JPS58149025A - Optical heterodyne-homodyne detector - Google Patents

Optical heterodyne-homodyne detector

Info

Publication number
JPS58149025A
JPS58149025A JP57032758A JP3275882A JPS58149025A JP S58149025 A JPS58149025 A JP S58149025A JP 57032758 A JP57032758 A JP 57032758A JP 3275882 A JP3275882 A JP 3275882A JP S58149025 A JPS58149025 A JP S58149025A
Authority
JP
Japan
Prior art keywords
light
local oscillation
output
signal light
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57032758A
Other languages
Japanese (ja)
Other versions
JPS6344210B2 (en
Inventor
Minoru Shikada
鹿田 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57032758A priority Critical patent/JPS58149025A/en
Publication of JPS58149025A publication Critical patent/JPS58149025A/en
Publication of JPS6344210B2 publication Critical patent/JPS6344210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/002Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light using optical mixing

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To make the branching loss of a coupling circuit substantially small with respect to signal light and to make the higher outputs of local oscillating light sources less necessary by incorporating the 1st, the 2nd photodetecting parts which detect the 1st, the 2nd coupled beams of light obtained from the 1st, the 2nd exit ends to convert said beams to electrical signals, respectively and a coupling part which couples the electrical signals from the 1st, the 2nd photodetecting parts. CONSTITUTION:When the beam diameters and optical paths of signal light 4 and local oscillation light 9 are adjusted, the 1st signal light 7 and the 1st local oscillation light 13, the 2nd signal light 8 and the 2nd local oscillation light 14 are coupled to form the 1st, the 2nd coupled beams 23, 24 of light. The 1st, the 2nd beams 23, 24 are made incident to the 1st, the 2nd photodetecting parts 17, 18 respectively past the 1st, the 2nd exit ends 15, 16. The 1st, the 2nd parts 17, 18 are constituted of photodiodes, amplifiers, etc., and output the 1st, the 2nd intermediate frequency outputs 19, 20 of a frequency f0 by heterodyne detection from the respective coupled beams of light in the form of electrical signals. The 1st, the 2nd intermediate frequency outputs 19, 20 are electrically coupled in a coupling part 21 to an intermediate frequency output 22.

Description

【発明の詳細な説明】 この発明は光ヘテロダイン検波、または光ホモダイン検
波光通信システムにおける光合波、検波装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical multiplexing and detection device in an optical heterodyne detection or optical homodyne detection optical communication system.

光通信、特に光フアイバ通信における光ヘテロダイン、
光ホモダイン検波方式は、その高光受信感度の故に長中
継間隔伝送を可能にする方式として注目されている。こ
の方式の受信部における問題点のひとつに、信号光と局
部発振光を合わせる合波回路での分岐損失発生の問題が
ある。この合波回路として例えばハーフミラ−を用いて
両党を、合波する場合、ハーフミラ−によって光ビーム
が2分されるので両党に対して少なくとも3dB(50
%)の分岐損失が生じておシ、これらの分岐損失はその
ままS/NO劣化、すなわち光受信感度の劣化につなが
るという欠点があっ九。
Optical heterodyne in optical communication, especially optical fiber communication,
The optical homodyne detection method is attracting attention as a method that enables long repeat interval transmission because of its high optical reception sensitivity. One of the problems with the receiving section of this system is that branching loss occurs in the multiplexing circuit that combines the signal light and the local oscillation light. For example, when a half mirror is used as this multiplexing circuit to combine both parties, the half mirror divides the light beam into two, so the light beam is at least 3 dB (50 dB) for both parties.
%), and these branching losses directly lead to S/NO deterioration, that is, deterioration of optical reception sensitivity.

