JPS58143297A - Feedwater device for bwr type reactor - Google Patents

Feedwater device for bwr type reactor

Info

Publication number
JPS58143297A
JPS58143297A JP57027169A JP2716982A JPS58143297A JP S58143297 A JPS58143297 A JP S58143297A JP 57027169 A JP57027169 A JP 57027169A JP 2716982 A JP2716982 A JP 2716982A JP S58143297 A JPS58143297 A JP S58143297A
Authority
JP
Japan
Prior art keywords
water
reactor
pressure
water supply
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57027169A
Other languages
Japanese (ja)
Inventor
隆 窪小谷
糸矢 清広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd, Nippon Atomic Industry Group Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP57027169A priority Critical patent/JPS58143297A/en
Publication of JPS58143297A publication Critical patent/JPS58143297A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分骨〕 本発明は、沸騰水形原子力原動所の給水装置に係り、特
に冷却材喪失事故時における燃料冷却性能を向上し得る
ようにした給水装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical outline of the invention] The present invention relates to a water supply system for a boiling water nuclear power plant, and particularly relates to a water supply system that can improve fuel cooling performance in the event of a loss of coolant accident. .

〔発明の技術的背景〕[Technical background of the invention]

第1図は、従来の沸騰水形原子力原動所の給水装置の系
、読図であって、原子炉1で発生した蒸気は主蒸気管2
によって主蒸気隔離弁8を経てタービン4に導かれ、そ
こで仕事を行ない発電機5を駆動し、上記タービン4で
仕事を行なった蒸気は、復水器6で復水せしめられホッ
トウェル7に溜められる。ホットウェル7に貯溜された
復水は、復水ポンプ8によって導出され、弁9、復水脱
塩装置10.升11、【2を通り、高圧1水ポンプ13
によって加圧され、さらに弁14.15を経て低圧給水
加熱器16に供給される。上記低圧給水加熱器16に供
給された水はそこで所定温度に加熱され、弁17を経て
、主蒸気によって作動される給水タービン18により駆
動されるタービン駆VJJ給水ポング19に吸引され、
そこで加圧され、チェツキ弁20、弁21.22を通ね
、さらに高圧給水加熱器23で加熱され、弁あおよびチ
ェツキ弁25を経て原子炉1に還流される。このように
して、通常運転時には主蒸気流酸とほぼ等しい給水流量
が維持されている。
Figure 1 shows the system and diagram of a water supply system for a conventional boiling water nuclear power plant, in which steam generated in the reactor 1 is transferred to the main steam pipe 2.
The steam is led to the turbine 4 via the main steam isolation valve 8, where it performs work and drives the generator 5.The steam that has performed work in the turbine 4 is condensed in the condenser 6 and stored in the hot well 7. It will be done. The condensate stored in the hot well 7 is drawn out by a condensate pump 8, and is passed through a valve 9, a condensate desalination device 10. Measure 11, [pass through 2, high pressure 1 water pump 13
The water is then pressurized by a valve 14.15 and fed to a low-pressure feedwater heater 16. The water supplied to the low-pressure feedwater heater 16 is heated there to a predetermined temperature, passes through a valve 17, and is sucked into a turbine-driven VJJ water pump 19 driven by a water supply turbine 18 operated by main steam.
There, it is pressurized, passes through the check valve 20 and valves 21 and 22, is further heated by the high-pressure feed water heater 23, and is returned to the reactor 1 through the check valve 20 and the check valve 25. In this way, during normal operation, a feedwater flow rate approximately equal to the main steam flow rate is maintained.

