JPS59211339A - Method for extracting information signal on the way of optical transmission line - Google Patents

Method for extracting information signal on the way of optical transmission line

Info

Publication number
JPS59211339A
JPS59211339A JP58085289A JP8528983A JPS59211339A JP S59211339 A JPS59211339 A JP S59211339A JP 58085289 A JP58085289 A JP 58085289A JP 8528983 A JP8528983 A JP 8528983A JP S59211339 A JPS59211339 A JP S59211339A
Authority
JP
Japan
Prior art keywords
light
active waveguide
optical
optical transmission
waveguide path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58085289A
Other languages
Japanese (ja)
Inventor
Masahiko Fujiwara
雅彦 藤原
Mitsukazu Kondo
充和 近藤
Yoshinori Oota
太田 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58085289A priority Critical patent/JPS59211339A/en
Publication of JPS59211339A publication Critical patent/JPS59211339A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion

Abstract

PURPOSE:To decrease inertion losses and to quicken the response speed by inserting an active waveguide path having P-N junction in an optical transmission line and amplifying propagated light with a forward bias normally to extract the optical signal as an electric signal at a reverse bias. CONSTITUTION:Laser light 1 for signal transmission is coupled with the active waveguide device 3 having the P-N junction via an optical system 2. In applying a forward bias across the P-N junction of the waveguide path 3, the laser light 1 is amplified and irradiated from the waveguide path 3 ad irradiated light 4. On the other hand, in applying a reverse bias across the waveguide path 3, the laser light 1 is absorbed while being travelled through the active waveguide path 3 and extracted externally as a light current. Thus, the light is amplified and irradiated to the next stage or the light is extracted as the electric signal by changing over the bias state of the waveguide path 3 in this way.

Description

【発明の詳細な説明】 本発明は光の伝送路の途中から情報信号を電気的に取シ
出す方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for electrically extracting information signals from the middle of an optical transmission path.

近年、光通信システムの応用範囲の拡大に伴い、種々の
新しい機能を持つデバイスの必要性が高まっている。そ
の一つに光伝送路の途中から信号を取シ出すだめのデバ
イス(詣るカプラー)が有る。
In recent years, as the range of applications of optical communication systems has expanded, the need for devices with various new functions has increased. One of them is a device (a coupler) that extracts a signal from the middle of an optical transmission path.

これは光データバス、光ループ等の小規模構内通信シス
テムのように光伝送路に沿って数多くの地点で光伝送信
号を得たい場合に特に需要の大きなものである。このよ
うなカプラーを実現するためKは将来状の3つの方法が
考えられている。
This is particularly in demand when optical transmission signals are to be obtained at many points along an optical transmission line, such as in small-scale local communication systems such as optical data buses and optical loops. In order to realize such a coupler, three future methods are being considered.

