JPS58147716A - Light deflecting element - Google Patents

Light deflecting element

Info

Publication number
JPS58147716A
JPS58147716A JP2973782A JP2973782A JPS58147716A JP S58147716 A JPS58147716 A JP S58147716A JP 2973782 A JP2973782 A JP 2973782A JP 2973782 A JP2973782 A JP 2973782A JP S58147716 A JPS58147716 A JP S58147716A
Authority
JP
Japan
Prior art keywords
electrodes
crystal element
crystal
density
opposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2973782A
Other languages
Japanese (ja)
Inventor
Akira Miura
明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP2973782A priority Critical patent/JPS58147716A/en
Publication of JPS58147716A publication Critical patent/JPS58147716A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To attain high light deflecting efficiency by heating one surface of an alkali halide crystal element and by projecting laser light on the element parallel to the heated surface. CONSTITUTION:One surface of a crystal element 10 at the side of comb-shaped electrodes 21, 22 is heated by generating heat from the electrodes 21, 22, and the other surface 23 opposite to the electrodes 21, 22 kept at a constant temp. When the element 10 is in the heated state, the interplanar spacing of parts of the element 10 close to the electrodes 21, 22 is wider, and the interplanar spacing of a part far from the electrodes 21, 22 is narrower. Accordingly, the parts close to the electrodes 21, 22 have a lower intermolecular density, and the surface 23 opposite to the electrodes 21, 22 has a higher intermolecular density. Since the refractive index of light passing through a transparent crysta body is higher at a part having a higher density, projected laser light is deflected toward the surface 23 opposite to the electrodes 21, 22 as shown by the solid line, and it emerges from the element 10.

Description

【発明の詳細な説明】 本発明は、熱によシ結晶内部の屈折率を変えて光を偏向
させる光偏向素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical deflection element that deflects light by thermally changing the refractive index inside a crystal.

本発明の光偏向素子は透明結晶体を構成する結晶格子の
格子間間隔が短い、すなわち密度が大きい方がその結晶
体を通る光の屈折率が大きいことに着目してなされたも
ので、極めて入手し易く、安価で、かつ偏向効率の高い
偏向素子を提供するものである・ 第1図は本発明の一実施例の斜視図である。図において
、10は透明結晶素子、21.22は互に交錯した一対
の櫛の歯電極である。この一対の櫛の歯電極はCr −
Auで構成したもので、結晶素子10の一方の面にスパ
ッタリング法によ〉形成されている。
The optical deflection element of the present invention was developed by focusing on the fact that the shorter the interlattice spacing of the crystal lattice constituting the transparent crystal body, that is, the higher the density, the higher the refractive index of light passing through the crystal body. To provide a deflection element that is easily available, inexpensive, and has high deflection efficiency. FIG. 1 is a perspective view of an embodiment of the present invention. In the figure, 10 is a transparent crystal element, and 21 and 22 are a pair of intersecting comb tooth electrodes. This pair of comb tooth electrodes are Cr −
It is made of Au and is formed on one surface of the crystal element 10 by sputtering.

結晶素子10と櫛の歯電極21.22とで光偏向素子1
00が形成される。30は櫛の歯電極21.22間に接
続された電源で、実施例では高周波電源が用いられてい
るが、直流電源であっても良い。40は櫛の歯電極21
.22に平行で、結晶素子10<投射されるように配置
されたレーず光源である。結晶素子10として実施例で
はLiF結晶素子が用いられている。
The crystal element 10 and the comb tooth electrodes 21 and 22 form the optical deflection element 1.
00 is formed. Reference numeral 30 denotes a power source connected between the comb tooth electrodes 21 and 22, and although a high frequency power source is used in the embodiment, a DC power source may also be used. 40 is a comb tooth electrode 21
.. 22 and is a laser light source arranged so that it is projected onto the crystal element 10. As the crystal element 10, a LiF crystal element is used in the embodiment.

