JPH04104090A - Pressure releasing apparatus for nuclear reactor - Google Patents

Pressure releasing apparatus for nuclear reactor

Info

Publication number
JPH04104090A
JPH04104090A JP2220102A JP22010290A JPH04104090A JP H04104090 A JPH04104090 A JP H04104090A JP 2220102 A JP2220102 A JP 2220102A JP 22010290 A JP22010290 A JP 22010290A JP H04104090 A JPH04104090 A JP H04104090A
Authority
JP
Japan
Prior art keywords
pressure
reactor
signal
water level
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2220102A
Other languages
Japanese (ja)
Inventor
Masaki Matsumoto
松本 雅喜
Kenichi Sato
憲一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2220102A priority Critical patent/JPH04104090A/en
Publication of JPH04104090A publication Critical patent/JPH04104090A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To enhance safety by providing a control means forcibly opening an opening means when a cooling material abnormally flows out of a reactor container. CONSTITUTION:When a dry well high pressure signal 10 and a low pressure ECCS pump operating signal 15 generated by the outflow of a cooling material are automatically detected, an ADS is operated and an escape safety valve 1 is forcibly opened and the steam in a reactor pressure vessel 2 is discharged into the cooling water in a pressure suppression chamber 7 through an exhaust pipe 5 and the pressure in the reactor pressure vessel 2 is rapidly lowered. As a result, the cooling water in the pressure suppression chamber 7 is injected in the reaction pressure vessel 2 by the pump 14 of a low pressure ECCS 11 and a core can be cooled within a short time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1M子力発電所の原子炉の緊急時の減圧装置に
係り、特に原子炉内に異常が発生した場合に安全弁を強
制的に開放して原子炉を減圧する圧力開放装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an emergency depressurization device for a nuclear reactor in a 1M nuclear power plant, and in particular, a system for forcibly closing a safety valve when an abnormality occurs in the reactor. This invention relates to a pressure release device that opens the reactor to reduce the pressure in the reactor.

[従来の技術] 原子力発電所においては、いがなる事故が生じても原子
炉の炉心を冷却せねばらなぬため、高圧炉心冷却系及び
低圧炉心冷却系からなる非常、用炉心冷却系(ECCS
)を有している。現行の設定では、冷却材喪失事故(L
OCA)−を想定し、原子炉水位低信号とドライウェル
圧力高信号によりADS (自動減圧機能)を起動し、
原子炉内の圧力を開放し原子炉を低圧状態とすることに
より、高圧炉心冷却系に加えて低圧炉心冷却系にて炉心
を冷却することができる。
[Prior art] In nuclear power plants, even if an accident occurs, the core of the reactor must be cooled. ECCS
)have. With the current settings, loss of coolant accidents (L
Assuming that the reactor water level is low and the dry well pressure is high, the ADS (automatic depressurization function) is activated.
By releasing the pressure inside the reactor and bringing the reactor to a low pressure state, the reactor core can be cooled by the low pressure core cooling system in addition to the high pressure core cooling system.

一方、ドライウェル圧力高信号が生ぜず、原子炉水位が
低下するような過渡事象に於て、原子炉が高圧状態に維
持されれば、高圧の非常用炉心冷却系に加えて、低圧の
非常用炉心冷却系を用いることはできない。
On the other hand, if the reactor is maintained at high pressure in a transient event where the dry well pressure high signal does not occur and the reactor water level drops, in addition to the high pressure emergency core cooling system, the low pressure emergency A special core cooling system cannot be used.

このため、特開昭57−113395号公報に記載のよ
うに、第4図に示す原子炉を自動的に減圧する起動ロジ
ックが考案された。これは原子炉水位低信号と高圧の非
常用炉心冷却系の不作動信号の組み合せによるADS自
動起動ロジック及び原子炉水位低信号と短時間(5分)
の継続信号によるADS自動起動ロジックからなるもの
である。
For this reason, as described in Japanese Patent Application Laid-Open No. 57-113395, a startup logic for automatically reducing the pressure of the nuclear reactor shown in FIG. 4 was devised. This is an ADS automatic startup logic based on a combination of a reactor water level low signal and a high-pressure emergency core cooling system inactivation signal, and a reactor water level low signal and a short time (5 minutes).
This consists of ADS automatic activation logic based on the continuation signal.

