JPS6257280B2 - - Google Patents

Info

Publication number
JPS6257280B2
JPS6257280B2 JP15058281A JP15058281A JPS6257280B2 JP S6257280 B2 JPS6257280 B2 JP S6257280B2 JP 15058281 A JP15058281 A JP 15058281A JP 15058281 A JP15058281 A JP 15058281A JP S6257280 B2 JPS6257280 B2 JP S6257280B2
Authority
JP
Japan
Prior art keywords
optical
frequency
amplifier
optical amplifier
multiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15058281A
Other languages
Japanese (ja)
Other versions
JPS5852890A (en
Inventor
Yoshihisa Yamamoto
Takaaki Mukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15058281A priority Critical patent/JPS5852890A/en
Publication of JPS5852890A publication Critical patent/JPS5852890A/en
Publication of JPS6257280B2 publication Critical patent/JPS6257280B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5045Amplifier structures not provided for in groups H01S5/02 - H01S5/30 the arrangement having a frequency filtering function

Description

【発明の詳細な説明】 本発明は、自動周波数制御機能をを有する光増
幅器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical amplifier having an automatic frequency control function.

従来、光増幅器としては第1図に示すような入
射側ミラーR1と出射側ミラーR2および、これに
挾まれた増幅媒質より構成される活性フアブリ・
ペロー共振器が用いられていた。この光増幅器に
は2つの動作モードがある。1つは、増幅媒質の
ポンピング・レベルをこの活性フアブリ・ペロー
共振器のレーザ発振しきい値以下に設定して、直
線増幅器として用いるのである。この場合には、
第2図に示すように、活性フアブリ・ペロー共振
器の共振モード周波数と入射信号光周波数を
一致させて増幅を行なわせる場合が最も能率が良
い。入射信号光周波数と光増幅器のフアブリ・ペ
ロー共振周波数が大きく違う場合には図に示した
ように増幅が得られず、逆に信号光は減衰してし
まう。第2の動作モードは、増幅媒質のポンピン
グ・レベルをこの活性フアブリ・ペロー共振器の
レーザ発振しきい値以上に設定して、注入同期増
幅器として用いるものである。この場合にも、第
3図に示すように注入同期増幅器の自励発振周波
数と入射信号光周波数をほぼ一致させて増幅を行
なわせる場合が能率が良い。入射信号光周波数と
増幅器の自励発振周波数が注入同期幅BL以上離
れてしまうと、同期がはずれ、信号増幅が行なわ
れなくなつてしまう。
Conventionally, an optical amplifier is an active fabric amplifier consisting of an input side mirror R1 , an output side mirror R2 , and an amplification medium sandwiched between them, as shown in Fig. 1.
A Perot resonator was used. This optical amplifier has two operating modes. One is to set the pumping level of the amplification medium below the lasing threshold of this active Fabry-Perot resonator and use it as a linear amplifier. In this case,
As shown in FIG. 2, it is most efficient to perform amplification by matching the resonance mode frequency 0 of the active Fabry-Perot resonator with the frequency of the incident signal light. If the frequency of the incident signal light differs greatly from the Fabry-Perot resonance frequency of the optical amplifier, no amplification can be obtained as shown in the figure, and on the contrary, the signal light will be attenuated. In the second mode of operation, the pumping level of the amplification medium is set above the laser oscillation threshold of this active Fabry-Perot resonator, and the amplifier is used as an injection-locked amplifier. In this case as well, it is efficient to perform amplification by making the self-oscillation frequency of the injection-locked amplifier substantially the same as the frequency of the incident signal light, as shown in FIG. If the incident signal optical frequency and the self-sustained oscillation frequency of the amplifier are separated by more than the injection locking width BL , the synchronization will be lost and signal amplification will no longer be performed.