1)光分岐を用いる方法 2)光スィッチによシ必要な時のみ光信号を検出系に導
く方法 3)リピータを用いる方法 これらについて順に簡単に説明する。1)は伝送路途中
に光分岐を挿入し、伝送されている光信号の一部を光検
出系に導くもので用いるデバイスは非常に安価で簡単で
あるという利点が有るが分岐によシ主伝送路の光損失が
大きくなるという大きな欠点を有する。2)は1)の光
分岐の代シに光スィッチを用いるもので光信号を取シ出
す必要の無い時には光は殆ど損失無しに伝送されるとい
う利点がある。しかし、現状で実用可能なスイッチでは
機械式の場合には挿入損失は小さいが応答速度が遅く、
非機械式の場合には一般に速度は速いが用いる光のモー
ド、偏波等に制限が有ったシ、挿入損失や形状が大きい
等の問題が有シ適用の分野が限られてくる。3)は通常
の光通信系に用いるリピータと同様に光を一旦検出系に
よp O/E変換し、電気信号に直した状態で情報信号
を次段への光伝送用のE10変換デバイス(レーザ、発
光ダイオード等)駆動回路及び信号検出回路に分けるも
ので有る。これは系が再生増幅系で有るため、挿入損失
は考える必要が無く、伝送中の波形歪の修正も可能であ
るという利点が有るが、1つのリピータが非常に高価か
つ複雑で1つのシステム中に数多く用いる事には価格、
信頼性等に問題が有る。
1) A method using optical branching 2) A method of guiding the optical signal to the detection system only when necessary using an optical switch 3) A method using a repeater These methods will be briefly explained in order. In 1), an optical branch is inserted in the middle of the transmission path and a part of the optical signal being transmitted is guided to the photodetection system.The device used is very cheap and simple, but the branch is the main reason. This has a major drawback of increasing optical loss in the transmission path. 2) uses an optical switch in place of the optical branching in 1), and has the advantage that light is transmitted with almost no loss when there is no need to extract an optical signal. However, in the case of mechanical switches that are currently available for practical use, the insertion loss is small, but the response speed is slow.
In the case of a non-mechanical type, although the speed is generally high, there are limitations on the mode of light used, polarization, etc., and there are problems such as large insertion loss and large shape, which limits the field of application. 3) is an E10 conversion device for optical transmission of the information signal to the next stage after first converting the light into a P O/E by the detection system and converting it into an electrical signal, similar to a repeater used in a normal optical communication system. It is divided into a drive circuit (laser, light emitting diode, etc.) and a signal detection circuit. Since this system is a regenerative amplification system, there is no need to consider insertion loss, and it has the advantage that waveform distortion during transmission can be corrected, but one repeater is extremely expensive and complicated, and one system There are many uses for the price,
There are problems with reliability, etc.

上述のようにカプラーの実現手段として従来考えられて
いるものにはそれぞれ長所、短所が有シ最適なものは得
られないのが現状である。本発明の目的は、上述のよう
な従来方法の欠点を除き、比較的構成が簡単で安価かつ
挿入損失、応答速度も優れた光体送路途中から情報信号
を取シ出すための方法を提供するととにある。
As mentioned above, the methods conventionally considered as means for realizing a coupler each have their own advantages and disadvantages, and at present it is impossible to obtain the optimal one. An object of the present invention is to provide a method for extracting information signals from the middle of an optical transmission path, which has a relatively simple configuration, is inexpensive, and has excellent insertion loss and response speed, while eliminating the drawbacks of the conventional methods as described above. Then there it is.

本発明による光伝送路通中から情報信号を取り出すだめ
の方法は光体送路途中に半導体材料によるp −n接合
を有する活性導波路を挿入し前記活性導波路を通常順バ
イアス状態にし伝搬光を増幅し情報信号の取シ出しが必
要な際に前記活性導波路を通バイアス状態にして光信号
を′電気信号として取シ出すことを特徴とするものであ
る。
A method of extracting information signals from an optical transmission line according to the present invention is to insert an active waveguide having a p-n junction made of a semiconductor material in the middle of the optical transmission path, and to set the active waveguide in a normal forward bias state so that the propagating light When it is necessary to amplify the information signal and extract the information signal, the active waveguide is biased and the optical signal is extracted as an electric signal.

本発明による方法を具現するには、半導体材料によるp
 −n接合を有する導波路と前記活性導波路の前後かつ
前記活性導波路と光伝送路との間に設置した1対の結合
回′路と、前記活性導波路に順バイアスを印加するため
の手段と、前記活性導波路に逆バイアスを印加しかつ光
電流を検知するための手段と制御信号に応じ前記活性導
波路と前記順バイアスを印加する手段及び、前記逆バイ
アスを印加しかつ光電流を検知する手段との間の接続を
切換える手段を有する装置を用いれば可能である。以下
本発明につき図面を用いて詳細に説明する。
To realize the method according to the invention, p
-n junction and a pair of coupling circuits installed before and after the active waveguide and between the active waveguide and the optical transmission line, and a coupling circuit for applying a forward bias to the active waveguide. means for applying a reverse bias to the active waveguide and detecting the photocurrent; means for applying the forward bias to the active waveguide in response to a control signal; and means for applying the forward bias to the active waveguide and detecting the photocurrent. This is possible by using a device that has means for switching the connection between the detection means and the detection means. The present invention will be explained in detail below with reference to the drawings.