そこで、このような状態においで何等かの原因によって
タービン駆動給水ポンプ19が作動しなくなると、上記
タービン駆動給水ポンプ19およびチェツキ弁20に並
列に設けられ、電動機26によって駆動される電動機駆
動給水ポンプ27が、「給水流量低」の信号によって起
動され、低圧給水加熱器16で加熱された給水が、−上
記を動機駆動給水ポンプ27およびチェツキ弁28ft
通り、さらに高圧給水加熱器23等″lr:径て原子炉
1に供給される。また、原子炉1には水位計29、圧力
計30が装着されており、その検出信号によって前記給
水タービン18等を制御し、原子炉l内の冷却材水位や
圧力等が所定直になるようにしてあシ、捷た原子・炉内
の冷却材の強制対流を行なうため、丙循喋ボング31を
含む再循環系32が設けられている。
Therefore, if the turbine-driven water supply pump 19 stops operating due to some reason in such a state, a motor-driven water supply pump that is installed in parallel with the turbine-driven water supply pump 19 and the check valve 20 and driven by the electric motor 26 is activated. 27 is activated by the "Feed Water Flow Low" signal, and the feed water heated by the low pressure feed water heater 16 is activated by the above-mentioned motor-driven feed water pump 27 and check valve 28ft.
In addition, the reactor 1 is provided with a water level gauge 29 and a pressure gauge 30, and the detection signals from the water level gauges 29 and 30 are used to control the feed water turbine 18. In order to control the water level and pressure of the coolant inside the reactor to a specified level, and to perform forced convection of the coolant inside the shunted nuclear reactor and the reactor, the cooling bong 31 is included. A recirculation system 32 is provided.

ところで、障子−lに接続される配管が万一破断した場
合には原子炉内冷却材の喪失が発生し、いわゆる冷却材
喪失事故となる。
By the way, if the pipe connected to the shoji-l were to break, the coolant inside the reactor would be lost, resulting in a so-called coolant loss accident.

この冷却材喪失事故のうち最も厳しいものが、再循環系
配管破断事故で、この配管の瞬時ギロチン破断が発生し
た場合には、冷却材の流出流量が多いため、破断陵数十
秒で炉心の燃料が露出し。
The most severe type of coolant loss accident is a recirculation system piping rupture accident.When an instantaneous guillotine rupture occurs in this piping, the flow rate of the coolant flowing out is large, so it takes only a few tens of seconds for the rupture to occur. fuel exposed.

燃料と被覆管の温度上昇を起す。したがって、上記燃料
と被覆管の異常な温度上昇等を防ぐために、図示しない
非常用炉心冷却系が設けられており、冷却材喪失事故発
生時には上記非常用炉心冷却系を作動せしめて、原子炉
に冷却材(!−圧注入、炉心を冷却し、燃料被覆盲等の
温度が所定の温度以下に保たれるようにしである。
This causes an increase in the temperature of the fuel and cladding. Therefore, in order to prevent the abnormal temperature rise of the fuel and cladding tube, an emergency core cooling system (not shown) is provided, and in the event of a loss of coolant accident, the emergency core cooling system is activated and the reactor is Coolant (!--pressure injection) is used to cool the core and keep the temperature of the fuel cladding etc. below a predetermined temperature.

〔背景技術の問題点〕[Problems with background technology]

上述のように冷却材喪失事故発生時には、上記非常用炉
心冷却系のみの作動で炉心の十分な冷却が可能なように
なっておシ、給水系による原子炉内への注水は期待され
ていない、 しかしながら、冷却材喪失事故が発生して原子炉水位が
低下するような事態においても、とくに給水系の運転を
停止させるような電気回路は組まれておらず、機器の故
障がない限り給水系の原子炉への給水は読けられる。す
なわち、冷却材喪失事故発生後、原子炉水位が低下し、
その水位が成るレベルになると原子炉がスクラムせしめ
られ。
As mentioned above, in the event of a loss of coolant accident, sufficient cooling of the reactor core can be achieved by operating only the emergency core cooling system mentioned above, and water injection into the reactor through the water supply system is not expected. However, even in a situation where a loss of coolant accident occurs and the reactor water level drops, there is no electrical circuit installed that would stop the water supply system, and unless there is a failure in the equipment, the water supply system will continue to operate. The water supply to the reactor can be read. In other words, after a loss of coolant accident occurs, the reactor water level decreases,
When the water level reaches this level, the reactor is forced to scram.