従来のこの種装置は、第1図に示したように制
御信号用ゲートがないオープン・ゲートで用いら
れていた為、光増幅器の発振周波数共振モード周
波数が、温度、ポンピング変動などにより信号光
周波数に対して変動し、この為安定な増幅特性が
得られなかつた。例えば、GaAs半導体レーザ増
幅器の場合その発振周波数あるいは、共振モード
周波数は、温度変動1℃当り22GHzシフトする。
GaAs半導体レーザ増幅器を直線増幅器として用
いた場合の3dB低下帯域幅Δν1/2、および注入
同期増幅器として用いた場合の同期幅BLは、い
ずれも2〜3GHz程度である。従つて、安定な増
幅特性を得る為には、0.01℃程度の温度制御を行
なわなければならなかつた。また、このような温
度制御による安定化を行なつたとしても、入射信
号周波数が変動した場合には、対処できない。従
つて、入射信号周波数や増幅器周波数の変動に対
して自動的に周波数制御を行なう事のできる光増
幅器が要求されていた。
Conventional devices of this kind were used with open gates without control signal gates as shown in Figure 1, so the oscillation frequency of the optical amplifier (resonant mode frequency) may vary depending on temperature, pumping fluctuations, etc. Therefore, stable amplification characteristics could not be obtained. For example, in the case of a GaAs semiconductor laser amplifier, its oscillation frequency or resonance mode frequency shifts by 22 GHz per 1°C of temperature change.
The 3 dB reduction bandwidth Δv1/2 when the GaAs semiconductor laser amplifier is used as a linear amplifier and the locking width B L when used as an injection-locked amplifier are both about 2 to 3 GHz. Therefore, in order to obtain stable amplification characteristics, it was necessary to control the temperature to about 0.01°C. Further, even if stabilization is performed by such temperature control, it is not possible to cope with fluctuations in the incident signal frequency. Therefore, there has been a need for an optical amplifier that can automatically perform frequency control in response to fluctuations in the incident signal frequency and amplifier frequency.

本発明は、光増幅器の有するこれらの欠点を解
決するため、入射信号周波数に光増幅器の発振周
波数、共振モード周波数(以下、単に光増幅器周
波数と呼ぶ)を自動的に同調させる機構を光増幅
器に与えたもので、以下図面について詳細に説明
する。
In order to solve these drawbacks of optical amplifiers, the present invention provides an optical amplifier with a mechanism that automatically tunes the oscillation frequency and resonant mode frequency (hereinafter simply referred to as optical amplifier frequency) of the optical amplifier to the incident signal frequency. The drawings will now be described in detail.

第4図は、本発明の動作原理となる光増幅器の
出力光位相入射信号光周波数の関係を示したもの
である。第4図aの直線増幅器動作モードの場合
にも、第4図bの注入同期増幅器動作モードの場
合にも、入射信号光周波数と光増幅器周波数が一
致している場合には、出力光位相は入力光位相と
全く同相になる。一方、入射信号光周波数が光増
幅器周波数よりも高周波側にずれた場合には、位
相は遅れ(負の値)、逆に入射信号光周波数が光
増幅器周波数よりも低周波側にずれた場合には、
位相が進む(正の値)。従つて、この位相シフト
量を検出し、これを誤差信号として光増幅器にフ
イードバツクしてやれば、自動周波数制御が可能
となる。
FIG. 4 shows the relationship between the output optical phase of the optical amplifier and the incident signal optical frequency, which is the operating principle of the present invention. In both the case of the linear amplifier operation mode shown in FIG. 4a and the injection-locked amplifier operation mode shown in FIG. 4b, if the input signal optical frequency and the optical amplifier frequency match, the output optical phase is It becomes completely in phase with the input optical phase. On the other hand, when the input signal optical frequency shifts to a higher frequency side than the optical amplifier frequency, the phase is delayed (negative value), and conversely, when the input signal optical frequency shifts to a lower frequency side than the optical amplifier frequency, teeth,
Phase advances (positive value). Therefore, automatic frequency control becomes possible by detecting this amount of phase shift and feeding it back to the optical amplifier as an error signal.