一般に半導体材料によυ形成された導波路で内部のp 
−n接合への電流注入によシ反転分布を形成し得る活性
導波路ではそのゲインスペクトラムのピーク近傍の波長
の光が導波されると導波光が増幅されることが知られて
いる。半導体注入型レーザはこの現象を利用したもので
、G aAtAs /GaAs + InGaAsP/
InP等の材料によるダブル・ペテロ接合が利用されて
いる。また、これをレーザとしてではなく外部から注入
された光を増幅するための光増幅器に利用することも近
年広く試みられてきている。一方半導体中のp −n接
合では、逆バイアス印加時には、バンド・ギャップ・エ
ネルギより大きなエネルギを持つ光が吸収された際には
、生じた正孔と電子の対が逆バイアス印加によシ生じた
空乏層中をドリフトして横切シ光電流を生じる。つまシ
フオド・ダイオードとしての働きを持つ訳で、この事を
利用してS i r Ge r InGaA1等の材料
のp −n接合が光検出器として利用されている。
In general, a waveguide formed of semiconductor material has an internal p
It is known that in an active waveguide that can form a population inversion by current injection into the -n junction, when light having a wavelength near the peak of its gain spectrum is guided, the guided light is amplified. Semiconductor injection laser utilizes this phenomenon, and GaAtAs /GaAs + InGaAsP/
Double Peter junctions made of materials such as InP are used. Furthermore, in recent years, attempts have been made to utilize this material not as a laser but as an optical amplifier for amplifying light injected from the outside. On the other hand, in a p-n junction in a semiconductor, when a reverse bias is applied, when light with an energy greater than the band gap energy is absorbed, pairs of holes and electrons are generated due to the application of a reverse bias. It drifts in the depletion layer and generates a transverse photocurrent. It functions as a square shift diode, and taking advantage of this fact, pn junctions made of materials such as Si r Ger InGaA1 are used as photodetectors.

更に、上述の事実は順バイアス時に半導体レーザ、着し
くは光増幅器として働<p−n接合を逆バイアス状態で
用いれば、順バイアス時に発振着しくは増幅可能な光を
検出するフォト・ダイオードとしても用いることが出来
る事を示している。
Furthermore, the above fact shows that when forward biased, it works as a semiconductor laser, or an optical amplifier. If a p-n junction is used in reverse biased state, it can act as a photodiode that detects light that can be oscillated or amplified when forward biased. This shows that it can also be used.

実際1つの半導体レーザの中心部にエツチングによる切
込みを入れて2分し、一方をレーザ、他方をモニタ用フ
ォト・ダイオードとして用いる試みは既に行なわれてい
る。本発明は上述のように、p −n接合を有する活性
導波路が順バイアス、逆バイアス状態に応じて光増幅器
、光検出器として利用出来る事を利用したものである。
In fact, attempts have already been made to make a cut in the center of a semiconductor laser to divide it into two parts, and use one part as a laser and the other part as a monitoring photodiode. As described above, the present invention utilizes the fact that an active waveguide having a p-n junction can be used as an optical amplifier or a photodetector depending on the forward bias or reverse bias state.

第1図は本発明の原理を示すための図である。FIG. 1 is a diagram showing the principle of the present invention.

