JPS58145605A - Synthesis of inp - Google Patents

Synthesis of inp

Info

Publication number
JPS58145605A
JPS58145605A JP2590582A JP2590582A JPS58145605A JP S58145605 A JPS58145605 A JP S58145605A JP 2590582 A JP2590582 A JP 2590582A JP 2590582 A JP2590582 A JP 2590582A JP S58145605 A JPS58145605 A JP S58145605A
Authority
JP
Japan
Prior art keywords
reaction
hydrogen gas
inp
synthesized
inpo4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2590582A
Other languages
Japanese (ja)
Inventor
Masayuki Watanabe
正幸 渡辺
Yoshihiro Kokubu
国分 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP2590582A priority Critical patent/JPS58145605A/en
Publication of JPS58145605A publication Critical patent/JPS58145605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce high purity polycrystalline InP in a large amount at a low cost, by heating synthesized InPO4 at a specific temperature range in a gydrogen gas stream. CONSTITUTION:A polycrystalline InP is synthesized by placing a previously synthesized powdery InPO4 in a reaction tube, and contacting with continuously supplied hydrogen gas stream at 500-800 deg.C to effect the reduction of the powder. Since the reaction is carried out under nearly normal pressure at a relatively low temperature, the apparatus can be simplified and the cost can be reduced. The contamination from the reaction system is little, and a high purity polycrystalline InP can be obtained.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明はりん化インジウム多結晶の製造方法5二関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to a method for producing indium phosphide polycrystals.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

りん化インジウムは発光ダイオード、半導体レーザ、受
光素子などの材料として使用され、安価で良質の単結晶
が望まれている。りん化インジウムの単結晶を製造する
(二は、予め準備されたりん化インジウム多結晶を高圧
容器内で融解し、種結晶を用いて回転、引上げを行う。
Indium phosphide is used as a material for light-emitting diodes, semiconductor lasers, light-receiving elements, etc., and inexpensive, high-quality single crystals are desired. Manufacture a single crystal of indium phosphide (Secondly, indium phosphide polycrystal prepared in advance is melted in a high-pressure container, and rotated and pulled using a seed crystal.

従って安価で良質のりん化インジウム単結晶を製造する
ため1二は安価で高純度のりん化インジウム多結晶が必
要でおる。
Therefore, in order to produce inexpensive and high-quality indium phosphide single crystals, inexpensive and high-purity indium phosphide polycrystals are required.

ところで、りん化インジウム多結晶の製造方法としては
、従来、尚比容器内でIn、?PとをPの蒸気圧を制御
しながら反応させる、いわゆる直接法が知られている。
By the way, as a method for manufacturing indium phosphide polycrystals, conventionally, In, ? A so-called direct method is known in which P is reacted with P while controlling its vapor pressure.

第1図を用いてこの方法を説明する。50気圧以上の耐
圧容器(9)内に2温度帯炉(農を設置する。上記炉内
(1シに銅管した石英反応管08)を直ぐ。石英反応管
(113月:はIn(141およびP(15)が分離収
納され、In(14)およびPal5)が2温度帝炉に
よって独立(二加熱制御されるようになっている。工n
 (14)をInPの融点(1050°C)近傍の温度
にカーボンボート(16)を弁して高周波加熱するとと
もにP Q5Jを抵抗加熱し蒸発させる。In(1旬側
に到達したPの蒸気は工n04)と反応しりん化インジ
ウム(工np)が生成される。Pの蒸気圧はInPが速
か1−生成されるに十分に高いところ(〜30気圧)で
精密C二制御される8砂がある。耐圧容器(111内6
二は、石英反応管(1B)内の圧力とバランスした高圧
不活性ガスを充填し、石英反応管(1印の破裂、損傷を
防止する。また耐圧容器(11)には十分な水冷を施し
、冒温劣化を防止する0このように、この方法では、反
応操作や装置は和尚に複雑になり、量産性に乏しく製造
コストも尚くつく。さらに、出発原料であるInおよび
Pが99.9999%以上の高純度のものを使用しても
、反応系からの不可避的な汚染1′−よって合成された
InP多結晶は99.999%以下の低純度のものにな
りやすい0 〔発明の目的」 この発明はかかる点にがんが春でなされたもので、上記
欠点を除去して経済性よくかつl:産に適した工nPの
製造方法を提供するものでおる。
This method will be explained using FIG. Install a two-temperature zone furnace in a pressure-resistant container (9) with a pressure of 50 atmospheres or more. Immediately place the quartz reaction tube (08) in the above furnace (copper tube in 1). and P(15) are stored separately, and In(14) and Pal5) are independently (double heating controlled) by a two-temperature imperial furnace.
(14) is heated to a temperature close to the melting point of InP (1050° C.) using a carbon boat (16) with high frequency, and PQ5J is resistance heated and evaporated. Indium phosphide (np) is generated by reacting with In (the P vapor that has reached the first stage is n04). The vapor pressure of P is precisely controlled at high enough (~30 atm) that InP is produced rapidly. Pressure-resistant container (6 in 111)
Second, fill the quartz reaction tube (1B) with high-pressure inert gas that is balanced with the pressure inside the quartz reaction tube (1B) to prevent rupture or damage to the quartz reaction tube (marked 1).In addition, the pressure vessel (11) should be sufficiently cooled with water. As described above, in this method, the reaction operation and equipment are extremely complicated, the mass productivity is poor, and the manufacturing cost is high.Furthermore, the starting materials In and P are 99. Even if one with a high purity of 9999% or more is used, the synthesized InP polycrystal tends to have a low purity of 99.999% or less due to unavoidable contamination from the reaction system. OBJECTIVE: The present invention was made in the spring of 2013 to solve this problem, and aims to provide a method for producing nP that is economical and suitable for production by eliminating the above-mentioned drawbacks.