[発明が解決しようとする課題] 上記従来技術は、事象の進展、すなわち、ドライウェル
圧力高信号がでないで原子炉水位低信号が生じるような
事象は、事象が比較的ゆるやかに進むことが考慮されて
おらず、実用化が菫かしいという点で問題があった。
[Problems to be Solved by the Invention] The above-mentioned conventional technology takes into account that the progression of an event, that is, an event in which a low reactor water level signal occurs without a high dry well pressure signal, progresses relatively slowly. However, there was a problem in that it was difficult to put it into practical use.

本発明は、ADS自動起動が必要となる事象を明確にし
、その事象に対応する信号を適確に摘呂し、ADS自動
起動ロジックの充実をはかり、過渡時および事故時の原
子カプラントの信頼性の向上を目的としている。
The present invention clarifies the events that require automatic ADS activation, accurately controls the signals corresponding to those events, and improves the ADS automatic activation logic to improve the reliability of the atomic couplant during transients and accidents. The aim is to improve

口課題を解決しようとする手段] 上記課題を解決するための本発明に係る原子炉の圧力開
放装置の構成は、原子炉容器内の水蒸気を開放手段を介
して凝縮手段に導く原子炉の圧力開放装置において、原
子炉容器から冷却材が異常流出し、かつ高圧注水系が不
作動の状態と判定された時に、前記開放手段を強制的に
開放することができる制御手段を具備したものである。
Means for Solving the Problem] The configuration of the pressure relief device for a nuclear reactor according to the present invention for solving the above problem is to reduce the pressure of the reactor by guiding water vapor in the reactor vessel to the condensing means via the relief means. The opening device is equipped with a control means that can forcibly open the opening means when coolant abnormally flows out from the reactor vessel and the high-pressure water injection system is determined to be inactive. .

[作用コ 原子炉圧力容器から冷却材が異常に流出するような事象
に対して、本発明の原子炉の圧力開放装置は、原子炉圧
力容器内に充分な保有水を有した状態で逃し安全弁を自
動的に動作させることができる。特に、ドライウェル内
へ冷却材が流出する事象および圧力抑制室内の水中へ冷
却材が流出する事象の全事象に対して、逃し安全弁を自
動的に動作させることができる。
[Function] In response to an event in which coolant abnormally flows out from the reactor pressure vessel, the reactor pressure relief device of the present invention releases the relief safety valve while there is sufficient water in the reactor pressure vessel. can be operated automatically. In particular, the safety relief valve can be automatically operated for all events of coolant flowing into the drywell and coolant flowing into the water within the suppression chamber.

それによって、原子炉圧力容器は減圧されるので、低圧
ECC5が充分な信頼性をもって起動され、上記事象に
対して炉心は充分冷却される。
Thereby, the reactor pressure vessel is depressurized so that the low pressure ECC 5 is activated with sufficient reliability and the reactor core is sufficiently cooled for the above event.

従来、LOCAなどの場合、原子炉圧力容器内の冷却水
位は、スクラム水位から短時間の継続信号の間に、冷却
水位回復のための一対策を施したが、本発明によって、
30分間異常の継続信号の間に充分慎重な対策をねり1
作動する余裕を与えられることになる。
Conventionally, in cases such as LOCA, a measure was taken to restore the cooling water level in the reactor pressure vessel during a short period of continuous signal from the scram level, but with the present invention,
During the 30-minute continuous abnormality signal, take careful measures1.
This will give them room to operate.

[実施例コ 以下、本発明の1実施例を第1図を用いて説明する。[Example code] Hereinafter, one embodiment of the present invention will be described using FIG. 1.

第1図は1本発明の原子炉の圧力開放装置の系統模式図
である。
FIG. 1 is a schematic system diagram of a pressure relief device for a nuclear reactor according to the present invention.

第1図の構成は、1は、安全弁、2は、原子炉圧力容器
、3は、ドライウェル、4は、主蒸気管、5は、排気管
、7は、圧力抑制室、8は、原子炉水位低信号判定器、
10は、ドライウェル圧力高信号判定器、15は、低圧
スプレィ作動信号判定器、14.19は、ポンプ、31
は、信号判定器である。
The configuration of FIG. 1 is as follows: 1 is a safety valve, 2 is a reactor pressure vessel, 3 is a dry well, 4 is a main steam pipe, 5 is an exhaust pipe, 7 is a pressure suppression chamber, and 8 is an atom Reactor water level low signal detector,
10 is a dry well pressure high signal determiner, 15 is a low pressure spray operation signal determiner, 14.19 is a pump, 31
is a signal judger.