信号伝送用レーザ光1は適当な光学系2によF)p−n
接合を有する活性導波路3に結合される。ここで活性導
波路3の材料としてはレーザ光1の波長が光吸収スペク
トルのピーク近傍になるように選ぶ。具体的にはレーザ
光1を発生させる半導体レーザと同様の材料によればよ
い。活性導波路3のp −n接合の両端に順バイアスを
加えた場合にはレーザ光1は増幅され出射光4として活
性導波路3から出射する。ここで、活性導波路としては
レーザと同様の共振器構造とすることも、進行波形とす
ることも可能である。一方、活性導波路3の両端に逆バ
イアスを印加した場合にはレーザ光1は活性導波路3中
を進行中に吸収され外部に光電流として取シ出される。
The laser beam 1 for signal transmission is transmitted by an appropriate optical system 2F)p-n
It is coupled to an active waveguide 3 with a junction. Here, the material for the active waveguide 3 is selected so that the wavelength of the laser beam 1 is near the peak of the optical absorption spectrum. Specifically, it may be made of the same material as the semiconductor laser that generates the laser beam 1. When a forward bias is applied to both ends of the p-n junction of the active waveguide 3, the laser beam 1 is amplified and emitted from the active waveguide 3 as an emitted light 4. Here, the active waveguide may have a resonator structure similar to a laser, or may have a traveling waveform. On the other hand, when a reverse bias is applied to both ends of the active waveguide 3, the laser beam 1 is absorbed while traveling through the active waveguide 3 and is extracted to the outside as a photocurrent.

従って外部から活性導波路のバイアス状態を電気的に切
換えることによシ光を増幅して次段へ出射させたシ、光
を電気信号として取シ出したシ出来る事になる。このよ
うな方法によれば、信号を取シ出さない時には光は増幅
されるため挿入損失は零若しくはマイナスとする事が出
来、切換え、応答速度は充分高いものが期待出来る。ま
たリピータのような複雑な構成ではないため簡便で、安
価な光伝送路途中から情報信号を取9出す方法が得られ
ることになる。
Therefore, by electrically switching the bias state of the active waveguide from the outside, the light can be amplified and emitted to the next stage, and the light can be extracted as an electrical signal. According to such a method, since the light is amplified when no signal is extracted, the insertion loss can be reduced to zero or minus, and switching and response speeds can be expected to be sufficiently high. Furthermore, since it does not have a complicated structure like a repeater, a simple and inexpensive method for extracting information signals from the middle of an optical transmission path can be obtained.

第2図は本発明による、光伝送路途中から情報信号を取
9出す方法を具現するための装置の一実施例を示す図で
ある。光伝送路10a(ここでは光ファイバを想定)中
を伝送され出射したレーザ光11aは結合回路12aに
よりp−n接合を有する活性導波路3に結合される。活
性導波路3からの出射光11bは結合回路12bによシ
再び光伝送路10bに結合され伝送される。活性導波路
3のp −n接合電極には切換回路13を介して、順バ
イアス印加回路16及び、逆バイアス印加回路14が接
続され切換回路13に加える制御信号によV)p−n接
合のバイアス状態が切換えられる。既に説明したように
、切換回路13を順バイアス印加回路16側に接続した
場合には活性導波路3の出射光11bは増幅され光伝送
路10b中へ結合され伝送される。この状態では光は増
幅されるため結合回路12a、12bに結合損失が有っ
ても充分それを補償することが出来、挿入損失は考え彦
くてもよい。次に光信号の検出が必要になった場合には
切換回路13を切換え、活性導波路3を逆バイアス印加
回路16に接続する。この場合には光は活性導波路3中
を伝搬中に吸収され正孔−電子対を発生するため伝送さ
れていた光信号は光電流として端子15に出力され光信
号の検出が可能となる。ここで逆バイアス印加回路14
.順バイアス印加回路16としては通常のフォト・ダイ
オード、半導体レーザを使用する際と同様の極く簡単な
回路を用いることが出来る。また切換回路13は通常の
電気デバイスによるスイッチング回路を用いても充分高
い応答速度が期待出来る。活性導波路3としては通常用
いられている半導体レーザと同様の構造材料の物が適し
ている。つまシ材料としてGaAtAs/GaAs、 
InGaAsP/InPを用いたダブル・ヘテロ接合若
しくはマルチ量子井戸構造等を有する物が適している。
FIG. 2 is a diagram showing an embodiment of a device for implementing a method of extracting information signals from the middle of an optical transmission line according to the present invention. A laser beam 11a transmitted through an optical transmission line 10a (assumed to be an optical fiber here) and emitted is coupled to an active waveguide 3 having a pn junction by a coupling circuit 12a. The emitted light 11b from the active waveguide 3 is coupled to the optical transmission line 10b again by the coupling circuit 12b and transmitted. A forward bias application circuit 16 and a reverse bias application circuit 14 are connected to the p-n junction electrode of the active waveguide 3 via a switching circuit 13. Bias state is switched. As already explained, when the switching circuit 13 is connected to the forward bias applying circuit 16 side, the output light 11b of the active waveguide 3 is amplified, coupled into the optical transmission line 10b, and transmitted. In this state, the light is amplified, so even if there is a coupling loss in the coupling circuits 12a and 12b, it can be sufficiently compensated for, and insertion loss can be ignored. Next, when it becomes necessary to detect an optical signal, the switching circuit 13 is switched and the active waveguide 3 is connected to the reverse bias applying circuit 16. In this case, the light is absorbed while propagating through the active waveguide 3 and generates hole-electron pairs, so the transmitted optical signal is outputted to the terminal 15 as a photocurrent, making it possible to detect the optical signal. Here, the reverse bias application circuit 14
.. As the forward bias application circuit 16, an extremely simple circuit similar to that used when using a normal photo diode or semiconductor laser can be used. Further, even if the switching circuit 13 is a switching circuit using a normal electric device, a sufficiently high response speed can be expected. The active waveguide 3 is suitably made of the same structural material as that of commonly used semiconductor lasers. GaAtAs/GaAs as the pick material,
A material having a double heterojunction or a multi-quantum well structure using InGaAsP/InP is suitable.