〔発明の概要〕[Summary of the invention]

すなわち、この発明は予め合成されたりん酸インジウム
(工nPO4)を連続して供給される水素ガス流中で5
50〜800℃に加熱して工nP多結晶を合成する方法
である。
That is, the present invention combines pre-synthesized indium phosphate (NPO4) into a continuously supplied hydrogen gas stream.
This is a method of synthesizing polynP polycrystals by heating at 50 to 800°C.

この発明は工nPO4粉末を水素カス流中で550〜8
00℃で加熱することによって、工nPO4がその場で
還元されてInPとなり、効率よく工nP粉末をつくる
ことができることを見出したことに基づいている。単純
に水素ガスふん囲気中で工nPO4を550〜800℃
で加熱しても工nPは生成せず、  工nPO4が焼結
されたごとく塊状に変化するのがみられた。
In this invention, 550~8
This is based on the discovery that by heating at 00°C, nPO4 is reduced to InP on the spot, and that nP powder can be efficiently produced. Simply heat nPO4 at 550 to 800℃ in an atmosphere of hydrogen gas.
Even when heated, no nP was produced, and nPO4 was seen to change into lumps, as if sintered.

還元を進行させるためには連続して水素ガスを供給する
ことが1要であった。工nPO4の水素1二よる還元反
応は可逆的であり、還元を進行させるためにはInP以
外の反応生成物であるH20を系内から除去することが
必要であると考えられる。水素ガスは面接反応C二係わ
ると同時にH2のキャリアとなるため、十分な童を連続
して供給してInPO4粉末との接触を十分にしかつ速
かに流れるようにしなければならない。水素ガス流量は
還元炉の大きさ、■nPO4のチャージ賞、■nPO4
のボート等容器へのチャージの方法によって決まるが、
内径30龍の反応管で50stの工nPO4を還元する
場合、30t/hr以−ヒ必要であった。水素ガス流量
を少くした場合CはチャージしたInPO4粉末の表面
層のみが還元されるだけであった。
In order to proceed with the reduction, it was necessary to continuously supply hydrogen gas. The reduction reaction of nPO4 with hydrogen 12 is reversible, and it is considered necessary to remove H20, a reaction product other than InP, from the system in order to proceed with the reduction. Since hydrogen gas participates in the interface reaction C2 and at the same time serves as a carrier for H2, sufficient hydrogen must be continuously supplied to ensure sufficient contact with the InPO4 powder and to flow quickly. The hydrogen gas flow rate depends on the size of the reduction furnace, ■nPO4 charge award, ■nPO4
Depends on the method of charging the boat, etc.
When reducing 50 st of nPO4 in a reaction tube with an inner diameter of 30 mm, more than 30 t/hr was required. When the hydrogen gas flow rate was reduced, only the surface layer of the charged InPO4 powder was reduced with C.

