JPS58147578A - Electrolytic refining method of nickel - Google Patents

Electrolytic refining method of nickel

Info

Publication number
JPS58147578A
JPS58147578A JP57028869A JP2886982A JPS58147578A JP S58147578 A JPS58147578 A JP S58147578A JP 57028869 A JP57028869 A JP 57028869A JP 2886982 A JP2886982 A JP 2886982A JP S58147578 A JPS58147578 A JP S58147578A
Authority
JP
Japan
Prior art keywords
electrolysis
nickel
electrolytic
liquid
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57028869A
Other languages
Japanese (ja)
Other versions
JPH0211674B2 (en
Inventor
Norio Tamura
田村 「あ」男
Tetsuyoshi Koga
甲賀 哲義
Katsuhiro Tomota
勝博 友田
Jitsuya Komoda
薦田 実也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP57028869A priority Critical patent/JPS58147578A/en
Publication of JPS58147578A publication Critical patent/JPS58147578A/en
Publication of JPH0211674B2 publication Critical patent/JPH0211674B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To prevent the cracking of product nickel and to decrease electrolysis voltage by maintaining the temp. of the feed liquid which is the electrolyte discharged from an electrolytic cell and is to be returned to a cathode box after refining and cooling at a prescribed temp. or above in the initial period when the electrolysis is started. CONSTITUTION:In an electrolytic refining method of nickel wherein electrolysis is accomplished by using nickel matt as anode and maintaining the current density of cathode at >=1.5A/dm<2>, the temp. of the feed light for a cathode box in the initial period when the electrolysis is started is maintained at >=45 deg.C to reduce electrodeposition stress, whereby the craking to be generated in the stage of cutting electric nickel to product nickel as well as the cracking of the seed plate in speed plate electrolysis are prevented. The electrolysis voltage is decreased by an increase in the temp. of the electrolyte, whereby the cost of electric power for electrysis is reduced. The temp. of the feed liquid is maintained at >=45 deg.C, more preferably about 45-60 deg.C by allowing the reflux electrolyte in the initial period when the electrolysis is started to bypass a cooler partially or if necessary through a heater.

Description

【発明の詳細な説明】 本発明は、ニッケルマットをアノードとするニッケル電
解精製法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved nickel electrolytic refining method using a nickel matte as an anode.

ニッケルマットをアノードとし、金属ニッケル板をカソ
ードとして電解を行うニッケル電解精製法においては、
隔膜を設けたカソードゼツクス内にカソードを吊し、電
解液は電解槽から連続的に抜き出し脱銅、脱鉄、脱コバ
ルト等の浄液工程を経て、さらにP)(調整を行い不純
物を含まない純液とした後カソードデツクス内に連続的
に注入給液するようにして、電解液を環流させつつ電解
を行う、この電解精製の際、カソード電流密度を1、5
 A/d、1程度以上に保持するとジュール熱によって
電解液の温度は電解槽内において上昇する。
In the nickel electrolytic refining method, which uses a nickel matte as an anode and a metal nickel plate as a cathode,
The cathode is suspended in a cathode box equipped with a diaphragm, and the electrolyte is continuously extracted from the electrolytic cell and undergoes purification processes such as copper removal, iron removal, and cobalt removal, and is further adjusted to remove impurities. After making a pure liquid, the electrolyte is continuously injected into the cathode deck and electrolyzed while circulating the electrolyte. During this electrolytic refining, the cathode current density is set to 1.5.
When A/d is maintained at about 1 or more, the temperature of the electrolytic solution increases in the electrolytic cell due to Joule heat.

したがって電解槽内の液温を一定に保つためには(通常
は70〜80℃に保つ)、電解槽から排出した電解液を
浄液した後、水を使用した熱交換器を通して純液の温度
を略35℃まで下げてカンードゼツクス内に給液する方
法が採用されている。
Therefore, in order to keep the liquid temperature in the electrolytic cell constant (usually kept at 70 to 80°C), after purifying the electrolyte discharged from the electrolytic cell, it is passed through a heat exchanger using water to maintain the temperature of the pure liquid. A method has been adopted in which the temperature is lowered to approximately 35°C and the liquid is supplied into the container.