従来この対策として、ミ2−の透過率を大きくして信号
光に対する分岐損失を小さくする一方、その分だけ局部
発振光に対して大きくなった分岐損失を局部発振光源の
高出力化で補うことが考えられてきた。しかしその場合
、局部発振光源の高出力化は装置の大形化、光源の信頼
性の低下等をも九らすという欠点が生じていた。特に半
導体レーザを局部発振光源として使う場合、20 mW
以上の出力が要求されることになるが、業際この出力で
信頼性を保証するのは容易ではない。
Conventionally, the solution to this problem was to increase the transmittance of Mi2- to reduce the branching loss for the signal light, and at the same time compensate for the increased branching loss for the locally oscillated light by increasing the output of the locally oscillated light source. has been considered. However, in this case, increasing the output of the local oscillation light source has the disadvantage that it increases the size of the device and reduces the reliability of the light source. Especially when using a semiconductor laser as a local oscillation light source, 20 mW
Although the above output is required, it is not easy to guarantee reliability with this output in industry.

本発明の目的はこのような欠点を除き、合波回路の信号
光に対する、分岐損失を実効的に小さくするとともに、
局部発振光源の高出力化があまシ必賛でない光ヘテロダ
イン・ホモダイン検波装置を提供することにある。
The purpose of the present invention is to eliminate such drawbacks, effectively reduce branching loss for signal light in a multiplexing circuit, and
An object of the present invention is to provide an optical heterodyne/homodyne detection device in which a high output of a local oscillation light source is not a must.

この発明によれば、第1、第2の入射端と第1、第2の
出射端を有し、前記第1、第2の入射端からの入射光が
、それぞれ前記第1、第2の出射端におよそ1:1の比
で分岐されて出射する方向性結合器と、前記第1の入射
端から信号光を、前記第2の入射端から局部発振光をそ
れぞれ入射することによシ前記Ml、jlE2の出射端
から得られるl/Ii1、Al2の合波光をそれぞれ受
光して電気信号に変換する1g1、第2の受光部と、こ
の第1、第2の受光部からの前記電気信号を合成する合
成部を含む光ヘテロダイン・ホモダイン検波装置が得率
発明の光ヘテロダイン拳ホモターイン検波装置は方向性
結合器(合波回路)で合波される信号光、局部発振′光
の内、従来損失分とされていた光成分についても合波、
受光を行ない、その結果得られた電気信号を、従来有効
分とされていた光成分から得た電気信号に加え合成する
ものである。この場合両電気信号の位相が合っていると
信号成分については電圧相加則が、受光部で発生する雑
音については電力相加則が成p立つので、合成しない場
合に比べ87Nが最大3dB改善される。このため信号
光が合波回路で受ける分t&損失を実効的に零にできる
とともに、局部発振光源の高出力化もあまシ必要でない
光ヘテロダイン−ホモダイン検波装置か得られる。次に
図面を用いて本発明について詳しく説明する。
According to this invention, the invention has first and second input ends and first and second output ends, and the incident light from the first and second input ends is transmitted to the first and second input ends, respectively. A directional coupler that is branched at a ratio of approximately 1:1 to the output end, and a signal light is input from the first input end, and a local oscillation light is input from the second input end. 1g1 and a second light receiving section that receive the combined light of l/Ii1 and Al2 obtained from the output ends of the Ml and jlE2, respectively, and convert them into electrical signals; and the electricity from the first and second light receiving sections. An optical heterodyne/homodyne detection device including a combining unit that combines signals is an advantage.The optical heterodyne/homodyne detection device of the invention detects the signal light and local oscillation light that are multiplexed by a directional coupler (multiplexing circuit). Optical components that were conventionally treated as losses can also be combined.
It receives light and synthesizes the resulting electrical signal in addition to the electrical signal obtained from the light component, which has conventionally been considered an effective component. In this case, if both electrical signals are in phase, the voltage additive law holds true for the signal component, and the power additive law holds true for the noise generated in the light receiving section, so 87N improves by up to 3 dB compared to the case where they are not combined. be done. Therefore, it is possible to effectively reduce the amount t&loss that the signal light receives in the multiplexing circuit to zero, and to obtain an optical heterodyne-homodyne detection device that does not require high output of the local oscillation light source. Next, the present invention will be explained in detail using the drawings.