無反応が停止Fせしめられる。そこで、さらに上記水位
が低下し、成るレベルに達すると、主蒸気隔離弁8が閉
じられる。し九がって、タービン駆動給水ポンプ19の
回転数が駆動蒸気の圧力低下とともに5低下し、それに
基づく給水流量低の信号によって電動機26が起動し、
電動機駆動給水ポンプ27が起動し、これによって給水
が続行される。ただし、醒動機、駆動給水ポンプ27に
よる給水の場合には、その給水流量は定格の約50%と
なる。
No response is stopped. Therefore, when the water level further decreases and reaches this level, the main steam isolation valve 8 is closed. Then, the rotational speed of the turbine-driven water supply pump 19 decreases by 5 as the pressure of the driving steam decreases, and the electric motor 26 is activated by a signal indicating that the water supply flow rate is low based on this.
The motor-driven water supply pump 27 is activated, thereby continuing water supply. However, when water is supplied by the wake-up machine and the drive water supply pump 27, the water supply flow rate is about 50% of the rated value.

ところで、給水温度は通常運転時には約22Orである
が、主蒸気隔離弁8が閉じた後は、給水加熱器の熱源と
して主蒸気の一部を使用しているため、給水温度は除々
に低下する。一方、原子炉圧力も通常運転時には約ro
f/d9であるが、冷却材喪失事故の発生後は減圧する
。しかして、通常運転時圧力的TOVq/1yd9にお
いては、前記給水温度220Cは未飽和温度であるため
、給水は完全に液体状態で原子炉に供給されるけれども
、$漸時には上述のように圧力と給水温度の両方が低下
するため、その低下速度によっては給水が原子炉に対し
て未飽オロ水から飽和水、さらに二相混合流体となる。
By the way, the feed water temperature is about 22 Or during normal operation, but after the main steam isolation valve 8 is closed, the feed water temperature gradually decreases because a part of the main steam is used as a heat source for the feed water heater. . On the other hand, the reactor pressure is approximately ro during normal operation.
f/d9, but the pressure will be reduced after a loss of coolant accident occurs. Therefore, in the pressure TOVq/1yd9 during normal operation, the feed water temperature 220C is an unsaturated temperature, so the feed water is supplied to the reactor in a completely liquid state, but when the pressure rises, the pressure changes as described above. Since both feed water temperatures decrease, depending on the rate of decrease, the feed water changes from unsaturated water to saturated water to a two-phase mixed fluid to the reactor.

特に、炉心燃料に対して通も厳しい影響を与える再循環
配管の大破@事故においては、原子炉の減圧が早く、減
圧の途中において給水が減圧191iIIlシ、原子炉
には飽和水と飽和蒸気とが注入されることとなシ、原子
炉圧力の低下速度が遅くなる。そのため、ポンプの流量
−吐出圧の関係によって、非常用炉心冷却系からの原子
炉内への冷動水の流量が十分得られず、配管破断後にお
ける炉心燃料の冷却全早急に行なうことができない場合
がある等の問題がある。
In particular, in the event of a major break in the recirculation piping, which has a severe impact on the reactor fuel, the reactor depressurizes quickly, and during the depressurization, the feed water is depressurized to 191iIIIl, leaving the reactor with saturated water and saturated steam. As a result, the rate of decrease in reactor pressure becomes slower. Therefore, due to the relationship between pump flow rate and discharge pressure, a sufficient flow rate of cold water from the emergency core cooling system into the reactor cannot be obtained, making it impossible to completely cool down the core fuel immediately after a pipe rupture. There are problems such as in some cases.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点に鑑み、沸遥水形原子力原動所に
おける冷却材喪失事故時の給水系の注水および冷却性能
全改善し、非常用炉心冷却系との共動によって、炉心燃
料の冷却性能を著しく向上させ、原子炉の安全性を向上
せしめることができるようにした、瑯惨水形原子力原動
所の給水装置を提供することを目的とする。
In view of these points, the present invention completely improves the water injection and cooling performance of the water supply system in the event of a loss of coolant accident at a boiling water nuclear power plant, and cools the core fuel by cooperating with the emergency core cooling system. The purpose of the present invention is to provide a water supply system for a nuclear power plant with significantly improved performance and safety of a nuclear reactor.