シカシながら、ニッケルマットをアノードとする電解精
製の場合、電解の進行とともにアノード表面に硫黄を主
成分とするスライムが生成するが。
However, in the case of electrolytic refining using nickel matte as an anode, slime containing sulfur as the main component is generated on the anode surface as the electrolysis progresses.

このスライムをアノードスクラップに付着させたまま作
業上支障なく電解槽の外に取出すためには、電解槽内の
電解液を外に抜きとる必要がある。しタカって、新しい
ニッケルマットアノードを電解槽に入れて電解精製を開
始する際は、あらためて電解槽内に電解液が満たされる
ので、電解開始初期の電解槽内の液温は一旦35℃程度
まで低下することになシ、再びジュール熱によって昇温
し通常の温度に復するまでには相当の時間がかかる。
In order to take out the slime from the electrolytic cell without causing any trouble while adhering to the anode scrap, it is necessary to drain the electrolytic solution inside the electrolytic cell to the outside. When a new nickel matte anode is placed in the electrolytic cell and electrolytic refining is started, the electrolytic cell is refilled with electrolytic solution, so the temperature of the liquid in the electrolytic cell at the beginning of electrolysis is about 35℃. However, it takes a considerable amount of time for the temperature to rise again due to Joule heat and return to normal temperature.

また、通常ニッケルマットアノード1ライフに対してカ
ソードライフはその半分程度なので、少くとも1回は通
電を停止してカン−r(電気ニッケル)を引上げ新しい
種板のカソードと取替える操作が行なわれるが、この時
にもアノード表面のスライムを除去する操作が行なわれ
電解液は電解槽から一旦抜き取られるので、前記した新
しいニッケルマットアノードで電解を開始する場合と同
様の液温の低下が起る。
Additionally, the life of the cathode is about half of the life of a nickel matte anode, so at least once the power must be turned off, the can-r (electrolytic nickel) removed, and the cathode replaced with a new seed plate cathode. At this time as well, an operation is performed to remove the slime on the anode surface and the electrolytic solution is temporarily extracted from the electrolytic cell, so that the same drop in solution temperature occurs as in the case of starting electrolysis with a new nickel matte anode described above.

また、電解精製に使用する種板を製造する種板電解にお
いては、ニッケルマットをアノードとしステンレス等を
母板としてうずく電着したニッケル板を得るが、この場
合も電解開始初期には通常のニッケル電解精製と同様の
理由によって電解槽中の液温は低くなる。
In addition, in seed plate electrolysis to produce seed plates used in electrolytic refining, a nickel plate is obtained by electrodepositing nickel using a nickel matte as an anode and stainless steel as a base plate. The liquid temperature in the electrolytic cell becomes low for the same reason as in electrolytic refining.

本発明者等は、この電解開始初期の電解槽中の液温低下
が、電気ニッケルを切断して製品ニッケルとする際に発
生する割れ、および種板電解における種板の割れの発生
の原因となシ且つ電解電圧の上昇の原因となっているこ
とを見出し本発明にしたがって本発明の第一の目的は電
解精製によって得られた電気ニッケルを切断して所望の
形状の製品ニッケルとする際に割れを発生する電気ニッ
ケルを大巾に減少させることにある。
The present inventors believe that the drop in liquid temperature in the electrolytic cell at the beginning of electrolysis is the cause of cracks that occur when electrolytic nickel is cut into product nickel, and cracks in the seed plate during seed plate electrolysis. According to the present invention, the first object of the present invention is to cut electrolytic nickel obtained by electrolytic refining to obtain product nickel in a desired shape. The purpose is to significantly reduce the amount of electrolytic nickel that causes cracks.

本発明の第二の目的は種板電解において1種板に割れが
発生することを防止して種板採取率の向上をはかること
にあシ、また本発明の第三の目的は電解電圧の低下をは
かることにある。
The second object of the present invention is to prevent cracks from occurring in the first type plate during seed plate electrolysis and to improve the rate of seed plate collection. The purpose is to measure the decline.

これらの目的を達成するために、本発明はニッケルマッ
トをアノ−Pとし、カソード電流密度をL 5 A/a
−以上に保持して電解を行うニッケル電解精製法におい
て、電解開始初期のカソード電流密度への給液温度を4
5℃以上とすることにある。
To achieve these objectives, the present invention uses a nickel matte as Ano-P and a cathode current density of L 5 A/a.
- In the nickel electrolytic refining method in which electrolysis is carried out by maintaining the temperature above
The temperature should be 5°C or higher.