Al1図は本発明の@1の実施例を説明するための構成
図である。この実施例では方向性結合器1はハーフミラ
−2で構成されている。伝送路3を出射した信号光4は
、第1のレンズ5でほぼ平行先細に変換されて第1の入
射端6から71−フミラー2に入射し、xi 、Jli
2O(I号光7.8に2分される。一方信号光4とはf
oだけ周波数が異なる局部発振光9ti、半導体レーザ
よりなる局部発振光源lOから出射されてJII2のレ
ンズ11でほぼ平行光に変換される。そしてlI20入
射端12からハーフミラ−2に入射して第1、第2の局
部発振光13.14に2分される。信号光4と局部発振
光9のビーム径や光路をp4!1することにより、第1
の信号光7と第1の局部発振光xa、菖2の信号光8と
Al2の局部発振光14が合波され・第1、Al2の合
波光23.24となる。11J1、第2の合妖光23.
24は第1・第2の出射端15,16を通ってそれぞれ
JIll、第2の受光部17.18に入射する。第1.
第2の受光部17.18#′i7オトダイオ一ド中増m
器等で構成されてお夛、合波された各党ビームからヘテ
ロダイン検波によシ周波数f0 の第1.I12の中間
周波出力19.20を電気信号の形で出力する。第1、
第2の中間周波出力19.20は位相を合わされて合成
部21で電気的に合成され、中間周波出力22となる。
Figure Al1 is a configuration diagram for explaining the @1 embodiment of the present invention. In this embodiment, the directional coupler 1 is composed of a half mirror 2. The signal light 4 emitted from the transmission line 3 is converted into a substantially parallel tapered beam by the first lens 5, and enters the 71-fumirror 2 from the first input end 6, and is reflected by xi, Jli
2O (divided into two parts of I light 7.8. On the other hand, signal light 4 is f
Local oscillation light 9ti having a frequency different by o is emitted from a local oscillation light source 10 made of a semiconductor laser, and is converted into substantially parallel light by a JII2 lens 11. The light then enters the half mirror 2 from the input end 12 of the II20 and is divided into two parts, the first and second local oscillation lights 13 and 14. By setting the beam diameters and optical paths of the signal light 4 and the local oscillation light 9 to p4!1, the first
The signal light 7 and the first local oscillation light xa, the signal light 8 of the irises 2 and the local oscillation light 14 of Al2 are combined to form the first combined light 23 and 24 of Al2. 11J1, Second Goyouko 23.
24 passes through the first and second output ends 15 and 16 and enters the JIll and second light receiving sections 17 and 18, respectively. 1st.
Second light receiving part 17.18 #'i7 Otodiode medium increase m
The first frequency f0 is detected by heterodyne detection from the combined beams of each party. The intermediate frequency output 19.20 of I12 is output in the form of an electrical signal. First,
The second intermediate frequency outputs 19 and 20 are matched in phase and electrically combined in a combining section 21 to become an intermediate frequency output 22.

なお、位相の調整は館1、第2の受光部17.18と合
成部21をつなぐ導線の長さを変えて行なった。
Incidentally, the phase adjustment was carried out by changing the length of the conducting wire connecting the building 1, the second light receiving section 17, 18, and the combining section 21.

次に本実施例の効果を説明する。まず、第1の実施例に
おいて信号光4の光パワーをPsとする。
Next, the effects of this embodiment will be explained. First, in the first embodiment, the optical power of the signal light 4 is assumed to be Ps.