〔発明の概要〕[Summary of the invention]

本発明は、原子炉への給水系統に設けられた高圧給水加
熱器をバイパスする@1のバイパス管路と、低圧給水加
熱器および給水ポンプをバイノ々スする$2のバイパス
管路と、高圧復水ポンプをバイパスする第8のバイパス
管路と、原子炉内の水位および圧力信号によって作動せ
しめられ、上記各バイパス管路を開放せしめる制御装置
とを有し、上記水位等の低下に応じて各バイパス管路を
順次開き、そのバイパス管路を経て治水を原子炉に供給
するようにしたことを特徴とする。
The present invention comprises a bypass line @1 that bypasses a high-pressure feedwater heater installed in a water supply system to a nuclear reactor, a bypass line @2 that bypasses a low-pressure feedwater heater and a feedwater pump, and It has an eighth bypass line that bypasses the condensate pump, and a control device that is activated by water level and pressure signals in the reactor and opens each of the bypass lines, and in response to a decrease in the water level, etc. It is characterized in that each bypass pipe is opened in sequence and flood control water is supplied to the reactor through the bypass pipe.

〔発明の実楕例〕[Example of invention]

第2図は本発明の一実施例を示す概略系統図であって、
復水器6で復水せしめられホットウェル7に貯溜された
復水け、儂水脱頃装置10、高圧復水ポンプ13、低圧
給水加熱器16、タービン駆動給水ポンプ19および原
動機駆動給水ポンプ27との並列回路および高圧給水加
熱器23等を経て原子炉1に供給されるようにしである
。これらの構成は前記第1図に示す従来の装置と全く同
一であるが、本発明においては、高圧給水加熱器23お
よびその前後の弁22、冴をバイパスするようにそれら
と並列に、4P33およびチェツキ弁34を有する第1
のバイパス管路35が設けられている。
FIG. 2 is a schematic system diagram showing an embodiment of the present invention,
Condensate water condensed in the condenser 6 and stored in the hot well 7, a water removal device 10, a high pressure condensate pump 13, a low pressure feed water heater 16, a turbine driven water pump 19, and a prime mover driven water pump 27 The water is supplied to the reactor 1 through a parallel circuit with the high pressure feed water heater 23 and the like. These configurations are exactly the same as the conventional device shown in FIG. 1, but in the present invention, 4P33 and A first valve having a check valve 34
A bypass conduit 35 is provided.

また、低圧給水加熱器16の入口側に設けられた弁15
の上流側と、給水ポンプ19.27の並列回路の出口側
に設けられた弁21の下流側間には、低圧給水加熱器1
6、給゛水ポンプ19. ’27の並列回路、および上
記115、’21をバイパスする第2のバイパス管路3
6が接続されており、キの第2のバイパス管路36には
チェツキ弁37、弁38、およびチェツキ弁39が設け
られている。さらに、高圧給水ポンプ13の入口側の弁
12の上流側と、上記第2のバイパス管路36に設けら
れ九チェツキ弁37と弁38の中間部とが、弁40およ
びチェツキ弁41を有し、高圧給水ポンプ13およびそ
の前後の弁12.14をバイパスする第8のバイパス管
路42によって接続されている。
In addition, a valve 15 provided on the inlet side of the low pressure feed water heater 16
A low pressure feed water heater 1 is connected between the upstream side of the feed water heater 1 and the downstream side of the valve 21 provided on the outlet side of the parallel circuit of the feed water pump 19.27.
6. Water supply pump 19. '27 parallel circuit, and a second bypass line 3 that bypasses the above 115 and '21
A check valve 37, a check valve 38, and a check valve 39 are provided in the second bypass conduit 36. Furthermore, the upstream side of the valve 12 on the inlet side of the high-pressure water supply pump 13 and the intermediate portion between the check valve 37 and the valve 38 provided in the second bypass pipe line 36 include a valve 40 and a check valve 41. , are connected by an eighth bypass line 42 that bypasses the high-pressure water supply pump 13 and the valves 12.14 before and after the high-pressure water pump 13.