発明者等はスノクイラル鍍金応カ計を用いて電解液の液
温と電着応力の関係を調査した。その−例を第1図に示
す。
The inventors investigated the relationship between the temperature of the electrolytic solution and the electrodeposition stress using a Snoquiral plating stress meter. An example of this is shown in FIG.

第1図はスパイラル鍍金応カ計により、通常のニッケル
マットをアノードとするニッケル電解精製に用いられて
いる電解液(Ni g 7 f /J!、 Ot56 
f/’、 Ibr30311り/l、  804 14
3 ’/l、 Na5st/l、  PII3)を用い
てカソード電流密度2、4 A/6W?の条件で、液温
を35℃、45℃、65℃に変えて電着膜厚20μでの
電着応力を測定した結果である。第1図から明らかなよ
うに、液温か低い程電着応力が大きく、特に液温45℃
以下になると電着応力は著るしく大きくなる。前記した
従来のニッケルマットをアノードとするニッケル電解精
製の電解開始初期には、電解槽中の液温は35℃程度ま
で低下するため、電解開始初期の電着層は特に大きな応
力をもって電着しており、これが原因となって最終的に
得られる電気ニッケルも、これを切断して製品ニッケル
とするとき種板と新しい電着層との間が剥離し割れを発
生するものと推察される。また、種板電解においても同
様に電解開始初期には電着応力が太きくなシ種板に亀裂
が入って割れを生じたり、はなはだしい場合には母板か
ら剥離するなどの結果をまねくものと考えられる。
Figure 1 shows an electrolytic solution (Ni g 7 f /J!, Ot56) used in nickel electrolytic refining using a normal nickel matte as an anode, using a spiral plating tester.
f/', Ibr30311ri/l, 804 14
3'/l, Na5st/l, PII3) with a cathode current density of 2,4 A/6W? These are the results of measuring the electrodeposition stress at an electrodeposition film thickness of 20 μm under the following conditions, with the liquid temperature changed to 35° C., 45° C., and 65° C. As is clear from Figure 1, the lower the liquid temperature, the greater the electrodeposition stress, especially when the liquid temperature is 45°C.
Below this, the electrodeposition stress becomes significantly large. At the beginning of the electrolytic refining process using the conventional nickel matte as an anode, the temperature of the liquid in the electrolytic cell drops to about 35°C, so the electrodeposited layer is deposited with a particularly large stress at the beginning of the electrolysis. This is thought to be the cause of the separation of the seed plate from the new electrodeposited layer when the electrolytic nickel finally obtained is cut into product nickel, causing cracks. Similarly, in seed plate electrolysis, the electrodeposition stress is high at the beginning of electrolysis, which can cause cracks in the seed plate, or in severe cases, it may peel off from the mother plate. Conceivable.

なお、電解槽内の液温が低下すれば摺電圧が上昇するの
で電力消費量の点でも不利となる。
Note that if the temperature of the liquid in the electrolytic cell decreases, the sliding voltage will increase, which is disadvantageous in terms of power consumption.

本発明者等は上記の知見にもとづいて、実操業のニッケ
ル電解精製において、電解開始初期のカンードデツクス
への給液温度を45℃以上とした。
Based on the above findings, the present inventors set the temperature of liquid supplied to the candodex at 45° C. or higher at the beginning of electrolysis in actual nickel electrolytic refining.

すなわち、電解槽から連続的に抜き出され浄液工程を経
てカソードゼツクス内に給液される電解液は通常は前記
したように冷却用熱交換器により温度を下げた後カソー
ドノックス内に給液されるが、電解開始初期には浄液工
程を経た純液を冷却用熱交換器を通すことなくカソード
ゼツクス内に給液するようにした。そのためには、浄液
工程の後の冷却用熱交換器の前で分岐した配管を設は通
常の系統と別に設け、られたPH調整槽を経た後これを
電解槽付近で通常の給液管に接続し、前記分岐箇所と接
続部にバルブを設けるようにすれば、バルブを開閉する
ことにより冷却用熱交換器を通すことなく給液すること
ができる。
In other words, the electrolytic solution that is continuously drawn out from the electrolytic cell and supplied into the cathode NOx after going through a liquid purification process is normally lowered in temperature by a cooling heat exchanger as described above before being supplied into the cathode NOx. However, at the beginning of electrolysis, the pure liquid that had undergone the liquid purification process was supplied into the cathode XX without passing through the cooling heat exchanger. To do this, a branched pipe is installed in front of the cooling heat exchanger after the liquid purification process, which is separate from the normal system. If a valve is provided at the branch point and the connecting portion, the liquid can be supplied without passing through a cooling heat exchanger by opening and closing the valve.