を九九ヘテロダイン検波を有効に行なうのに必要な第1
、第2の局部発振光13.14の元パワーがPL、従っ
て局部発振光90元パワーが2Pt、であるとする。P
t、は伝送速度数百Mb/sの光フアイバ通信の場合で
5mW程度である。なお、方向性結合器1.第1、第2
のレンズ5,11等において、吸収、散乱等で生じる過
剰撫゛失は小さいので無視する。また、信号光に対して
分岐損失がない合波回路を仮定し、受光部にPsO信号
光とPLの局部発振光が入射′シ九場合、中間周波出力
のS/Nがaになる゛とする。ところが、第10笑゛施
例では、第1、第2の受光ml?、18には分岐損失の
ために!−Psになった第1、第2の信号光7.8と、
Px、の$1.第2の局部発振光1−3゜14とがそれ
ぞれ合波されて入射するので、第1、絽2の中間周波出
力19.20のS/Nはそれぞれa / 2となる。し
かし合成部21で第1%第2の中間周波出力19.20
が位相を合わせて合波されると、信号成分に関しては電
圧相加の原理が、雑音成分に関しては電力相加の原理が
適用されるので8/Nが2倍に改善されて烏となる。
The first step required to perform effective heterodyne detection is
, it is assumed that the original power of the second local oscillation light 13 and 14 is PL, and therefore the original power of the local oscillation light 90 is 2Pt. P
t is approximately 5 mW in the case of optical fiber communication with a transmission speed of several hundred Mb/s. Note that the directional coupler 1. 1st, 2nd
In the lenses 5, 11, etc., excess loss caused by absorption, scattering, etc. is small and therefore ignored. Also, assuming a multiplexing circuit with no branching loss for the signal light, and when the PsO signal light and the PL local oscillation light are incident on the light receiving section, the S/N of the intermediate frequency output becomes a. do. However, in the 10th embodiment, the first and second received light ml? , 18 due to branch loss! -The first and second signal lights 7.8 which have become Ps,
Px, $1. Since the second local oscillation light 1-3° 14 is respectively combined and input, the S/N of the intermediate frequency output 19.20 of the first and second cells is a/2. However, in the combining section 21, the 1% second intermediate frequency output is 19.20
When the signals are combined in phase, the principle of voltage addition is applied to the signal component, and the principle of power addition is applied to the noise component, so 8/N is improved by two times, resulting in a rough result.

結局、局部発振光5の光パワーを必要量PLの2倍にす
るだけで信号光4に対する合波回路の分岐損失が零の場
合と同じ8/Nが得られることになる。
In the end, just by increasing the optical power of the local oscillation light 5 to twice the required amount PL, 8/N, which is the same as when the branching loss of the multiplexing circuit for the signal light 4 is zero, can be obtained.

従来例では、ハーフミラ−を使う場合、S/Nをa/Z
にしかできなかった。またミラーの透過率を例えFiS
O%にしてS/Nを0.8aにしようとする場合、局部
発振光に対するミラーの分岐損失が大きくなるので、受
光部への局部発振光入力をPt、得るためには5・PL
O局部局部発源光源出力要になった・511PLは約2
5rnWに相当し、現状の半導体レーザでこの値を安定
に得るのは簡イ 単ではない。これに対し本発明ではS/Nを1にできて
、しかも局部発振光源の出力は2@PL、約10mWで
良い等、大幅な改善が得られる。
In the conventional example, when using a half mirror, the S/N is a/Z.
I could only do it. Also, let us compare the transmittance of a mirror with FiS.
When trying to set the S/N to 0.8a at 0%, the branching loss of the mirror for the local oscillation light becomes large, so in order to obtain the local oscillation light input to the light receiving section by Pt, 5・PL is required.
O local local source light source output required - 511PL is approximately 2
This corresponds to 5rnW, and it is not easy to stably obtain this value with current semiconductor lasers. On the other hand, in the present invention, the S/N can be set to 1, and the output of the local oscillation light source can be 2@PL, about 10 mW, resulting in a significant improvement.

第2図は本発明の第2の実施例を説明するための構成図
である。第2の実施例においては方向性結合器1は光I
C化したものを、第1、第2の受光部17.18、合成
部21は電気IC化したものを使用した所に特徴がある
FIG. 2 is a configuration diagram for explaining a second embodiment of the present invention. In the second embodiment, the directional coupler 1
The feature is that the first and second light receiving sections 17, 18, and the combining section 21 are made of electric ICs that are made of carbon.