本発明は、ドライウェル3内の主蒸気管4に取付けられ
ている逃し安全弁1および原子炉圧力容器2と圧力抑制
室7を接続する排気管5とかならる逃し安全弁1の起動
制御機構に関するものである。
The present invention relates to a start control mechanism for a safety relief valve 1, which includes a safety relief valve 1 attached to a main steam pipe 4 in a dry well 3, and an exhaust pipe 5 connecting a reactor pressure vessel 2 and a pressure suppression chamber 7. It is.

その起動制御は従来のLOCA (冷却材喪失事故)信
号すなわち原子炉水位低信号8、ドライウェル圧力高信
号10.および、低圧ECC5ポンプ作動信号15から
成るADS起動信号に加えて、原子炉水位低信号(この
場合は、高圧ECC5を起動させる原子炉水位をさす)
が30分以上継続する信号31により、ADSを自動起
動する回路を追加したものである。
Its start-up control is based on conventional LOCA (loss of coolant accident) signals, namely, reactor water level low signal 8, dry well pressure high signal 10. In addition to the ADS activation signal consisting of the low-pressure ECC5 pump activation signal 15, the reactor water level low signal (in this case refers to the reactor water level that activates the high-pressure ECC5)
A circuit is added to automatically start the ADS when a signal 31 continues for 30 minutes or more.

以下にこの起動制御の動作を説明する。The operation of this startup control will be explained below.

冷却材喪失事故(LOCA)のように原子炉圧力容器2
から冷却材が流出する事象に於ては、高圧ECC5ポン
プの作動に加えて、原子炉水位低信号8(この場合、低
圧EC:C5を起動させる原子炉水位をさす)、流出す
る冷却材により生ずるドライウェル圧力高信号10.お
よび低圧ECC5ポンプ作動信号15を自動的に検出す
ると、ある時閏遅れの後、ADSは作動し、逃し安全弁
1が強制的に開放されることにより、原子炉隔離時lI
2内の蒸気が排気管5を通して圧力抑制室7内の冷却水
中へ放出され原子炉圧力容器2内の圧力は速やかに低下
し、低圧ECC5l 1のポンプ14の作動が可能とな
る。この結果、低圧ECC311のポンプ14により、
圧力抑制室7内の冷却水を原子炉圧力容器2内へ注水を
行い、炉心を短時間に冷却することができる。
Reactor pressure vessel 2 as in loss of coolant accident (LOCA)
In the event that coolant flows out from the reactor, in addition to the operation of the high-pressure ECC5 pump, the reactor water level low signal 8 (in this case, refers to the reactor water level that starts the low-pressure EC: C5) is activated by the flowing coolant. Resulting dry well pressure high signal 10. When the low-pressure ECC5 pump operation signal 15 is automatically detected, the ADS is activated after a certain time delay, and the safety relief valve 1 is forcibly opened.
Steam in the reactor pressure vessel 2 is released through the exhaust pipe 5 into the cooling water in the pressure suppression chamber 7, and the pressure in the reactor pressure vessel 2 is quickly reduced, allowing the pump 14 of the low-pressure ECC 5l 1 to operate. As a result, the pump 14 of the low pressure ECC 311
By injecting the cooling water in the pressure suppression chamber 7 into the reactor pressure vessel 2, the reactor core can be cooled in a short time.