また、もし配管設備等の関係から冷却用熱交換器を通さ
ないようにしただけでは45℃以上の給液温度が得られ
ないような場合には、蒸気等を使用した加熱用熱交換器
を通して純液を加熱昇温して給液するようにすればよい
In addition, if it is not possible to obtain a supply liquid temperature of 45°C or higher simply by not passing the cooling heat exchanger due to piping equipment, etc., use a heating heat exchanger using steam, etc. The pure liquid may be supplied by heating it to a higher temperature.

給液温度は、前記したスパイラル鍍金応力針による電着
応力測定試験の結果および実操業の経験によれば45℃
以上で効果があり、それ以上では高い程良いが電解槽中
で電解液は昇温するので給液温度を60℃以上とするこ
とは電解槽の耐熱性の点で限界があシ好ましくない、し
たがって、最も好ましい給液温度は45〜60℃である
The supply liquid temperature is 45°C according to the results of the electrodeposition stress measurement test using the spiral plating stress needle mentioned above and the experience of actual operation.
The higher the temperature is, the better it is, but the temperature of the electrolyte increases in the electrolytic cell, so setting the supply liquid temperature to 60°C or higher has a limit in terms of the heat resistance of the electrolytic cell, which is not desirable. Therefore, the most preferred liquid supply temperature is 45-60°C.

また、給液温度を45℃以上として電解を開始すれば、
ジュール熱によって電解槽中の液温はしだいに上昇して
通常の温度(70〜80℃)に達するので、その時、前
記したバルブを操作して冷却用熱交換器を通して給液す
る通常の環流系統に切替える。この切替えまでに要する
時間は、給液温度によって異なるが電解開始から略48
時間以内である。
In addition, if electrolysis is started with the supply liquid temperature set to 45°C or higher,
The temperature of the liquid in the electrolytic cell gradually rises due to Joule heat and reaches the normal temperature (70 to 80 degrees Celsius), so at that time, the above-mentioned valve is operated to supply the liquid through the cooling heat exchanger in a normal circulation system. Switch to. The time required for this switching varies depending on the temperature of the supplied liquid, but is approximately 48 minutes from the start of electrolysis.
Within hours.

以−トに詳細に述べた方法によって電解開始初期に給液
温度を45℃以上とすれば、電解によって得られた後切
断して製品ニッケルとする際に割れことができ、また種
板電解においても種板の割れの発生を効果的に防止して
種板採取率の向上をはかることができる。また、電解開
始初期の電解電圧の上昇を防止して電力消費量の節減が
できる効果もある。
If the supply liquid temperature is set to 45°C or higher at the beginning of electrolysis using the method described in detail above, cracks may occur when the nickel obtained by electrolysis is cut into product nickel, and in seed plate electrolysis. It is also possible to effectively prevent the occurrence of seed plate cracking and improve the seed plate collection rate. It also has the effect of preventing a rise in electrolysis voltage at the beginning of electrolysis and reducing power consumption.

本発明は、電解槽中の液温がジュール熱によって上昇す
るのを抑制するために浄液環流系統において電解液を冷
却する必要のある1、 5 Al1−以上のカソード電
流密度で電解を行うニッケルマットをアノードとするニ
ッケル電解精製法において大きな効果があシ、使用する
電解浴組成には特に限定はない、すなわち、 Ni s
o、 −Ni Ct、混合浴ではニッケルイオン濃度4
0〜909/l  塩素イオン濃度40〜5ot7を硫
酸イオン濃度100〜150F/z、ナトリウムイオン
濃度30〜60 t/l 、硼酸濃度5〜309/l。
The present invention provides a method for electrolyzing a nickel cell which performs electrolysis at a cathode current density of 1,5 Al1- or higher, which requires cooling the electrolyte in a purified liquid circulation system in order to suppress the rise in liquid temperature in the electrolytic cell due to Joule heat. The nickel electrolytic refining method using matte as an anode has a great effect, and the composition of the electrolytic bath used is not particularly limited.
o, -Ni Ct, nickel ion concentration 4 in mixed bath
0-909/l chloride ion concentration 40-5ot7, sulfate ion concentration 100-150 F/z, sodium ion concentration 30-60 t/l, boric acid concentration 5-309/l.