一方、原子炉1に設けられた水位計29からの演出信号
は第1の制御装置43に印加てれ、その第1の制御装置
1ia3からは水位が所定値まで低下した場合、前記高
圧給水加熱器230前後に設けられた弁22.24を閉
じ、第1のバイパス管wr35の弁33を開くような制
御信号を出力するようにしである。また、圧力計30か
らの圧力検出信号は第2の制御装置44に印加されるよ
うにしである。上記第2゛の制御装置44には前記水位
計29からの検出信号も加えられるように構成されてお
り、その第2の制御装置44は、水位計29からの検出
信号が所定値以下となるとともに、圧力計30からの圧
力検出信号が成る直例えば40す/ r*l 9以下な
る信号となると、給水系の弁15および21を閉じ、$
2のバイパス管路36の弁38を開くような制御信号を
出力するようにしである。さらに、上記第2の制御装置
44は、水位計29からの噴出信号が所定値以下でめシ
、かつ圧力検出信号がさらに低い値例えば7Kg/c1
/lf以下なる信号となると、高圧復水ポンプ13の前
後の弁12.14を閉じ、第8のバイパス管路42の弁
40を開くような制御信号を出力するよう構成しである
On the other hand, the production signal from the water level gauge 29 provided in the reactor 1 is applied to the first control device 43, and from the first control device 1ia3, when the water level has decreased to a predetermined value, the high-pressure feed water heating A control signal is output to close the valves 22 and 24 provided before and after the device 230 and open the valve 33 of the first bypass pipe wr35. Further, the pressure detection signal from the pressure gauge 30 is applied to the second control device 44. The second control device 44 is configured to also receive a detection signal from the water level gauge 29, and the second control device 44 is configured to receive a detection signal from the water level gauge 29 when the detection signal from the water level gauge 29 is below a predetermined value. At the same time, when the pressure detection signal from the pressure gauge 30 becomes a signal of, for example, 40s/r*l or less, the valves 15 and 21 of the water supply system are closed and the valves 15 and 21 of the water supply system are closed.
A control signal for opening the valve 38 of the second bypass pipe 36 is output. Further, the second control device 44 detects that the ejection signal from the water level gauge 29 is below a predetermined value, and the pressure detection signal is a lower value, for example, 7 kg/c1.
When the signal becomes less than /lf, the configuration is such that a control signal is output to close the valves 12.14 before and after the high-pressure condensate pump 13 and open the valve 40 of the eighth bypass pipe 42.

しかして、原子炉の冷却材喪失事故が万一発生し、原子
炉水位が低下すると、原子炉はスクラムせしめられ、さ
らに水位6i低下して所定値にぎると、主蒸気隔離弁8
が閉じ、第1の制御装置t43によって弁22.24が
閉じられ、第1のバイパス管路35の弁33が開放され
る。したがって、屯動磯駆動給水ポンプ27によって送
出された給水は高圧給水加熱器23をバ□イパスして第
1のバイパス管路35およびチェツキ弁25を経て原子
炉に供給される。そのため上目己原子炉に供給きれる給
水は高圧給水加熱器23によって加熱さ扛なくなシ、そ
の温度が低下し、しかも系統圧力損失が低下することに
よってその流量が増加し、多量の給水が原子炉1に供給
されるようになる。
In the unlikely event that a reactor loss of coolant accident occurs and the reactor water level drops, the reactor is forced to scram, and when the water level further drops by 6i and reaches a predetermined value, the main steam isolation valve 8
is closed, the first control device t43 closes the valve 22.24 and opens the valve 33 of the first bypass line 35. Therefore, the feed water sent out by the turret-driven water supply pump 27 bypasses the high-pressure feed water heater 23 and is supplied to the reactor via the first bypass pipe 35 and the check valve 25. Therefore, the feed water that can be supplied to the nuclear reactor is not heated by the high-pressure feed water heater 23, its temperature decreases, and the flow rate increases due to the decrease in system pressure loss. It is now supplied to the furnace 1.