第5図は、本発明の実施例であつて、4は入射
信号光分岐用ハーフミラー、5は出力信号光分岐
用ハーフミラー、6は光増幅器、7はπ/2の位相シ フトを与える波長板、8は2つの光信号の合波
器、9は光検波器である。動作原理を以下説明す
る。入射信号光の1部と出力信号光の1部がハー
フミラーで取り出され、出力信号光の方がπ/2だけ 位相が進むようにして、2つの光信号を合波す
る。両光信号パワーは等しい事が望ましい。この
場合には、光検波器9の出力電流は、 i=DPs(1―sinθ) (1) で与えられる。Dは光検波器の定数Psは各光信
号パワー、θは第4図に示した相対位相差であ
る。従つて、θが0付近で変動している場合に
は、直流成分を別にしてθにほぼ比例した誤差信
号is=DPsθが光検波器出力として取り出せ
る。この誤差信号を、光増幅器周波数を変化させ
る事のできる部分にフイードバツクしてやれば、
自動的な周波数制御が可能となる。例えば、半導
体レーザ増幅器の周波数は、注入電流により変化
させる事ができる。注入電流を増加させると、発
振しきい値以下で動作している直線増幅器では、
キヤリア密度が増加し、共振モード周波数は高周
波側にシフトし、発振しきい値以上で動作してい
る注入同期増幅器では、活性層温度が増加し、発
振周波数は低周波側へシフトする。従つて、直線
増幅器では第4図の構成で、注入同期増幅器では
π/2のかわりに−π/2の位相シフトで、光検波器出
力 電流を増幅して半導体レーザ増幅器の注入電流に
合流してやれば、入射信号光周波数と半導体レー
ザ増幅器周波数を自動的に一致させておく事がで
きる。本発明は半導体レーザ増幅器以外の光増幅
器に対しても適用できる。例えば、外部ミラーを
用いている増幅器では、誤差信号を外部ミラーに
取り付けたPZT素子等にフイードバツクしてやれ
ばよい。
FIG. 5 shows an embodiment of the present invention, in which 4 is a half mirror for splitting input signal light, 5 is a half mirror for output signal light branching, 6 is an optical amplifier, and 7 is a wavelength that provides a phase shift of π/2. Board 8 is a multiplexer for two optical signals, and 9 is a photodetector. The operating principle will be explained below. One part of the input signal light and one part of the output signal light are taken out by a half mirror, and the two optical signals are combined so that the phase of the output signal light is advanced by π/2. It is desirable that both optical signal powers be equal. In this case, the output current of the photodetector 9 is given by i=DP s (1−sinθ) (1). D is a constant of the optical detector, P s is the power of each optical signal, and θ is the relative phase difference shown in FIG. Therefore, when θ is fluctuating around 0, an error signal i s =DP s θ approximately proportional to θ, excluding the DC component, can be extracted as the optical detector output. If this error signal is fed back to a part that can change the optical amplifier frequency,
Automatic frequency control becomes possible. For example, the frequency of a semiconductor laser amplifier can be changed by injection current. Increasing the injection current, in a linear amplifier operating below the oscillation threshold,
The carrier density increases and the resonant mode frequency shifts to the high frequency side, and in an injection-locked amplifier operating above the oscillation threshold, the active layer temperature increases and the oscillation frequency shifts to the low frequency side. Therefore, for a linear amplifier, use the configuration shown in Figure 4, and for an injection-locked amplifier, use a phase shift of -π/2 instead of π/2 to amplify the photodetector output current and merge it with the injection current of the semiconductor laser amplifier. For example, the frequency of the incident signal light and the frequency of the semiconductor laser amplifier can be automatically matched. The present invention can also be applied to optical amplifiers other than semiconductor laser amplifiers. For example, in an amplifier using an external mirror, the error signal may be fed back to a PZT element or the like attached to the external mirror.