方向性結合器lはガラス基板30と、そのガラス基板3
0上にチタンを拡散して作ったgl、x2の4ff路3
1.32とから構成されている。伝送路3からの信号光
4(図示せず)は1g10入射端6から直接第1の導波
路31に結合する。結合した信号4は近接部3“3で約
1の光パワーが第2の導波路に分岐され、第2の信号光
8(図示せず)となって第2の出射端16に向う。残シ
1/2の光パワーは第1の信号光7(図示せず)として
第1の出射端15に向う。−男手導体レーザよシなる局
部発振光源10からの局部発振光9(図示せず)は光フ
ァイバ34で伝送されて、第2の入射端12から第2の
導波路32に結合する。局部発振光9は信号光4の場合
と同様に近接部33で第1、第2の局部発振光13.1
4(図示せず)に2分される。第1の局部発振光13は
第1の導波路31tl−第1の出射端15の方向に伝送
されながらjllの信号光7と合波される。第2の局部
発振光14も同様に第2の導波路32を第2の出射端1
6の方向に伝送されながら第2の信号光8と合波される
。第1.第2の受光部17.18および合成s21はハ
イブリッドIC35にしたもので、#41、鶴2の受光
s17.18をそれぞれ第1、第2の出射端15.16
に近接しである。I@1の実施例の場合と同様に合成部
21から中間周波出力22!が得られる。
The directional coupler l includes a glass substrate 30 and the glass substrate 3.
GL made by diffusing titanium on 0, x2 4ff road 3
1.32. Signal light 4 (not shown) from the transmission line 3 is directly coupled to the first waveguide 31 from the 1g10 input end 6. The combined signal 4 is branched to a second waveguide with an optical power of approximately 1 at the proximal portion 3'3, becomes a second signal light 8 (not shown), and heads toward the second output end 16. The optical power of 1/2 is directed to the first output end 15 as a first signal light 7 (not shown). - Local oscillation light 9 from a local oscillation light source 10 such as a male conductor laser (not shown) ) is transmitted through the optical fiber 34 and coupled from the second input end 12 to the second waveguide 32.The locally oscillated light 9 is transmitted to the first and second waveguides in the proximal portion 33 as in the case of the signal light 4. Local oscillation light 13.1
4 (not shown). The first local oscillation light 13 is transmitted in the direction from the first waveguide 31tl to the first output end 15, and is combined with the signal light 7 of jll. Similarly, the second local oscillation light 14 also passes through the second waveguide 32 to the second output end 1.
While being transmitted in the direction of signal light 6 , it is combined with second signal light 8 . 1st. The second light receiving section 17.18 and the composite s21 are hybrid ICs 35, and the light receiving portions 17.18 of #41 and Tsuru 2 are connected to the first and second output ends 15.16, respectively.
It is close to. As in the case of the I@1 embodiment, the intermediate frequency output 22! from the synthesis section 21! is obtained.

なお、伝送w!3および光ファイバ34は直線偏光保存
性の元ファイバであることが望ましい。
In addition, transmission lol! 3 and the optical fiber 34 are preferably linear polarization preserving original fibers.

菖2の実施例の効果も第1の実施例の場合と同様である
The effects of the irises 2 embodiment are also similar to those of the first embodiment.