レーザ光源40よ抄し−ず光が結晶素子10に投射され
る@一方、電源30によシ高周波電圧を櫛の歯電極21
.22間に印加する。電極21.22間には容量Cが存
在する。したがって、電極21.22間に高周波電界が
印加されると、容量Cの損失tanffKよ抄櫛の歯電
極は熱を発生する。この熱は結晶素子10内に伝達され
る。結晶素子10にはLlFが用いられている。LiF
はアルカリハライドの結晶の1つで、その熱膨張係数(
電歪定数)は大である。
The laser light source 40 emits light onto the crystal element 10. On the other hand, the power source 30 applies a high frequency voltage to the comb tooth electrode 21.
.. 22. A capacitance C exists between the electrodes 21 and 22. Therefore, when a high frequency electric field is applied between the electrodes 21 and 22, the comb tooth electrode generates heat due to the loss tanffK of the capacitance C. This heat is transferred into the crystal element 10. LIF is used for the crystal element 10. LiF
is one of the alkali halide crystals, and its coefficient of thermal expansion (
electrostriction constant) is large.

光偏向素子100.0動作説明図を第2図に示す。An explanatory diagram of the operation of the optical deflection element 100.0 is shown in FIG.

結晶!子10の櫛の歯電極21.22側では電極21.
22の発熱により加熱されている。結晶素子10の電極
21、22と反対側の面23け一定温度忙保持されてい
る。結晶素子10が上記の熱状態にあふと、結晶素子1
0の内部において電[21,22K近い部分の格子間間
隔は広く、電極21.22より遠い部分の格子間隔は狭
い。すなわち、電極21.22に近い部分は分子間密度
が小で、反対側23では密度大である。前記した如く、
透明結晶体を通る光の屈折率は密度が大きい方が大きい
。よ−1て、投射されたレーザ光は屈折率の大きい、す
なわち櫛の歯電極21.22の反対方向に実線で示す如
く偏光されて出射される。
crystal! On the comb tooth electrode 21.22 side of the child 10, the electrode 21.
It is heated by the heat generated by 22. A surface 23 of the crystal element 10 opposite to the electrodes 21 and 22 is maintained at a constant temperature. After the crystal element 10 is in the above thermal state, the crystal element 1
In the interior of 0, the inter-lattice spacing is wide in the portion near the electrodes 21 and 22K, and the lattice spacing is narrow in the portion far from the electrodes 21 and 22. That is, the intermolecular density is low in the portions close to the electrodes 21 and 22, and the density is high on the opposite side 23. As mentioned above,
The refractive index of light passing through a transparent crystal is greater when the density is greater. Therefore, the projected laser beam has a large refractive index, that is, it is polarized in the direction opposite to the comb tooth electrodes 21 and 22 and is emitted as shown by the solid line.

ここで、・実施例では結晶素子10としてLiF結晶素
子が用いられているが、このLiF結晶素子は前記した
ように熱膨張係数が大である。熱膨張係数0が大である
ということは結晶素子10内の密度差。
Here, in the embodiment, a LiF crystal element is used as the crystal element 10, but as described above, this LiF crystal element has a large coefficient of thermal expansion. A large thermal expansion coefficient of 0 indicates a density difference within the crystal element 10.

すなわち電極21.22に近い部分の密度と反対−23
の密度との差が大きいということである。密度差が大き
いということは、屈折率差、すなわち偏向角度が大、換
言すれば変換効率が高いというととKなる。従来公知の
光偏向素子であるPLZT或いはLiNbO3等よりL
iFの方が熱膨張係数が大である。
That is, the density of the part near the electrodes 21 and 22 is opposite to -23
This means that there is a large difference between the density of A large density difference means a large refractive index difference, that is, a large deflection angle, or in other words, a high conversion efficiency. L from conventionally known optical deflection elements such as PLZT or LiNbO3
iF has a larger coefficient of thermal expansion.

よって、LiF結晶素子を用いた本発明に係る光偏向素
子の偏向効率は従来公知の素子よシ偏向効率の高いもの
となる。しかも、LiF結晶素子は一方向結晶であるの
で、その入手は容易で安価である。
Therefore, the deflection efficiency of the optical deflection element according to the present invention using a LiF crystal element is higher than that of conventionally known elements. Furthermore, since the LiF crystal element is a unidirectional crystal, it is easily available and inexpensive.