第6図は本発明の別の実施例であつて、10は
n―GaAs基板、11はp―GaAs活性層、12は
p―GaAs層、13はn―GaAs層であり、14は
p側透明電極、15はn側電極でGaAsホモ接合
レーザを構成する。4,5,8は第5図で説され
ているハーフ・ミラーと光合波器である。動作原
理を以下説明する。入射信号光と出力信号光の位
相を比較し、周波数の不整合に相当した誤差光信
号が領域13を照射するのは第5図の実施例と同
様である。10,11,12のpn接合は順方向
にバイアスされている為、この領域では活性層1
1にキヤリアが注入されて反転分布を生じ増幅媒
質となる。一方、10,11,12,13のnpn
接合部は、ホトトランジスタを形成しており、誤
差光信号を12―13のpn接合で検出し、増幅
された光電流が活性層11に流れ込む構造になつ
ている。第7図を用いてその動作原理を説明す
る。ここでP1は光照射前のポテンシヤル、P2は光
照射時のポテンシヤルを示す。誤差光信号は、1
2―13のpn接合に形成された空乏層で吸収さ
れ、電子―正孔対を発生する。正孔は空乏層電界
によつてp―GaAs層に流れ込み、静電効果によ
つて、この領域の電子に対するポテンンシヤル障
壁の高さを低くする。これによつて、電子が右側
のn―GaAsからp―GaAsに流れ込み、活性層に
キヤリアが注入される事になる。以上説明したよ
うに、第6図の実施例では、誤差光信号を検出し
増幅する作用が半導体レーザ中に形成されたホト
トランジスタで実現されている。第6図は本発明
の基本構成を示したものであり、より高能率な動
作を行なわしめる為に、ヘテロ接合を用いて活性
層11への光、キヤリアの閉じ込め効果を良くし
たり、光検出の量子効率をよくする為にヘテロ接
合によりwindow層を13に設けた構造にするな
どは本発明に属する。また、半導体材料も
AlGaAs系以外にInP/In GaAsPなどを用いても
同じ効果が期待できる。
FIG. 6 shows another embodiment of the present invention, in which 10 is an n-GaAs substrate, 11 is a p-GaAs active layer, 12 is a p-GaAs layer, 13 is an n-GaAs layer, and 14 is a p-side A transparent electrode 15 is an n-side electrode that constitutes a GaAs homojunction laser. 4, 5, and 8 are the half mirror and optical multiplexer illustrated in FIG. The operating principle will be explained below. Similar to the embodiment shown in FIG. 5, the phases of the incident signal light and the output signal light are compared, and an error light signal corresponding to the frequency mismatch is applied to the region 13. Since the pn junctions 10, 11, and 12 are forward biased, active layer 1
A carrier is injected into 1, causing population inversion and becoming an amplification medium. On the other hand, npn of 10, 11, 12, 13
The junction portion forms a phototransistor, and has a structure in which an error optical signal is detected by a pn junction 12-13, and an amplified photocurrent flows into the active layer 11. The principle of operation will be explained using FIG. Here, P 1 represents the potential before light irradiation, and P 2 represents the potential during light irradiation. The error optical signal is 1
It is absorbed by the depletion layer formed in the pn junction of 2-13, generating electron-hole pairs. Holes flow into the p-GaAs layer by the depletion layer electric field, and the electrostatic effect lowers the height of the potential barrier to electrons in this region. As a result, electrons flow from n-GaAs on the right side to p-GaAs, and carriers are injected into the active layer. As explained above, in the embodiment shown in FIG. 6, the function of detecting and amplifying the error optical signal is realized by the phototransistor formed in the semiconductor laser. FIG. 6 shows the basic configuration of the present invention. In order to perform more efficient operation, a heterojunction is used to improve the confinement effect of light and carriers in the active layer 11, and the light detection The present invention includes a structure in which a window layer 13 is provided by a heterojunction in order to improve quantum efficiency. Also, semiconductor materials
The same effect can be expected by using InP/In GaAsP other than AlGaAs.

本発明の実施例では、誤差光信号の抽出部4,
5,7,8の構成法については特に限定しない。
バルク型のハーフ・ミラー、位相板、合波器を用
いてもよいし、これらをすべて単一モード光フア
イバ光誘電体導波路で構成してもよいし、また、
半導体光導波路で形成し、半導体レーザともノリ
シツクに構成する事も可能である。ただ、両光信
号の光路差はできるだけ小さくする事が望まし
い。両光信号の位相差をπ/2もしくは−π/2に設定
し たとしても、温度変動等により両ビームの光学長
差が変化して位相差に誤差を生じる事が予想され
るからである。例えば、誤差光信号の抽出回路を
SiO2導波路で構成し、両アームの差が1mm以内
であつたとする。波長1μmの光信号に対して、
位相差がπ/2の設定値から、10%変動してしまう (π/2±π/20)温度変化は、2.3℃である。両ア
ームの 差を100μm以内にできれば、23℃の温度変化ま
で10%変動で抑えられる。半導体光導波路で両ア
ームを構成する場合には、屈折率の温度系数が
SiO2より約1桁大きいので、100μmの両アーム
差で2.3℃が許容限界となる。
In the embodiment of the present invention, the error optical signal extraction unit 4,
There are no particular limitations on how to configure 5, 7, and 8.
A bulk type half mirror, a phase plate, and a multiplexer may be used, or all of these may be composed of a single mode optical fiber optic dielectric waveguide, or,
It is also possible to form it with a semiconductor optical waveguide and to configure it with a semiconductor laser as well. However, it is desirable to minimize the optical path difference between the two optical signals. This is because even if the phase difference between the two optical signals is set to π/2 or -π/2, it is expected that the optical length difference between the two beams will change due to temperature fluctuations and the like, causing an error in the phase difference. For example, if the error optical signal extraction circuit is
Assume that it is composed of a SiO 2 waveguide and that the difference between both arms is within 1 mm. For an optical signal with a wavelength of 1 μm,
The temperature change that causes the phase difference to fluctuate by 10% (π/2±π/20) from the set value of π/2 is 2.3°C. If the difference between both arms can be kept within 100 μm, temperature changes up to 23°C can be suppressed to 10% fluctuations. When both arms are composed of semiconductor optical waveguides, the temperature coefficient of the refractive index is
Since it is about one order of magnitude larger than SiO 2 , the allowable limit is 2.3°C with a difference of 100 μm between both arms.