PH2,0〜4゜5であJ、N15o4浴の場合はニッ
ケルイオン濃度40〜50 f/l  硼酸濃度20〜
25f/l、PH4〜5であル、その他塩化浴等であっ
□てもよい。
In the case of PH2,0-4°5 and N15o4 bath, the nickel ion concentration is 40-50 f/l and the boric acid concentration is 20-50.
25 f/l, pH 4 to 5, or other chloride baths may be used.

」1」ユ Nl74゜0重量%、S20゜6重量%、Ou3.43
重’tXsooO,74重量%、F−〇。23重量%の
ニッケルマットを975■(縦)X755■(横)×5
0■(厚)の形状のアノードとし、987■×787■
X016■の金属ニッケル種板をカッ−Pとし、カソー
ドゼツクスへの給液組成をNi 70〜90 ’/l、
  Cjl 50〜70 ’/l +  HsPOs 
7〜12’/l * 804100〜l 50 ’/j
 * Na 30〜50’/l、  P u 2. B
として、電解槽一槽当シ前記7ノードを39枚、前記カ
ソード38枚を交互jに 同極間距離150■に配列し
、この電解槽を50槽設けてカソード電流密度2A/a
−で9日間電解した。その際、電解開始初期には浄液環
流系統において電解液の冷却を行なわないようにして、
カソードゼツクスへの給液温度を50℃とし、電解開始
から36時間経過後通常の冷却を行う浄液環流系統に切
替えた。生産された電気ニッケルは1900枚であった
"1" YuNl74゜0wt%, S20゜6wt%, Ou3.43
Weight'tXsooO, 74% by weight, F-〇. 23% by weight nickel mat 975cm (vertical) x 755cm (horizontal) x 5
The anode has a shape of 0■ (thickness), 987■ x 787■
The metal nickel seed plate of
Cjl 50-70'/l + HsPOs
7~12'/l *804100~l 50'/j
*Na 30-50'/l, P u 2. B
In one electrolytic cell, 39 of the above 7 nodes and 38 of the above cathodes are arranged alternately with the same distance between the electrodes of 150cm, and 50 such electrolytic cells are provided, and the cathode current density is 2A/a.
- Electrolysis was carried out for 9 days. At that time, the electrolyte should not be cooled in the purified liquid circulation system at the beginning of electrolysis.
The temperature of the liquid supplied to the cathode XX was set at 50°C, and after 36 hours from the start of electrolysis, the system was switched to a purified liquid circulation system that performs normal cooling. The number of electrolytic nickels produced was 1,900 pieces.

また、比較例として上記と同様の組成および形状ノニッ
ケルマットアノード金用いて、電解開始初期のカソード
ノックスへの給液を通常の冷却を行う浄液環流系統を通
して行なう従来法によった以外は上記と同様の電解条件
で電解を行い同様に1900枚の電気ニッケルを生産し
た。
In addition, as a comparative example, a non-nickel matte anode with the same composition and shape as above was used, except for the conventional method in which liquid was supplied to the cathode NOx at the initial stage of electrolysis through a purified liquid circulation system that performs normal cooling. Electrolysis was carried out under the same electrolytic conditions, and 1900 pieces of electrolytic nickel were produced in the same manner.

本発明法と比較例とで電気ニッケル切断時の割れ発生枚
数および9日間の平均摺電圧を比較して第1表に示す。
Table 1 shows a comparison of the number of cracked sheets during electrolytic nickel cutting and the average sliding voltage over 9 days between the method of the present invention and the comparative example.