一方、原子炉隔離時に原子炉隔離時冷却系(RCI C
)や高圧ECC5等の高圧注水系が故障するような事象
を想定した場合、ドライウェル圧力高信号10が生じな
い可能性があり、ADSが自動起動しないため、原子炉
圧力容器2内へ低圧ECC5ポンプ14を用いて注水で
きないことがありうる。このような事象に対して、原子
炉水位低(ここでは、高圧注水系を作動させる原子炉水
位をさす)信号が30分間以上継続して生じている信号
31をうけると、ADSは自動的に作動し、逃し安全弁
1が強制的に開放され、原子炉圧力容器2内圧力は速や
かに低下し、低圧ECC5ポンプ14により原子炉圧力
容器2内へ注水され、炉心を冷却することができる。
On the other hand, during reactor isolation, the reactor isolation cooling system (RCI C
) or high-pressure ECC5, etc., there is a possibility that the dry well pressure high signal 10 will not occur and the ADS will not start automatically, so the low-pressure ECC5 will be injected into the reactor pressure vessel 2. Water may not be injected using the pump 14. In response to such an event, if the reactor water level low signal (in this case refers to the reactor water level that activates the high-pressure water injection system) signal 31 has been occurring continuously for more than 30 minutes, the ADS will automatically When activated, the relief safety valve 1 is forcibly opened, the pressure inside the reactor pressure vessel 2 is quickly lowered, and water is injected into the reactor pressure vessel 2 by the low pressure ECC5 pump 14 to cool the reactor core.

すなわち、原子炉圧力容器2内の水位を水位計で計り、
原子炉圧力容器2内の水位が30分間以上ADSの起動
水位以下を継続したことを検出器31で検出すると、A
DSを自動起動させることが本発明の特徴である。
That is, the water level in the reactor pressure vessel 2 is measured with a water level gauge,
When the detector 31 detects that the water level in the reactor pressure vessel 2 has remained below the ADS startup water level for more than 30 minutes, the ADS
A feature of the present invention is to automatically start the DS.

ここで、原子炉水位低信号の継続を30分とした根拠に
ついて1100MWe級BWR−5プラント(標準型プ
ラント)を例にとり説明する。
Here, the reason why the reactor water level low signal continues for 30 minutes will be explained using a 1100 MWe class BWR-5 plant (standard type plant) as an example.

第3図は、原子炉圧力容器の構造と冷却材水位を示す模
式図である。
FIG. 3 is a schematic diagram showing the structure of the reactor pressure vessel and the coolant water level.

第3図に原子炉圧力容器2内の構造と水位を示している
。一般に各水位により工学的安全設備の起動が行われる
。BWR−5の場合、原子炉水位信号(レベル3)で原
子炉隔離時冷却系(RCIC)および高圧炉心スプレィ
系(HPC8)等の高圧注水系が起動され、原子炉水位
(レベル1)信号で低圧炉心スプレィ系(LPC8)、
低圧炉心注水系(LPCI)等の低圧ECC5系が起動
される。ここで、前述した原子炉隔離時高圧注水系が作
動しないような事象を想定すると、スクラム(レベル3
)後の炉心の崩壊熱により蒸気が逃し安全弁1から圧力
抑制室7の冷却水中へ放出されるため、原子炉圧力容器
2内の水位は徐々に低下することになる。
FIG. 3 shows the structure and water level inside the reactor pressure vessel 2. Each water level generally triggers the activation of engineering safety equipment. In the case of BWR-5, high-pressure water injection systems such as the reactor isolation cooling system (RCIC) and high-pressure core spray system (HPC8) are activated by the reactor water level signal (level 3), and the reactor water level (level 1) signal is activated. Low pressure core spray system (LPC8),
Low-pressure ECC5 systems such as the low-pressure core water injection system (LPCI) are activated. Here, assuming an event in which the high-pressure water injection system during reactor isolation does not operate as described above, a scram (level 3
) Steam is released from the safety valve 1 into the cooling water of the pressure suppression chamber 7 due to the decay heat of the reactor core, so the water level in the reactor pressure vessel 2 gradually decreases.

いま、流出すべき蒸気量CM)を1次式を用いて計算す
る。
Now, the amount of steam CM) that should flow out is calculated using a linear equation.

ここでM:を秒間の流出蒸気量(ton)Po:原子炉
熱出力(MWT) P(t)ニスクラム後を秒間時点での 原子炉熱出力(スクラム後の崩壊熱) Hg:蒸気のエンタルピー(にca 41 /I[g)
tニスクラム後の時1m(秒) f:換算係数(Kca Q /MvT/5ec)上記の
式に、係数を入れて、標準型BWR−5プラントの30
分間(1800秒)の流出蒸気量(M)を概算評価する
と以下のようになる。
Here, M: Amount of steam flowing out per second (tons) Po: Reactor thermal output (MWT) P(t) Reactor thermal output after the scram (decay heat after scram) Hg: Steam enthalpy ( ca 41 /I [g]
t Time after Niscrum: 1m (seconds) f: Conversion factor (Kca Q /MvT/5ec) Insert the coefficient into the above formula and calculate the standard BWR-5 plant's 30
A rough evaluation of the amount of steam flowing out (M) per minute (1800 seconds) is as follows.