以上説明したように、本発明により、入射信号
光周波数に自動的にフアブリ・ペロー共振モード
周波数が追随する直線増幅器、入射信号光周波数
に自動的に発振周波数が追随する注入同期増幅器
が実現できる。このような光増幅器は、小形で安
定な増幅特性が得られるので、光中継器への応用
が期待される。
As explained above, according to the present invention, it is possible to realize a linear amplifier in which the Fabry-Perot resonant mode frequency automatically follows the incident signal optical frequency, and an injection-locked amplifier in which the oscillation frequency automatically follows the incident signal optical frequency. Since such optical amplifiers are compact and provide stable amplification characteristics, they are expected to be applied to optical repeaters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の光増幅器の構成例、第2図は
直線増幅器の増幅利得対入射信号光周波数の関係
を示す図、第3図は注入同期増幅器の増幅利得対
入射信号光周波数の関係を示す図。第4図a及び
bは、出力信号光の入射信号光に対する相対位相
θ対入信号光周波数と光増幅器周波数の差を、直
線増幅器及び注入同期増幅器に対し示し、第5図
は本発明の実施例の構成例、第6図は本発明の別
の実施例、第7図はホトトランジスタの動作原理
を示す。 1は入射ミラー、2は出射ミラー、3は増幅媒
質、4は入射信号光分岐用ハーフミラー、5は出
力信号光分岐用ハーフミラー、6は光増幅器、7
は位相器、8は光合流器、9は光検波器、10は
n―GaAs基板、11はp―GaAs活性層、12は
p―GaAs層、13はn―GaAs層、14はp側透
明電極、15はn側電極である。
Figure 1 shows an example of the configuration of a conventional optical amplifier, Figure 2 shows the relationship between the amplification gain of a linear amplifier and the incident signal optical frequency, and Figure 3 shows the relationship between the amplification gain and the incident signal optical frequency of an injection-locked amplifier. Diagram showing. 4a and 4b show the relative phase θ of the output signal light with respect to the input signal light versus the difference between the input signal light frequency and the optical amplifier frequency for a linear amplifier and an injection-locked amplifier, and FIG. 5 shows an embodiment of the present invention. An example configuration, FIG. 6 shows another embodiment of the present invention, and FIG. 7 shows the operating principle of a phototransistor. 1 is an input mirror, 2 is an output mirror, 3 is an amplification medium, 4 is a half mirror for splitting input signal light, 5 is a half mirror for splitting output signal light, 6 is an optical amplifier, 7
is a phase shifter, 8 is an optical combiner, 9 is a photodetector, 10 is an n-GaAs substrate, 11 is a p-GaAs active layer, 12 is a p-GaAs layer, 13 is an n-GaAs layer, 14 is a p-side transparent layer The electrode 15 is an n-side electrode.

Claims (1)

【特許請求の範囲】 1 入射信号光を増幅して出射する光増幅器にお
いて、入射信号光の一部を分岐する第1分岐手段
と、出射信号光の一部を分岐する第2分岐手段
と、各分岐手段の出力を直接又は移相器を介して
合波する合波器と、合波器の出力を電気信号に変
換する光検波器とを有し、前記移相器は合波器の
出力光パワーが合波器の各入射光の位相差に比例
するごとく光路差を提供し、前記光検波器の出力
を光増幅器にフイードバツクすることにより入射
信号光周波数と光増幅器共振モード周波数とを一
致させることを特徴とするAFC光増幅器。 2 前記光増幅器が半導体レーザであり、前記光
検波器が半導体レーザと同一基板上に集積化され
て形成されたフオトトランジスタであり、フオト
トランジスタに照射された干渉光パワーによつ
て、半導体レーザ活性層へ注入される電流が制御
される事を特徴とする特許請求の範囲第1項記載
のAFC光増幅器。
[Scope of Claims] 1. In an optical amplifier that amplifies and outputs an incident signal light, a first branching means for branching a part of the input signal light, a second branching means for branching a part of the output signal light, It has a multiplexer that multiplexes the outputs of each branching means directly or via a phase shifter, and a photodetector that converts the output of the multiplexer into an electrical signal, and the phase shifter is the multiplexer of the multiplexer. The optical path difference is provided so that the output optical power is proportional to the phase difference between the respective incident lights of the multiplexer, and the output of the optical detector is fed back to the optical amplifier to differentiate between the incident signal optical frequency and the optical amplifier resonant mode frequency. AFC optical amplifier characterized by matching. 2. The optical amplifier is a semiconductor laser, the photodetector is a phototransistor integrated on the same substrate as the semiconductor laser, and the semiconductor laser is activated by the interference light power irradiated to the phototransistor. 2. The AFC optical amplifier according to claim 1, wherein the current injected into the layer is controlled.
JP15058281A 1981-09-25 1981-09-25 Automatic frequency control light amplifier Granted JPS5852890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15058281A JPS5852890A (en) 1981-09-25 1981-09-25 Automatic frequency control light amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15058281A JPS5852890A (en) 1981-09-25 1981-09-25 Automatic frequency control light amplifier