工nPO4の加熱温度は還元の収率な維持するためg二
は特(−重要である。550°Cの温度を下まわる温度
では反応が遅くなり、実質土工nPは生成されなかった
。また800℃の温度を上まわる温度では一旦その場に
生成した工nPからりんが蒸発してゆき、低温部でりん
ばかりでなく工nPを気相から析出する傾向がふえ、そ
の場でボート等の各器内C1作られるInPの収率は低
下してくる。このよう(二して550〜800℃が適当
であると結論できた。
The heating temperature of PO4 is particularly important to maintain the reduction yield. At temperatures below 550 °C, the reaction slowed down and no substantial PO was produced. At temperatures above 30°F, phosphorus evaporates from the phosphorus that has been formed on the spot, and there is a tendency for not only phosphorus but also phosphorus to precipitate from the gas phase in the low-temperature area, causing damage to various parts of boats, etc. The yield of InP produced in the vessel C1 decreases.Thus, it was concluded that 550 to 800°C is appropriate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、常圧近傍でかつ比較的低温度で反応で
きるので、装置が簡素化でき、工程簡略化およびコスト
低廉化が可能となることCユ加えて、反応系からの汚染
も少く高純度の工nP多結晶が得られる等の利点を有し
、その工業上の効果は太きし10 〔発明の実施例〕 以下本発明を実施例をもとじ説明する。第2図は本発明
ζ二おいて使用される装置の1例を示したもので、炉(
21)内I′″−反応管一旧管着される。この反−旧管
に)の一端に耐熱性栓(至)を取着し、栓g!8)を貫
通して水素ガスの主導入管−および反応1iH221の
中央部へ延在している水素ガスの副導入管@51が設け
られている。副導入管(イ))はその長手方向に沿って
下部に複数の孔を設けた石英管でボート@)に盛られた
InPO4粉末til+と水素との接触反応を促進せし
めるための水素ガスシャワー流を与えるものである。
According to the present invention, since the reaction can be carried out near normal pressure and at a relatively low temperature, the apparatus can be simplified, the process can be simplified, and costs can be reduced.In addition, there is less contamination from the reaction system. It has advantages such as the ability to obtain highly pure polynP polycrystals, and its industrial effects are outstanding. [Embodiments of the Invention] The present invention will be explained below with reference to Examples. Fig. 2 shows an example of the apparatus used in the present invention ζ2.
21) Inner I''' - The reaction tube is attached to the old tube. Attach a heat-resistant stopper (to) to one end of this inner - to the old tube, and pass through the stopper g!8) to supply the main hydrogen gas. An introduction pipe and a hydrogen gas sub-induction pipe @51 extending to the center of the reaction 1iH221 are provided. A quartz tube was used to provide a hydrogen gas shower flow to promote the catalytic reaction between InPO4 powder til+ placed in a boat (@) and hydrogen.

水素ガスは主導入管−および副導入管唖)から反応1帽
二人り、ボート(財))に盛られた工nPO4粉末僻)
の真上で混合流となり工nPO4K71と接触反応する
。反応に与からない残部の水素ガスは反応によって生成
された工nP以外の反応生成物のH40のキャリアとな
り流出口(至))を経て外部(二排気される。
Hydrogen gas was transferred from the main inlet pipe and the auxiliary inlet pipe to the reactor, which was filled with PO4 powder in a boat.
A mixed flow forms just above the surface and reacts with the nPO4K71. The remaining hydrogen gas that does not take part in the reaction becomes a carrier for H40, a reaction product other than nP produced by the reaction, and is exhausted to the outside (exhaust) through the outlet.

反応管(転))の内径が30M、長さ1000mの上記
装置を用いて、50stの工nPO4の還元処理を水素
ガス流150z/hr+温度620℃で行なった。水素
ガス流量は本流4に対してシャワー流1の割合いC二し
た。
Using the above-mentioned apparatus in which the inner diameter of the reaction tube (transformer) was 30 M and the length was 1000 m, a 50-st process of reducing PO4 was carried out at a hydrogen gas flow of 150 z/hr and a temperature of 620°C. The hydrogen gas flow rate was set at a ratio of 1 shower flow to 4 main flow.