また既に述べたように活性導波路3としては半導体レー
ザと同様の共撮器型とすることも進行波型とすることも
可能である。第2図に示した実施例では結合回路12a
、12bを活性導波路3と別々の構成と積比することも
可能でその場合には製作時の調整の難易度、長期の位置
ずれに対する安定性などの点で有利となる。
Further, as already mentioned, the active waveguide 3 can be of a co-imaging type similar to a semiconductor laser, or of a traveling wave type. In the embodiment shown in FIG.
, 12b may be integrated with a structure separate from the active waveguide 3, and in that case, it is advantageous in terms of difficulty in adjustment during manufacturing, stability against long-term positional displacement, etc.

以上詳細に説明したように本発明によれば比較的構成が
簡単で、応答速度が速く、挿入損失も優れた光伝送路途
中から情報信号を取シ出す方法及びその装置が得られる
As described above in detail, the present invention provides a method and apparatus for extracting an information signal from the middle of an optical transmission path, which has a relatively simple configuration, high response speed, and excellent insertion loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光伝送路途中から情報信号を取シ
出す方法の原理を説明するだめの図、第2図は本発明に
よる光伝送路途中から情報信号を取シ出す方法を具現す
るための装置の一実施例を示す図である。 図に於て、1,4.11a、11bはレーザ光、2゜1
2a、12bは結合回路、3は活性導波路、10a。 10bは光伝送路、13は切換回路、14は逆バイアス
印加回路、15は端子、16は順バイアス印加回路であ
る。
FIG. 1 is a diagram for explaining the principle of the method of extracting information signals from the middle of an optical transmission line according to the present invention, and FIG. 2 embodies the method of extracting information signals from the middle of an optical transmission line according to the present invention. It is a figure showing one example of the device for. In the figure, 1, 4.11a, 11b are laser beams, 2°1
2a and 12b are coupling circuits, 3 is an active waveguide, and 10a. 10b is an optical transmission line, 13 is a switching circuit, 14 is a reverse bias application circuit, 15 is a terminal, and 16 is a forward bias application circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)光体送路途中に半導体材料によるp−n接合を有
する活性導波路を挿入し、前記活性導波路を通常順バイ
アス状態にし、情報信号の取り出しが必要な際に前記活
性導波路を逆バイアス状態にして光信号を電気信号とし
て取シ出すことを特徴とする光体送路途中から情報信号
を取シ出す方法。
(1) An active waveguide having a p-n junction made of a semiconductor material is inserted in the middle of the light transmission path, the active waveguide is normally put in a forward bias state, and the active waveguide is turned off when it is necessary to take out an information signal. A method for extracting an information signal from the middle of a light transmission path, characterized by extracting an optical signal as an electrical signal in a reverse bias state.
JP58085289A 1983-05-16 1983-05-16 Method for extracting information signal on the way of optical transmission line Pending JPS59211339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58085289A JPS59211339A (en) 1983-05-16 1983-05-16 Method for extracting information signal on the way of optical transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58085289A JPS59211339A (en) 1983-05-16 1983-05-16 Method for extracting information signal on the way of optical transmission line