Publications (2)

Publication Number Publication Date
JPS5852890A JPS5852890A (en) 1983-03-29
JPS6257280B2 true JPS6257280B2 (en) 1987-11-30

Family

ID=15500029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15058281A Granted JPS5852890A (en) 1981-09-25 1981-09-25 Automatic frequency control light amplifier

Country Status (1)

Country Link
JP (1) JPS5852890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543820Y2 (en) * 1987-01-31 1993-11-05

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1251845A (en) * 1984-08-06 1989-03-28 Ian D. Henning Optical amplification
ATE132980T1 (en) * 1990-10-31 1996-01-15 Canon Kk METHOD AND DEVICE FOR CONTROLLING A TUNABLE FILTER
US5285059A (en) * 1990-10-31 1994-02-08 Canon Kabushiki Kaisha Method for controlling a tunable filter and an apparatus therefor
EP0593237B1 (en) * 1992-10-13 1997-12-29 Nec Corporation Optical semiconductor amplifier
JP2668324B2 (en) * 1993-07-15 1997-10-27 ゼネラルパッカー株式会社 Temporary sealing device for packaging bag in gas filling packaging machine
JP2619794B2 (en) * 1993-07-23 1997-06-11 ゼネラルパッカー株式会社 Nozzle descent detecting device in inert gas filling device of packaging machine
JP2619795B2 (en) * 1993-08-18 1997-06-11 ゼネラルパッカー株式会社 Gas supply adjustment system of gas filling and packaging machine
JP2016055878A (en) 2014-09-05 2016-04-21 東洋自動機株式会社 Bag with gas channel, and method and device for packaging bag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543820Y2 (en) * 1987-01-31 1993-11-05

Also Published As

Publication number Publication date
JPS5852890A (en) 1983-03-29

Similar Documents

Publication Publication Date Title
US5191625A (en) Terminal for a frequency divided, optical communication system
US6888973B2 (en) Tunable optical add/drop multiplexer with multi-function optical amplifiers
Joergensen et al. 4 Gb/s optical wavelength conversion using semiconductor optical amplifiers
JP4090402B2 (en) Semiconductor optical amplifier and optical module using the same
US5103455A (en) Monolithically integrated semiconductor optical preamplifier
JP2751903B2 (en) Optical clock regenerator
US5737459A (en) Loss interferometric power combiner comprising a feedback circuit
JPH041614A (en) Optical amplifying device
US7110170B2 (en) Semiconductor optical amplifier having photo detector and method of fabricating the same
JPS6257280B2 (en)
JP2971551B2 (en) Optical amplifier-photodetector device
WO2004049602A2 (en) Optical frequency modulated transmitter
JP4321970B2 (en) Semiconductor optical amplifier, light source device for ASE radiation, optical gate array, wavelength tunable laser device, multi-wavelength laser device, and optical transmission system
JP2007219561A (en) Semiconductor light emitting device
US5561546A (en) Method and apparatus for improving the sensitivity of optical modulators
Betts et al. Semiconductor laser sources for externally modulated microwave analog links
Walker et al. A gain-clamped, crosstalk free, vertical cavity lasing semiconductor optical amplifier for WDM applications
Koren et al. Integration of 1.3 μm wavelength lasers and optical amplifiers
US6331990B1 (en) Demodulating and amplifying systems of lasers with optical gain control (DAS-LOGiC)
Van Dijk et al. Quantum dash mode-locked laser for millimeter-wave coupled opto-electronic oscillator
US5265111A (en) Positive feedback device for processing an optical signal
JP2716125B2 (en) Optical amplifier
JP4653940B2 (en) Light controller for communication
Wiedenmann et al. Oxide-confined vertical-cavity semiconductor optical amplifier for 980-nm wavelength
Lu et al. Wavelength conversion using a T-gate laser