約8時間の処理時間ののち、31stの工nP粉末が得
られた。InPの理論的収量は34.75−であるから
、flぼ90%の収率になる。X線粉末法による分析で
は工nPの反射ピークは充分I:鋭光であり、すぐれた
結晶性を示していた。またスパークマス等における残留
不純物分析において還元処理による不純物混入の形跡は
みとめられなかった。
After about 8 hours of processing time, 31st nP powder was obtained. Since the theoretical yield of InP is 34.75, the yield is approximately 90%. Analysis by the X-ray powder method showed that the reflection peak of the nP was sufficiently sharp (I), indicating excellent crystallinity. Furthermore, in analysis of residual impurities in spark mass, etc., no evidence of impurity contamination due to reduction treatment was found.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法を説明するための装置の断面図、第2図
は本発明を冥施するための装置の一例を示す断面図であ
る。 11・・・耐圧容器    12・・・2名度帝炉13
・・・石英反応管   14・・・In15・・・P 
       16・・・カーボンボート17・・・水
冷管     21・・・還元炉22・・・アルミナ反
応管 23・・・耐熱性栓24・・・水素ガスの主導入
管 ) 25・・・水素ガスの副導入管 26・・・ボート27
・・・工nPO4ZkS・・・流出口(7317)代理
人 弁理士 則 近 憲 佑 (ほか1名)第  1 
図 第2図 −1!
FIG. 1 is a sectional view of an apparatus for explaining a conventional method, and FIG. 2 is a sectional view showing an example of an apparatus for implementing the present invention. 11...Pressure vessel 12...2nd degree Teirō 13
...Quartz reaction tube 14...In15...P
16...Carbon boat 17...Water-cooled tube 21...Reduction furnace 22...Alumina reaction tube 23...Heat-resistant plug 24...Main introduction pipe for hydrogen gas) 25...Hydrogen gas Sub-introduction pipe 26...Boat 27
... Engineering nPO4ZkS ... Outlet (7317) Agent Patent attorney Kensuke Chika (and 1 other person) No. 1
Figure 2-1!

Claims (1)

【特許請求の範囲】[Claims] 予め合成されたりん酸インジウム(工nPO4)を連続
して供給される水素ガス流中で550〜800℃に加熱
してりん化インジウム(Xnp)を製造することを%徴
とするりん化インジウムβ合成方法0
Indium phosphide β is produced by heating pre-synthesized indium phosphate (XnPO4) to 550-800°C in a continuously supplied hydrogen gas stream to produce indium phosphide (Xnp). Synthesis method 0
JP2590582A 1982-02-22 1982-02-22 Synthesis of inp Pending JPS58145605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2590582A JPS58145605A (en) 1982-02-22 1982-02-22 Synthesis of inp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2590582A JPS58145605A (en) 1982-02-22 1982-02-22 Synthesis of inp

Publications (1)

Publication Number Publication Date
JPS58145605A true JPS58145605A (en) 1983-08-30

Family

ID=12178795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2590582A Pending JPS58145605A (en) 1982-02-22 1982-02-22 Synthesis of inp

Country Status (1)

Country Link
JP (1) JPS58145605A (en)

Similar Documents

Publication Publication Date Title
CN101460398B (en) Production of silicon through a closed-loop process
US7964172B2 (en) Method of manufacturing high-surface-area silicon
EP0063272B1 (en) Synthesis of silicon nitride
US4045186A (en) Method for producing large soft hexagonal boron nitride particles
JPS58145605A (en) Synthesis of inp
JPS61222911A (en) Synthesis of phosphorated compound
JPS61291410A (en) Production of silicon
US5110575A (en) Process for producing sinterable crystalline aluminum nitride powder
JP5217162B2 (en) Method for producing polycrystalline silicon
JP3805102B2 (en) Method for storing trichlorosilane and silicon tetrachloride
US3900660A (en) Manufacture of silicon metal from a mixture of chlorosilanes
JPS58181707A (en) Manufacture of boron nitride
CA1043534A (en) Process for the production of iii a - v b compounds
US3006734A (en) Process for preparing pure silicon
JPS58172206A (en) Manufacture of metallic nitride
JPS59121109A (en) Production of high purity silicon
JPS62162694A (en) Preparation of phosphide compound single crystal
US3899572A (en) Process for producing phosphides
JPS5849697A (en) Preparation of silicon carbide whisker
JPH0317767B2 (en)
JPH048364B2 (en)
JPS616113A (en) Manufacture of metallic silicon
JPS60215514A (en) Preparation of silicon monoxide
CN117187957A (en) Preparation method of A (BC) D type perovskite material
JPH0615403B2 (en) <II>-<VI> Method for producing group compound