第1表 実施例2 実施例1で略半分を消費したアノ−rの表面に生成した
スライムを除去した後電解槽に本どし、カソードとして
新しい種板を装入し、電解槽50槽で実施例1と同じ電
解条件で9日間電解を行い電気ニッケル1900枚を生
産した。その際、電解開始初期には浄液環流系統におい
て電解液の冷却を行なわないようにしてカソード2ツク
スへの給液温度を48℃とし、電解開始から38時間経
過後通常の浄液環流系統に切替えた。
Table 1 Example 2 After removing the slime that had formed on the surface of the Anor-R, which had consumed approximately half of its capacity in Example 1, it was put back into the electrolytic tank, a new seed plate was inserted as a cathode, and 50 electrolytic cells were used. Electrolysis was carried out for 9 days under the same electrolytic conditions as in Example 1, and 1900 pieces of electrolytic nickel were produced. At this time, at the beginning of electrolysis, the electrolyte is not cooled in the purified liquid circulation system, and the temperature of the liquid supplied to the cathode 2x is set at 48°C, and after 38 hours from the start of electrolysis, the normal purified liquid circulation system is switched on. Switched.

また、実施例1で記した比較例の電解で略半分を消費し
た。アノードの表面のスライムを除去した後電解槽にも
どし、カンードとして新しい種板を装入し、電解開始初
期の給液を通常の浄液環流系統を通し冷却して行う従来
法によった以外は上記と同じ電解条件で9日間電解を行
い電気ニッケル1900枚を生産した。
Further, approximately half of the amount was consumed in the electrolysis of the comparative example described in Example 1. After removing the slime on the surface of the anode, it is returned to the electrolytic cell, a new seed plate is inserted as a cand, and the supplied liquid at the beginning of electrolysis is cooled through a normal purified liquid circulation system. Electrolysis was carried out for 9 days under the same electrolytic conditions as above, and 1900 pieces of electrolytic nickel were produced.

本発明法と従来法とで電気ニッケル切断時の割れ発生枚
数および9日間の平均摺電圧を比較して第2表に示す。
Table 2 shows a comparison of the number of cracked sheets during electrolytic nickel cutting and the average sliding voltage over 9 days between the method of the present invention and the conventional method.

実施例3 実施例1と同一組成のニッケルマツ)t−975w (
1f1) X 755 m (横) X 30 wa 
(N ) f) 7 /−ドとし、10109O縦)X
840■(横)(電着部1015■×806■)のステ
ンレス裂母板をカンードとし、カンーr11?ックスへ
の給液組成は実施例1と同一として、−檜当り前記アノ
−139枚、前記母板38枚を交互に同極間距M 15
0−に配列し、この電解槽を4槽設けて電流密度2 A
/−で9日間の種板電解を行った。母板の両面に電着し
た種板の剥ぎ取シは途中6回行い種板1824枚を製造
した。その際、種板電解開始初期には浄液環流系統にお
いて電解液の冷却を行なわないようにして、カンードゼ
ックスへの給液温度を47℃とし、電解開始から38時
間経過後通常の浄液環流系統に切替えた。
Example 3 Nickel pine with the same composition as Example 1) t-975w (
1f1) x 755 m (horizontal) x 30 wa
(N) f) 7/-do, 10109O vertical)X
840cm (horizontal) (electrodeposited part 1015cm x 806cm) stainless steel split mother plate is used as a cand, and the canard is r11? The composition of the liquid supplied to the box was the same as in Example 1, and the distance between the same poles was M 15 by alternating the 139 sheets of anodes per cypress and the 38 sheets of the motherboard.
0-, and four of these electrolytic cells were installed to give a current density of 2 A.
Seed plate electrolysis was performed for 9 days at /-. The seed plates electrodeposited on both sides of the mother plate were peeled off six times during the process to produce 1824 seed plates. At this time, at the beginning of the seed plate electrolysis, the electrolyte is not cooled in the purified liquid reflux system, and the temperature of the liquid supplied to Cando Switched to.

また、電解開始初期の給液を通常の浄液環流系統を通し
冷却して行う従来法によった以外は上記と同じ電解条件
で9日間の種板電解を行い同じく種板1824枚を製造
した。
In addition, seed plate electrolysis was performed for 9 days under the same electrolytic conditions as above, except that the conventional method of cooling the supplied liquid at the beginning of electrolysis through a normal purified liquid circulation system was used to produce 1824 seed plates in the same manner. .