なお、熱膨張係数が大である結晶として実施例ではLi
F結晶を用いた場合を例示したが、他KNaCJ 、 
NaF、 KCg 、 MgO,IGr$ 7 #カリ
ハライドの結晶ならば実施例のLiF結晶と同等の熱膨
張係数を有するので、LiF結晶素子で構成した光偏向
素子と同様に高効率の光偏向素子とすることができる。
In addition, in the example, Li was used as a crystal with a large coefficient of thermal expansion.
Although the case using F crystal was illustrated, other examples such as KNaCJ,
Since the crystal of NaF, KCg, MgO, IGr$ 7 #kalihalide has the same coefficient of thermal expansion as the LiF crystal of the example, it can be used as a highly efficient optical deflection element like the optical deflection element composed of the LiF crystal element. be able to.

但し、これらの結晶は耐水コートをする必要がある。However, these crystals need to be coated with a water-resistant coating.

以上説明した如く、結晶素子として熱膨張係数の大きい
アルカリハライドの結晶を用いて構成したので、本発明
によれば偏向効率の高い光偏向素子を得ることができる
As explained above, since the crystal element is constructed using an alkali halide crystal having a large coefficient of thermal expansion, according to the present invention, an optical deflection element with high deflection efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光偏向素子の斜袂図、第2図は第
1図の光偏向素子の動作を説明するたぬの図である◎ 10・・・結晶素子、21..22・・・電極、3o・
・・電源、4o・・・レーザ光源。 M1図 n 亮2図 0
FIG. 1 is an oblique view of the optical deflection element according to the present invention, and FIG. 2 is a dog-eared diagram explaining the operation of the optical deflection element of FIG. 1. ◎ 10...Crystal element, 21. .. 22... Electrode, 3o.
...Power supply, 4o...Laser light source. M1 figure n Ryo2 figure 0

Claims (1)

【特許請求の範囲】[Claims] アルカリハライドの結晶素子の一方の面を加熱すると共
に、この加熱面に平行に前記結晶素子にレーザ光を投射
してな6光偏光素子。
A 6-light polarizing element in which one surface of an alkali halide crystal element is heated and a laser beam is projected onto the crystal element parallel to the heated surface.
JP2973782A 1982-02-25 1982-02-25 Light deflecting element Pending JPS58147716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2973782A JPS58147716A (en) 1982-02-25 1982-02-25 Light deflecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2973782A JPS58147716A (en) 1982-02-25 1982-02-25 Light deflecting element

Publications (1)

Publication Number Publication Date
JPS58147716A true JPS58147716A (en) 1983-09-02

Family

ID=12284416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2973782A Pending JPS58147716A (en) 1982-02-25 1982-02-25 Light deflecting element

Country Status (1)

Country Link
JP (1) JPS58147716A (en)

Similar Documents

Publication Publication Date Title
JPH07507882A (en) Intracavity harmonic subresonator with wide phase matching area
JPH0324781A (en) Phase matching in laser generator
JPH0527287A (en) Light wavelength conversion device
JPS58147716A (en) Light deflecting element
JPH07120797A (en) Wavelength converter
JPS60112023A (en) Light wavelength conversion element
JP2671335B2 (en) Laser light source
JP2676743B2 (en) Waveguide type wavelength conversion element
JPS58147717A (en) Light deflecting element
JPS60242434A (en) Optical deflector
JPH04121718A (en) Optical harmonic generator
JPS58174924A (en) Optical deflection element
JPH11125800A (en) Optical element temperature distribution controller
JPS58147715A (en) X-y optical deflector
JPH04172329A (en) Wave length converting method and device for it
JPH0389574A (en) Second harmonic generator
JP2952948B2 (en) Waveguide type optical device
JP2007322695A (en) Wavelength conversion element
JPH0363050B2 (en)
JPS60242433A (en) Optical deflector
JP2900576B2 (en) Harmonic generator
JPS58115424A (en) Optical deflection element
JPS63118714A (en) Acoustooptic element
JPH02202079A (en) Laser device
JP3450359B2 (en) Wavelength conversion laser device