本発明においては上記実施例の他にもさまざまな変形が
考えられる。方向性結合器1としては、ハーフミラ−2
や導波路を用いるもの以外にも、2人力、2出力の4端
子方向性結合器であれば、さまざまなものが使用可能で
ある。方向性結合器1の第1、第2の出射端15.16
と第11第2の受光部17.18の間は光ファイバ等で
結合させても良い。また第1、抛2の受光部17.18
と合成部21の間に超音波遅延線環の適当な遅延線を挿
入して、第11第2の中間周波出力19.20の位相合
わせを行なっても良い。局部発振光源10としては当然
半導体レーザ以外のレーザ光源を使用しても良い。方向
性結合器1の分岐比社基本的には1:1であることが望
ましいが、1:1から多少ずれても良い。また合成は第
11第2の中間周波出力19.20を検波後、ベースバ
ンド帯域で行なっても良い。なお本発明は局部発振光9
の周波数を信号光4の周波数と等しくしたホモダイン検
波方式にも同様に適用できる。
In addition to the embodiments described above, various modifications can be made to the present invention. As the directional coupler 1, a half mirror 2 is used.
In addition to those using waveguides, various types of two-manufactured, two-output, four-terminal directional couplers can be used. First and second output ends 15 and 16 of directional coupler 1
and the eleventh and second light receiving sections 17 and 18 may be coupled by an optical fiber or the like. In addition, the first and second light receiving sections 17 and 18
An appropriate delay line of an ultrasonic delay line ring may be inserted between the 11th and 2nd intermediate frequency outputs 19 and 21 to perform phase matching of the eleventh and second intermediate frequency outputs 19 and 20. Naturally, a laser light source other than a semiconductor laser may be used as the local oscillation light source 10. The branching ratio of the directional coupler 1 is basically preferably 1:1, but it may deviate somewhat from 1:1. Further, the synthesis may be performed in the baseband band after detecting the eleventh and second intermediate frequency outputs 19.20. Note that the present invention uses local oscillation light 9
It can be similarly applied to a homodyne detection method in which the frequency of the signal light 4 is made equal to the frequency of the signal light 4.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す構成図、第2図は
同じく第2の実施例を示す構成図である。 なお図において、1  方向性結合器、6,12・・・
 方向性結合器1の第1、@2の入射端、15゜16 
・ 方向性結合器lの第1、第2の出射端、4  信号
光、9・・・局部発振光、23 、24・・川・落1、
第2の合波光、17,18  ・第11館2の受光部、
21 ・・合成部である。 140− 第Z図
FIG. 1 is a block diagram showing a first embodiment of the present invention, and FIG. 2 is a block diagram showing a second embodiment. In the figure, 1 directional coupler, 6, 12...
First, input end of directional coupler 1 @2, 15°16
- First and second output ends of directional coupler l, 4 signal light, 9... local oscillation light, 23, 24... river drop 1,
Second combined light, 17, 18 - Light receiving section of 11th building 2,
21...Synthesis section. 140- Figure Z

Claims (1)

【特許請求の範囲】[Claims] 藁1、第2の入射端と第1、菖2の出射端を有し、前記
第1、籐2の入射端からの入射光が、それぞれ前記ml
、112の出射端におよそ1:1の比で分岐されて出射
する方向性結合器と、前記第1の入射端から信号光を、
前記第2の入射端から局部発振光をそれぞれ入射するこ
とによシ前記第1、jlI2の出射端から得られる第1
、第2の合波光をそれぞれ受光して電気信号に変換する
第1、第2の受光部と、この第1、@2の受光部からの
前記電気信号を合成する合成部を含む光ヘテロダイン・
ホモダイン検波装置。
It has a straw 1 and a second input end and a first and irises 2 output end, and the incident light from the first and the input ends of the rattan 2 reaches the ml, respectively.
, 112, and a directional coupler that branches and outputs the signal light at a ratio of approximately 1:1 to the output end of the first input end.
By inputting the local oscillation light from the second input end, the first light obtained from the first and jlI2 output ends is
, an optical heterodyne system including first and second light receiving sections that respectively receive the second combined light and converting them into electrical signals, and a combining section that synthesizes the electrical signals from the first and @2 light receiving sections.
Homodyne detection device.
JP57032758A 1982-03-02 1982-03-02 Optical heterodyne-homodyne detector Granted JPS58149025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57032758A JPS58149025A (en) 1982-03-02 1982-03-02 Optical heterodyne-homodyne detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57032758A JPS58149025A (en) 1982-03-02 1982-03-02 Optical heterodyne-homodyne detector

Publications (2)