M = 3440 (MIIT) X 239(Kca
 It /NVT/5ee)弁62ton 第3図において、原子炉水位低(レベル3)のスクラム
開始時点から有効燃料棒上端(レベル)までに保有され
る冷却水量は約80ton以上であり、有効燃料棒上端
から同下端(レベル)までの保有冷却水位は約100t
onである。
M = 3440 (MIIT) x 239 (Kca
It /NVT/5ee) Valve 62 tons In Figure 3, the amount of cooling water held from the start of scram when the reactor water level is low (level 3) to the upper end of the effective fuel rod (level) is approximately 80 tons or more. The cooling water level from the upper end to the lower end (level) is approximately 100 tons.
It's on.

したがって、仮りに原子炉水位低(レベル3)から上記
のように30分間に相当する水量(約62ton)が原
子炉3、圧力容器2がら流出したとしても、原子炉水位
は有効燃料棒上端(レベル)までは達しないから、炉心
内には充分な冷却水が保有されているため、炉心の冷却
は充分安全に確保されることになる。
Therefore, even if the amount of water equivalent to 30 minutes (approximately 62 tons) flows out of the reactor 3 and pressure vessel 2 from the low reactor water level (level 3) as described above, the reactor water level will be lower than the upper end of the effective fuel rod ( Since there is sufficient cooling water in the reactor core, cooling of the reactor core will be ensured sufficiently and safely.

以上により1M子炉圧力容器2から異常に冷却材が流出
する事象に対して、高圧注水系が有効に作動しなかった
場合でも、ADSを自動的に作動させ原子炉圧力容器内
を減圧することにより低圧ECC5系を作動させ炉心を
充分冷却することができる逃し安全弁1の起動制御機構
を提供しうる。
As described above, even if the high-pressure water injection system does not operate effectively in the event that coolant abnormally flows out from the 1M slave reactor pressure vessel 2, the ADS can be automatically operated to reduce the pressure inside the reactor pressure vessel. Accordingly, it is possible to provide a start-up control mechanism for the safety relief valve 1 that can operate the low-pressure ECC 5 system and sufficiently cool the reactor core.

つぎに本発明の他の実施例を第2図を用いて説明する。Next, another embodiment of the present invention will be described with reference to FIG.

第2図は、本発明の他の実施例の系統模式図である。第
2図において、16は、高圧炉心スプレィ系、24は、
原子炉隔離時冷却系、2:2.26は1、信号判定器で
あり、その他の符号は、第1図と同一である。
FIG. 2 is a system diagram of another embodiment of the present invention. In FIG. 2, 16 is a high-pressure core spray system, 24 is
Reactor isolation cooling system, 2:2.26 is 1, signal judge, and other symbols are the same as in FIG. 1.

本実施例に示す第2図の系統が第1図と異なることは、
ADSの自動起動制御機構において、高圧炉心スプレィ
系16の不作動および原子炉隔離時冷却系24の不作動
の同時信号を組合わせた点である。  ′ すなわち、高圧炉心スプレィ系16′および隔離時冷却
系17の不作動を同時に検出すると、ある時間遅れの後
i ADsは作動し、逃がし安全弁1が強制的に開放さ
れることにより1M子炉圧力容器2内の蒸気を、排気管
5を通して圧力抑制室7内の冷却水中に導き凝縮する。
The difference between the system shown in FIG. 2 shown in this example and that shown in FIG. 1 is that
In the automatic start-up control mechanism of the ADS, simultaneous signals for inactivation of the high-pressure core spray system 16 and inactivation of the reactor isolation cooling system 24 are combined. ' That is, when the inoperation of the high-pressure core spray system 16' and the isolation cooling system 17 is detected at the same time, the iADs are activated after a certain time delay, and the safety relief valve 1 is forcibly opened, thereby reducing the 1M slave reactor pressure. The steam in the container 2 is introduced into the cooling water in the pressure suppression chamber 7 through the exhaust pipe 5 and condensed.