そこで、原子炉圧力がさらに低下し、例えば40に4 
/(i ? 、11.下となると、原子炉水位低との信
号によって第2の制御装置44が作動し、弁15.21
が閉じられるとともに第2のバイパス管路36の弁38
が開放される。したがって、高圧復水ポンプ13から吐
出された復水は、チェツキ弁37、弁38、およびチェ
ツキ弁39′ft通り、さらに第1のバイパス管路35
を経て原子炉1に供給される。しかして、この場合も低
圧給水器16を給水がバイパスするので1、@水濃度は
さらに低下し、前述と同様にその流量も増加する。
Therefore, the reactor pressure decreases further, e.g.
/(i?, 11.), the second control device 44 is activated by a signal indicating that the reactor water level is low, and the valve 15.21 is activated.
is closed and the valve 38 of the second bypass line 36 is closed.
will be released. Therefore, the condensate discharged from the high-pressure condensate pump 13 passes through the check valves 37, 38, and 39'ft, and further through the first bypass pipe 35.
It is supplied to the nuclear reactor 1 through. In this case as well, since the supplied water bypasses the low-pressure water supply device 16, the water concentration further decreases and the flow rate also increases as described above.

原子炉圧力がさらに低下し例えばTK9/cTItり以
下になると、第2の制御装置i4によってさらに高圧復
水ポンプ13の前後の弁12.14が閉じられ、第・□
、。
When the reactor pressure further decreases to, for example, TK9/cTIt or lower, the second control device i4 further closes the valves 12.14 before and after the high-pressure condensate pump 13.
,.

8のバイパス管路42の9P40が開放され、復水脱塩
装置10から流出した復水は、第8のバイパス管路42
、第2のバイパス管路36、および第1のバイパス管路
35を経て原子炉1に供給されるようになる。
9P40 of the eighth bypass pipe 42 is opened, and the condensate flowing out from the condensate desalination device 10 is transferred to the eighth bypass pipe 42.
, the second bypass line 36 , and the first bypass line 35 .

しかして、この場合も系統圧力損失の低下に基づき給水
流量は一段と増加する。
However, in this case as well, the water supply flow rate increases further due to the decrease in system pressure loss.

冷却材喪失時の給水流量と給水温度の変化を、本発明の
場付會夾勝で、従来の場合會破森で第8図と第4図に示
す。すなわち、第8図に示すように、冷却材喪失事故が
発生し、水位が或程度低下すると、主蒸気隔離弁8が閉
じるためタービン駆動給水ポンプの機能がなくなり、給
水流量は急激に減少し、その後電動機駆動給水ポンプの
始動とともに増加する。そして、従来装置においては点
線で示すように、定烙#、量の50%の給水流量が確保
される。これに対し、本発明によれば第1および第2の
バイパス管路が順次開くので、前述のように給水流量が
増加する。また、給水温度も、第4図に示すように、本
発明においては事故発生後急速に低下する。このように
本発明によれば、温度の低い給水を多量に供給すること
ができる。このため、第5図に示すように、原子炉圧力
も従来に比べ急速に低減し、ひいては第6図に示すよう
に非常用炉心冷却系の注水流量もよシ多くなる。
Changes in the water supply flow rate and the water supply temperature when the coolant is lost are shown in FIGS. 8 and 4 in the case of the present invention and in the case of the conventional case. That is, as shown in Fig. 8, when a coolant loss accident occurs and the water level drops to a certain extent, the main steam isolation valve 8 closes, the turbine-driven water supply pump loses its function, and the water supply flow rate decreases rapidly. Thereafter, it increases with the start of the motor-driven water pump. In the conventional device, as shown by the dotted line, a water supply flow rate of 50% of the constant heat # and amount is ensured. On the other hand, according to the present invention, since the first and second bypass pipes are opened in sequence, the water supply flow rate increases as described above. Moreover, as shown in FIG. 4, in the present invention, the supply water temperature also rapidly decreases after the accident occurs. As described above, according to the present invention, a large amount of low-temperature water can be supplied. Therefore, as shown in FIG. 5, the reactor pressure decreases more rapidly than in the past, and as a result, the flow rate of water injected into the emergency core cooling system also increases, as shown in FIG. 6.