Publication Number Publication Date
JPS58149025A true JPS58149025A (en) 1983-09-05
JPS6344210B2 JPS6344210B2 (en) 1988-09-02

Family

ID=12367736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57032758A Granted JPS58149025A (en) 1982-03-02 1982-03-02 Optical heterodyne-homodyne detector

Country Status (1)

Country Link
JP (1) JPS58149025A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135646A (en) * 1983-01-24 1984-08-03 Canon Inc System for reproducing magnetooptic information
JPS61208327A (en) * 1985-03-07 1986-09-16 エステイーシー・ピーエルシー Balanced coherent light receiver
JPS62272232A (en) * 1986-05-08 1987-11-26 エイ・ティ・アンド・ティ・コーポレーション Single photodiode optical heterodyne mixer
JPS62272233A (en) * 1986-05-08 1987-11-26 エイ・ティ・アンド・ティ・コーポレーション Optical heterodyne receiver
US5003625A (en) * 1988-06-10 1991-03-26 U.S. Philips Corporation Optical heterodyne detection and integrated optical component suitable for use in such a device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
THE INSTITUTE OF RADIO ENGINEERS INC. =1961 *
THE INSTITUTE OF RADIO ENGINEERS INC. =1962 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135646A (en) * 1983-01-24 1984-08-03 Canon Inc System for reproducing magnetooptic information
JPH043575B2 (en) * 1983-01-24 1992-01-23
JPS61208327A (en) * 1985-03-07 1986-09-16 エステイーシー・ピーエルシー Balanced coherent light receiver
JPS62272232A (en) * 1986-05-08 1987-11-26 エイ・ティ・アンド・ティ・コーポレーション Single photodiode optical heterodyne mixer
JPS62272233A (en) * 1986-05-08 1987-11-26 エイ・ティ・アンド・ティ・コーポレーション Optical heterodyne receiver
JP2648145B2 (en) * 1986-05-08 1997-08-27 エイ・ティ・アンド・ティ・コーポレーション Optical heterodyne mixer
JP2786188B2 (en) * 1986-05-08 1998-08-13 エイ・ティ・アンド・ティ・コーポレーション Optical heterodyne receiver
US5003625A (en) * 1988-06-10 1991-03-26 U.S. Philips Corporation Optical heterodyne detection and integrated optical component suitable for use in such a device

Also Published As

Publication number Publication date
JPS6344210B2 (en) 1988-09-02

Similar Documents

Publication Publication Date Title
EP0987583A3 (en) Polarisation-independent phase-conjugation apparatus and system comprising this apparatus
US4900917A (en) Polarization insensitive optical communication device utilizing optical preamplification
JPH0732371B2 (en) Optical fiber network
US5721637A (en) Wavelength converter apparatus
JPS62272234A (en) Optical heterodyne mixer
JPH0572777B2 (en)
JPS58149025A (en) Optical heterodyne-homodyne detector
JP2002502504A (en) Optical isolator composite module and optical amplifier using the same
US5504610A (en) Optical mixer and its use
JPS60242435A (en) Polarization diversity optical receiver
JPS63205611A (en) Dual balance type photodetector
JPS5913434A (en) Method of optical heterodyne detection
JP3063337B2 (en) Active coupler and optical signal amplification method using the same
JPH0324822B2 (en)
JPS6221128A (en) Optical heterodyne detecting device
JPH03104331A (en) Device and system for decreasing distortion in analog optical communication system
JP2002300110A (en) Light-power/signal supply device, and optical signal/ power multiplex transmission system utilizing the device
JP2755968B2 (en) External synchronous optical oscillator
US20020085255A1 (en) All optical mid infrared wireless, fiber optic communication channel bridge
JPS6028419B2 (en) Optical transmission method
JPH0293623A (en) Reflection type optical amplifier
JPS63245143A (en) Optical communication system
JPS61102622A (en) Converting device for plane of polarization
JPH06130257A (en) Bidirectional light transmission/reception module
JPS59211339A (en) Method for extracting information signal on the way of optical transmission line