この結果、原子炉圧力容器2内の圧力は速やかに低下、
低圧炉心スプレィ系11から原子炉圧力容器2内への注
水を速やかに行なえるので、炉心は短時間に冷却される
ので安全は確保される。
As a result, the pressure inside the reactor pressure vessel 2 quickly decreases,
Since water can be quickly injected from the low-pressure core spray system 11 into the reactor pressure vessel 2, the core is cooled in a short time and safety is ensured.

[発明の効果] 本発明によれば、以下のような効果が期待できる。[Effect of the invention] According to the present invention, the following effects can be expected.

(1)非常用炉心冷却系の信頼性向上 原子炉圧力容器から冷却材が異常に流出するような冷却
材喪失事故や原子炉隔離時に於いて高圧注水系が有効に
作動しないことを想定した場合、原子炉減圧操作を手動
でなく、自動起動を実視することにより、確実に炉心冷
却を行うことができる。
(1) Improving the reliability of the emergency core cooling system Assuming that the high-pressure water injection system does not operate effectively in the event of a loss of coolant accident in which coolant abnormally flows out of the reactor pressure vessel or during reactor isolation. By observing the automatic start-up of the reactor pressure reduction operation instead of manual operation, it is possible to reliably cool the reactor core.

この結果、原子炉圧力容器から冷却材が異常に流出する
ようなあゆらる事象に対して、非常用炉心冷却系を使用
でき、原子カプラントの信頼性を充分向上させることが
できる。” (2)安全余裕□の向上 原子炉隔離時に於いて、高圧注水系が有効に作動しない
ような多重故障時に於て、原子炉減圧を自動化すること
により、運転員への負担を軽減し、誤操作を防止するこ
とができ、安全余裕の向上がはかれる。(炉心冷却対策
の検討に余裕がある)一方、本発明は、新たな高圧注水
系(例えばアキュムレー′夕による高圧注水系、高圧E
CC8゛)″の追加と同程度の効果を有しており、単純
で安価な設備で充分な安全余裕をはかれることができ。
As a result, the emergency core cooling system can be used in response to any event such as abnormal outflow of coolant from the reactor pressure vessel, and the reliability of the nuclear couplant can be sufficiently improved. (2) Improve safety margin It is possible to prevent erroneous operations, and the safety margin is improved.(There is time to consider core cooling measures.) On the other hand, the present invention provides a new high-pressure water injection system (for example, a high-pressure water injection system using an accumulator, a high-pressure water injection system using a high-pressure
It has the same effect as adding CC8''), and a sufficient safety margin can be achieved with simple and inexpensive equipment.

経済効果が大きい。The economic effect is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1゛図は1本発明の゛1実施例の系統模式図、第2図
は一本発明の他の実施例の系統模式図、第3゛図は、原
子炉圧力容器の構造と冷却水位の模式図、第4′図は、
−従来例・め系統模式図である。 −く゛符号の説明′
〉− 1・・・安全弁、2・・・原子炉圧力容器、3・・ドラ
イウェル、4・・・主蒸気管55パ・・排気管、7・・
圧力抑制室、11・・低圧ECC8,16・・高圧EC
C5,14’、1’9・・ポンプ、17・・隔離時冷却
系、8゜10.15,22,26,31・・・信号判定
器。
Fig. 1 is a schematic system diagram of the first embodiment of the present invention, Fig. 2 is a schematic system diagram of another embodiment of the present invention, and Fig. 3 is the structure and cooling water level of the reactor pressure vessel. The schematic diagram, Figure 4', is
- Conventional example/me system schematic diagram. -Explanation of the code'
〉- 1...Safety valve, 2...Reactor pressure vessel, 3...Dry well, 4...Main steam pipe 55pa...Exhaust pipe, 7...
Pressure suppression chamber, 11...Low pressure ECC8, 16...High pressure EC
C5, 14', 1'9... Pump, 17... Isolation cooling system, 8°10.15, 22, 26, 31... Signal determiner.