この結果第7図に示すように、原子炉シュラウド内水位
は、より早く回復して炉心の燃料を冷却することとなシ
、第8図に示すように、燃料被覆管製置のピークは著し
く低下し、原子炉の安全余裕をさらに大きく保つことが
できる。
As a result, as shown in Figure 7, the water level in the reactor shroud will recover faster and cool the fuel in the reactor core, and as shown in Figure 8, the peak of fuel cladding will be significantly lowered. This allows the reactor to maintain an even larger safety margin.

なお、上記実施例においては、第1および第2の2つの
制御装置によって各弁を開閉制御させるものを示したが
、第9図に示すように、1個の制御装置45によって上
記2つの制御装置の機能をはたせるように構成してもよ
い。また、水位の設定値は通常運転に差支えない範囲で
上下させることもできる。
In the above embodiment, two control devices, the first and second, control the opening and closing of each valve, but as shown in FIG. It may be configured to function as a device. Further, the set value of the water level can be raised or lowered within a range that does not interfere with normal operation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば既存の系統にわず
かの弁と配管、および制御装置を付することによって、
温度の低い給水を多量に注水することができ、原子炉の
減圧を早め、非常用炉心冷却系の江水流量全多くするこ
とができる。またこのifi% g子炉シュラウド内水
位の回ffl′t−早め、燃料の冷却を急速に行ない、
燃料被覆管温度のピーク1lItを低下せしめ、冷却材
喪失事故時における炉心燃料の冷却性能を著しく改善す
ることができる等の効果を奏する。
As explained above, according to the present invention, by adding a few valves, piping, and control devices to an existing system,
It is possible to inject a large amount of low-temperature feed water, speed up the depressurization of the reactor, and increase the total flow rate of river water in the emergency core cooling system. In addition, the water level in the g subreactor shroud is accelerated, and the fuel is rapidly cooled.
This has the effect of reducing the peak 1lIt of fuel cladding temperature and significantly improving the cooling performance of core fuel in the event of a loss of coolant accident.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の原子炉給水装置の系統図、第2図は本発
明の一実施例の給水装置の系統図、第8図乃至第8図ぼ
、冷却材喪失事故時における給水流量、給水温度、原子
炉圧力、非常炉心冷却系の冷却水流量、原子炉水位、お
よび被覆管温度の経時変化の、従来装置と本発明装置と
の比較線図、第9図は本発明の他の実施例を示す系統図
である。 1・・・原子炉、2・・・主蒸気管、13・・・高圧復
水ポンプ、16・・・低圧給水加熱器、19・・・ター
ビン駆動給水ポンプ、23・・・高圧給水加熱器、27
・・・′!lf@機駆動給水ポンプ、35・・・第1の
バイパス管路、36・・・第2のバイパス管路、40・
・・第8のバイパス管路、43、必・・・制御装置。 出願人代理人  猪 股   清 鶴2図 −477− 第3図 第4図 争Cズ糧時間(や灼 悩怖気¥すi 輝時番蝿愕9
Fig. 1 is a system diagram of a conventional reactor water supply system, Fig. 2 is a system diagram of a water supply system according to an embodiment of the present invention, and Figs. Comparison chart of temperature, reactor pressure, cooling water flow rate of the emergency core cooling system, reactor water level, and cladding temperature over time between the conventional device and the device of the present invention, FIG. 9 is a diagram showing another implementation of the present invention. It is a system diagram showing an example. DESCRIPTION OF SYMBOLS 1... Nuclear reactor, 2... Main steam pipe, 13... High pressure condensate pump, 16... Low pressure feed water heater, 19... Turbine driven feed water pump, 23... High pressure feed water heater , 27
...′! lf@machine-driven water supply pump, 35... first bypass pipe line, 36... second bypass pipe line, 40.
...Eighth bypass pipeline, 43, required...control device. Applicant's agent Kiyotsuru Inomata Figure 2 - 477 - Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、原子炉への給水系統に設けられた高圧給水加熱器を
バイパスする@1のバイパス管路と、低圧給水加熱器お
よび給水ボンダをバイパスする第2のバイパス管路と、
高圧復水ボンダをバイパスする第8のバイパス管路と、
原子炉内の水位および圧力信号によって作動せしめられ
、上記各バイパス管路を開放する制御装置とを設けたこ
とを特徴とする。沸騰水形原子力原動所の給水装置。 2、第1のバイパス管路は、原子炉内水位が所定値に低
下したときにまず開放せしめられることを特徴とする特
許請求の範囲第4項記載の沸騰水形原子力原動所の給水
装置。 3、第2のバイパス管路および第8のバイパス管路は、
原子炉内の水位低と圧力低信号によって順次開放するよ
うに構成されていることを特徴とする特許請求の範囲第
1項または第2項記載の沸1([爪形原子力原動所の給
水装置。
[Claims] 1. A bypass pipe @1 that bypasses a high-pressure feedwater heater provided in a water supply system to a nuclear reactor, and a second bypass pipe that bypasses a low-pressure feedwater heater and a feedwater bonder. ,
an eighth bypass line that bypasses the high pressure condensate bonder;
The present invention is characterized in that it is provided with a control device that is activated by water level and pressure signals in the nuclear reactor and opens each of the bypass pipes. Boiling water nuclear power station water supply system. 2. The water supply system for a boiling water nuclear power plant according to claim 4, wherein the first bypass line is first opened when the water level in the reactor drops to a predetermined value. 3. The second bypass line and the eighth bypass line are:
The water supply device for a nail-shaped nuclear power plant according to claim 1 or 2 is configured to open sequentially in response to a low water level and a low pressure signal in the reactor. .
JP57027169A 1982-02-22 1982-02-22 Feedwater device for bwr type reactor Pending JPS58143297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57027169A JPS58143297A (en) 1982-02-22 1982-02-22 Feedwater device for bwr type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57027169A JPS58143297A (en) 1982-02-22 1982-02-22 Feedwater device for bwr type reactor