Publications (1)

Publication Number Publication Date
JPS59211339A true JPS59211339A (en) 1984-11-30

Family

ID=13854410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58085289A Pending JPS59211339A (en) 1983-05-16 1983-05-16 Method for extracting information signal on the way of optical transmission line

Country Status (1)

Country Link
JP (1) JPS59211339A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012216A1 (en) * 1997-08-28 1999-03-11 Hitachi, Ltd. Semiconductor photodetector and optical transmitting device
JP2001244885A (en) * 2000-02-28 2001-09-07 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and wavelength multiplex optical network
JP2013197200A (en) * 2012-03-16 2013-09-30 Sumitomo Electric Device Innovations Inc Photoreceiver control method and communication control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933646A (en) * 1972-07-22 1974-03-28
JPS51146843A (en) * 1975-06-11 1976-12-16 Nippon Telegr & Teleph Corp <Ntt> Photo modulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933646A (en) * 1972-07-22 1974-03-28
JPS51146843A (en) * 1975-06-11 1976-12-16 Nippon Telegr & Teleph Corp <Ntt> Photo modulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012216A1 (en) * 1997-08-28 1999-03-11 Hitachi, Ltd. Semiconductor photodetector and optical transmitting device
JP2001244885A (en) * 2000-02-28 2001-09-07 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and wavelength multiplex optical network
JP2013197200A (en) * 2012-03-16 2013-09-30 Sumitomo Electric Device Innovations Inc Photoreceiver control method and communication control method
US9548819B2 (en) 2012-03-16 2017-01-17 Sumitomo Electric Device Innovations, Inc. Method to control optical receiver implemented with semiconductor optical amplifier and method to control optical communication

Similar Documents

Publication Publication Date Title
US5191625A (en) Terminal for a frequency divided, optical communication system
US4923291A (en) Optical amplification
JP3138036B2 (en) Optical node and optical communication network using the same
US4948960A (en) Dual mode light emitting diode/detector diode for optical fiber transmission lines
JP2656598B2 (en) Semiconductor optical switch and semiconductor optical switch array
US5307197A (en) Optical circuit for a polarization diversity receiver
JP3616229B2 (en) Single-port optical modulation device, integrated circuit including the device, and method of operating an optical modulator
US4900917A (en) Polarization insensitive optical communication device utilizing optical preamplification
US6563621B2 (en) Bit-rate and format insensitive all-optical clock extraction circuit
JPH041614A (en) Optical amplifying device
US5737459A (en) Loss interferometric power combiner comprising a feedback circuit
JP2980723B2 (en) Optical amplifier
JPH06186598A (en) Optical exchanger
Kaiser et al. Heterodyne receiver PICs as the first monolithically integrated tunable receivers for OFDM system applications
JPH05268166A (en) Optical amplifier relay circuit
JPS59211339A (en) Method for extracting information signal on the way of optical transmission line
US7064891B2 (en) Optical wavelength converter with a semiconductor optical amplifier
JPS6257280B2 (en)
US20030113063A1 (en) Method and apparatus for enhancing power saturation in semiconductor optical amplifiers
JP3111982B2 (en) Waveguide type semiconductor optical device
JP2001044557A (en) Optical fiber amplifier and excited light generation circuit
US6331990B1 (en) Demodulating and amplifying systems of lasers with optical gain control (DAS-LOGiC)
JP2684568B2 (en) Optical integrated circuit
JPH0317633A (en) Optical inverter
JP2001189488A (en) Integrated optical semiconductor element