Claims (1)

【特許請求の範囲】 1、原子炉容器内の水蒸気を開放手段を介して凝縮手段
に導く原子炉の圧力開放装置において、原子炉容器から
冷却材が異常流出し、かつ高圧注水系が不作動の状態と
判定された時に、前記開放手段を強制的に開放すること
ができる制御手段を具備したことを特徴とする原子炉の
圧力開放装置 2、請求項1、記載の原子炉の圧力開放装置において、
原子炉隔離時冷却系および高圧炉心スプレイ系の各々の
作動状態を検出する手段と、前記検出手段からの信号を
入力して、前記隔離時冷却系および前記高圧炉心スプレ
イ系が不作動の状態にあると判定した時、原子炉水位が
高圧注水系起動の設定水位以下に30分間以上継続する
間に前記開放手段を強制的に開放することができる制御
手段を具備したことを特徴とする原子炉の圧力開放装置
[Scope of Claims] 1. In a pressure relief device for a nuclear reactor that guides water vapor in a reactor vessel to a condensing means through an opening means, when coolant abnormally flows out from the reactor vessel and the high-pressure water injection system is inoperable. A pressure relief device for a nuclear reactor according to claim 1, characterized in that the pressure relief device for a nuclear reactor is equipped with a control means capable of forcibly opening the opening means when it is determined that the condition is as follows. In,
means for detecting the operating state of each of a reactor isolation cooling system and a high-pressure core spray system; and inputting a signal from the detection means to bring the isolation cooling system and high-pressure core spray system into an inoperable state. A nuclear reactor characterized by comprising a control means capable of forcibly opening the opening means while the reactor water level continues to be below the set water level for starting the high-pressure water injection system for 30 minutes or more when it is determined that the opening means is present. pressure relief device.
JP2220102A 1990-08-23 1990-08-23 Pressure releasing apparatus for nuclear reactor Pending JPH04104090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2220102A JPH04104090A (en) 1990-08-23 1990-08-23 Pressure releasing apparatus for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220102A JPH04104090A (en) 1990-08-23 1990-08-23 Pressure releasing apparatus for nuclear reactor

Publications (1)

Publication Number Publication Date
JPH04104090A true JPH04104090A (en) 1992-04-06

Family

ID=16745949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220102A Pending JPH04104090A (en) 1990-08-23 1990-08-23 Pressure releasing apparatus for nuclear reactor

Country Status (1)

Country Link
JP (1) JPH04104090A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169477A (en) * 2004-12-20 2006-06-29 Unitika Ltd Organic solvent-based coating excellent in direct lamination aptitude
CN112473584A (en) * 2020-11-13 2021-03-12 中广核工程有限公司 Passive safety protection system of supercritical water oxidation reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169477A (en) * 2004-12-20 2006-06-29 Unitika Ltd Organic solvent-based coating excellent in direct lamination aptitude
CN112473584A (en) * 2020-11-13 2021-03-12 中广核工程有限公司 Passive safety protection system of supercritical water oxidation reactor

Similar Documents

Publication Publication Date Title
KR20200073162A (en) Depressurisation valve
JP5642091B2 (en) Reactor transient mitigation system
US4948551A (en) Method of protecting a pressurized water nuclear reactor against failures in its emergency stop means
EP0318323A2 (en) Variable delay reactor protection system
JPH0498198A (en) Core cooling facility for nuclear power plant
JPH04104090A (en) Pressure releasing apparatus for nuclear reactor
Collier et al. The Accident at Three Mile Island
JPS59184887A (en) Depressing device of reactor container
JPH08201561A (en) Safety system reactor container
JPH0740073B2 (en) Automatic decompression system
JPS6050318B2 (en) Reactor control device
JPH02222878A (en) Residual heat removal system of nuclear power plant
JPH08233990A (en) Reactor safety system and its functioning state indication method
JPH07128481A (en) Transion relaxation system for reactor
Kawabe et al. Comparison of MAAP4. 03 with RELAP5/MOD2
JPH0331962B2 (en)
JPH10153678A (en) Reactor isolation cooling system
JPH0454199B2 (en)
JPH04236396A (en) Emergency core cooling device
JPH1130693A (en) Transient relaxation system for nuclear reactor
JPH05223979A (en) Water feeding system for nuclear reactor
JPS6247279B2 (en)
Kima et al. Analysis on Small Break LOCA with HPSI-Failure for Shin-Kori units 1, 2
JPS60171495A (en) Controller for automatic decompression system of boiling-water type nuclear power plant
Stefanova et al. Investigation of critical safety function'Integrity'in case of Steam Line Break accident for WWER 1000/V320