Publications (1)

Publication Number Publication Date
JPS58143297A true JPS58143297A (en) 1983-08-25

Family

ID=12213551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57027169A Pending JPS58143297A (en) 1982-02-22 1982-02-22 Feedwater device for bwr type reactor

Country Status (1)

Country Link
JP (1) JPS58143297A (en)

Similar Documents

Publication Publication Date Title
CA1183614A (en) Device for the emergency cooling of a pressurized water nuclear reactor core
CN108831573A (en) A kind of nuclear power station secondary side passive residual heat removal security system
JPS58143297A (en) Feedwater device for bwr type reactor
US3384550A (en) Nuclear steamplant method and apparatus
JPH0810264B2 (en) Emergency core cooling system
US3666623A (en) Gas turbine installation for nuclear power plant
JPS631996A (en) Feed water supply system for boiling water type reactor
JPS59126288A (en) Feedwater device for bwr type reactor
JP2001091689A (en) Starting method for supercritical pressure light water- cooled reactor
JP7228477B2 (en) Residual heat removal equipment, its operating method and residual heat removal method
JP4031872B2 (en) Water supply control method in a power plant using a drum boiler
JPS6020193A (en) Water supply system for boiling-water type reactor
JP2001090507A (en) Electric power plant
JPS6050496A (en) Water supply system of boiling-water type nuclear reactor
JPS6117988A (en) Safety device for nuclear reactor
JPH0544637B2 (en)
JPS59187296A (en) Feedwater device for bwr type reactor
JP3044159B2 (en) High-speed standby operation device of fast reactor
Uspuras et al. Implementation of preventive measures against local flow degradation in the primary circuit of RBMK-1500
Pei Study on Risk Analysis and Mitigation Measures for Total Loss of Heat Sink Accident in a Nuclear Power Plant
JPH04104090A (en) Pressure releasing apparatus for nuclear reactor
JPS5960392A (en) Emergency core cooling system
JPS6168596A (en) Feedwater heater for nuclear reactor
JPS59225392A (en) Cooling facility for core of nuclear reactor
JPS59195197A (en) Feedwater control device of bwr type reactor