 to 6.

以上のように、本発明は一般式が で示されるシロキサン、フェニル交互共重合体から本質
的に成る気体透過膜である。ここに、R4゜R2はそれ
ぞれアルキル基、ビニル基、ハロゲン置換、アルキル基
、およびフェニル基より成る群より選ばれた置換基を示
し、Xは水素、アルキル基、スルホン酸基、カルボキシ
ル基、およびカルボキシルメチル基より成る群より選ば
れた置換基を示し、mは1〜4である。このような構成
の気体透過膜は気体透過率がシリコーンゴムの4以上と
高り、シかも選択率が2〜6と高いすぐれた作用効果を
呈し、特に燃焼用、諸工業用、医療用その他の酸素富化
空気を得るために非常に有用である。
As described above, the present invention is a gas permeable membrane consisting essentially of a siloxane/phenyl alternating copolymer represented by the general formula. Here, R4゜R2 each represents a substituent selected from the group consisting of an alkyl group, a vinyl group, a halogen-substituted group, an alkyl group, and a phenyl group, and X represents hydrogen, an alkyl group, a sulfonic acid group, a carboxyl group, and It represents a substituent selected from the group consisting of carboxylmethyl groups, and m is 1-4. The gas permeable membrane with such a structure has a high gas permeability of 4 or more compared to silicone rubber, and a high selectivity of 2 to 6, exhibiting excellent effects, and is particularly suitable for combustion, various industrial, medical, and other uses. is very useful for obtaining oxygen-enriched air.

Claims (1)

【特許請求の範囲】 一般式が下記で示されるシロキサン、フェニル交互共重
合体を主たる構成要素とする気体透過膜。 (ここに、R,、R2はそれぞれアルキル基、ビニル基
、ハロゲン置換アルキル基、およびフェニル基より選ば
れた置換基を示し、Xは水素、アルキル基、スルホン酸
基、カルボキシル基、カルボキシルメチル基よシ選ばれ
た置換基を示し、mは1〜4の整数を示す。)
[Claims] A gas permeable membrane whose main constituent is a siloxane/phenyl alternating copolymer having the general formula shown below. (Here, R, and R2 each represent a substituent selected from an alkyl group, a vinyl group, a halogen-substituted alkyl group, and a phenyl group, and X represents hydrogen, an alkyl group, a sulfonic acid group, a carboxyl group, and a carboxylmethyl group. Indicates a carefully selected substituent, m indicates an integer from 1 to 4.)
JP11474381A 1981-07-22 1981-07-22 Gas-permeable membrane Granted JPS5840127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11474381A JPS5840127A (en) 1981-07-22 1981-07-22 Gas-permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11474381A JPS5840127A (en) 1981-07-22 1981-07-22 Gas-permeable membrane

Publications (2)

Publication Number Publication Date
JPS5840127A true JPS5840127A (en) 1983-03-09
JPS633644B2 JPS633644B2 (en) 1988-01-25

Family

ID=14645541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11474381A Granted JPS5840127A (en) 1981-07-22 1981-07-22 Gas-permeable membrane

Country Status (1)

Country Link
JP (1) JPS5840127A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071022A (en) * 1983-09-29 1985-04-22 Matsushita Electric Ind Co Ltd Gas permselective membrane
JPH01227021A (en) * 1988-03-08 1989-09-11 Tokyo Riyousuiki Kogyosho:Kk Method and apparatus for testing flowmeter and displacement meter
JPH0347842A (en) * 1989-05-18 1991-02-28 General Electric Co <Ge> Polymeric reaction product of bisphenol with organosilicon compound and manufacture thereof
WO2001030787A1 (en) * 1999-10-28 2001-05-03 National Institute Of Advanced Industrial Science And Technology Silicon-containing polymers
CN104710619A (en) * 2015-03-06 2015-06-17 苏州阳桥化工科技有限公司 Polydimethyl silicate terephthalic diester polymer as flame-retardant charring agent and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071022A (en) * 1983-09-29 1985-04-22 Matsushita Electric Ind Co Ltd Gas permselective membrane
JPH01227021A (en) * 1988-03-08 1989-09-11 Tokyo Riyousuiki Kogyosho:Kk Method and apparatus for testing flowmeter and displacement meter
JPH0347842A (en) * 1989-05-18 1991-02-28 General Electric Co <Ge> Polymeric reaction product of bisphenol with organosilicon compound and manufacture thereof
WO2001030787A1 (en) * 1999-10-28 2001-05-03 National Institute Of Advanced Industrial Science And Technology Silicon-containing polymers
US6753401B1 (en) 1999-10-28 2004-06-22 National Institute Of Advanced Industrial Science And Technology Silcon-containing polymers
CN104710619A (en) * 2015-03-06 2015-06-17 苏州阳桥化工科技有限公司 Polydimethyl silicate terephthalic diester polymer as flame-retardant charring agent and preparation method thereof
CN104710619B (en) * 2015-03-06 2018-08-21 湖州睿高新材料有限公司 Fire-retardant carbon forming agent poly dimethyl silicic acid is to benzene diester polymer and preparation method thereof

Also Published As

Publication number Publication date
JPS633644B2 (en) 1988-01-25

Similar Documents

Publication Publication Date Title
Tsuchihara et al. Polymerization of silicon-containing diphenylacetylenes and high gas permeability of the product polymers
JPS59154106A (en) Gas-separation membrane
KR20130125224A (en) Ladder-type thiol-based silsesquioxane polymer and method for preparing the same
JPS5840127A (en) Gas-permeable membrane
JPH03281631A (en) Fluorinated diaminobenzene derivative and polyimide
US4746334A (en) Poly(disubstituted acetylene)/polyorganosiloxane graftcopolymer and membrane for gas separation
JPH04227829A (en) Semipermeable membrane and component separation method of gas mixture
JPS61252214A (en) Production of graft copolymer
JPH0255100B2 (en)
JPS6256773B2 (en)
JP3290461B2 (en) Diphenylacetylene polymer
JPS6250175B2 (en)
JPS59123502A (en) Selective permeable membrane
Kono et al. Synthesis and properties of poly (phenylacetylenes) having two polar groups or one cyclic polar group on the phenyl ring
JPS61146320A (en) Gas permeable membrane
JPS5930121B2 (en) gas permeable membrane
JPS6118421A (en) Gas separating membrane
JPS5847203B2 (en) Selective gas permeable membrane
JPH0464729B2 (en)
JPS6226803B2 (en)
JPS6071005A (en) Gas permselective membrane
JPH0326701B2 (en)
JPS60238352A (en) Polymer composition having gas permeability
JPS5814928A (en) Gas-permeable membrane
JPS61115911A (en) Diethynylsilane compound polymer and its production