本発明法と従来法とで割れを発生した種板電数を比較し
て第3表に示す。
Table 3 shows a comparison of the number of electric currents at which cracks occurred between the method of the present invention and the conventional method.

第3表Table 3

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスパイラル鍍金応力針により、電解液の液温と
電着応力υ関係を測定した結果を示す図である。 図において、横軸は液温(℃)、縦軸は電着応力(kf
/−)を示す。 罠/図
FIG. 1 is a diagram showing the results of measuring the relationship between the temperature of the electrolytic solution and the electrodeposition stress υ using a spiral plating stress needle. In the figure, the horizontal axis is the liquid temperature (℃), and the vertical axis is the electrodeposition stress (kf
/-). trap/diagram

Claims (1)

【特許請求の範囲】[Claims] ニッケルマットをアノードとしカソード電流密度を1゜
5A/d−以上に保持して電解を行うニッケル電解精製
法において、電解開始初期のカソード電流密度への給液
温度を45℃以上とすることを特徴とするニッケル電解
精製法。
In the nickel electrolytic refining method in which electrolysis is carried out using a nickel matte as an anode and maintaining the cathode current density at 1°5 A/d- or higher, the temperature at which the liquid is supplied to the cathode current density at the beginning of electrolysis is set at 45° C. or higher. Nickel electrolytic refining method.
JP57028869A 1982-02-26 1982-02-26 Electrolytic refining method of nickel Granted JPS58147578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57028869A JPS58147578A (en) 1982-02-26 1982-02-26 Electrolytic refining method of nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57028869A JPS58147578A (en) 1982-02-26 1982-02-26 Electrolytic refining method of nickel

Publications (2)

Publication Number Publication Date
JPS58147578A true JPS58147578A (en) 1983-09-02
JPH0211674B2 JPH0211674B2 (en) 1990-03-15

Family

ID=12260379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57028869A Granted JPS58147578A (en) 1982-02-26 1982-02-26 Electrolytic refining method of nickel

Country Status (1)

Country Link
JP (1) JPS58147578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503748C2 (en) * 2011-10-10 2014-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" (ФГБОУ ВПО ТГТУ) Method of producing ultramicrodispersed nickel oxide powder using ac

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503748C2 (en) * 2011-10-10 2014-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" (ФГБОУ ВПО ТГТУ) Method of producing ultramicrodispersed nickel oxide powder using ac

Also Published As

Publication number Publication date
JPH0211674B2 (en) 1990-03-15

Similar Documents

Publication Publication Date Title
US4129494A (en) Electrolytic cell for electrowinning of metals
CN109485023B (en) Method for recovering tellurium from copper-tellurium-containing waste liquid
CN103898553B (en) A kind of electrodeposition and refine are synchronously performed the method producing calcium metal
US2541721A (en) Process for replenishing nickel plating electrolyte
Moskalyk et al. Anode effects in electrowinning
US4906340A (en) Process for electroplating metals
JP2002105684A (en) Electrolytic method, and electrolytic tank used therefor
AU2005214817A1 (en) Process and plant for electrodepositing copper
JPS58147578A (en) Electrolytic refining method of nickel
USRE34191E (en) Process for electroplating metals
US3432410A (en) Method of producing pure nickel by electrolytic refining
NO155748B (en) ELECTRICAL CONTACT CONTAINING A LEADER CONNECTION PARTY AND A CONTACT PARTY.
US3799850A (en) Electrolytic process of extracting metallic zinc
Wallden et al. Electrolytic copper refining at high current densities
US1709759A (en) Process of producing aluminum
US3767558A (en) Silver recovery system
US2673837A (en) Electrolytic production of fluoborates
US2258963A (en) Production of tellurium
RU2361967C1 (en) Method of compacted nickel electro-extraction
US4302319A (en) Continuous electrolytic treatment of circulating washings in the plating process and an apparatus therefor
US1461276A (en) Apparatus for the electrolytic production of metallic alloys in the form of paste orsludge
KR890002750B1 (en) Electrolytic method for copper refining
CN110846681B (en) Method for improving quality of cathode copper product by electrodeposition
CN114318418B (en) Method for preparing metal bismuth by adopting parallel diaphragm electrodeposition module
JP2017214612A (en) Electrolytic refining method for copper