JP7228477B2 - Residual heat removal equipment, its operating method and residual heat removal method - Google Patents

Residual heat removal equipment, its operating method and residual heat removal method Download PDF

Info

Publication number
JP7228477B2
JP7228477B2 JP2019111585A JP2019111585A JP7228477B2 JP 7228477 B2 JP7228477 B2 JP 7228477B2 JP 2019111585 A JP2019111585 A JP 2019111585A JP 2019111585 A JP2019111585 A JP 2019111585A JP 7228477 B2 JP7228477 B2 JP 7228477B2
Authority
JP
Japan
Prior art keywords
valve
water temperature
flow rate
value
pool water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019111585A
Other languages
Japanese (ja)
Other versions
JP2020204498A (en
Inventor
和夫 久島
智史 池尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019111585A priority Critical patent/JP7228477B2/en
Publication of JP2020204498A publication Critical patent/JP2020204498A/en
Application granted granted Critical
Publication of JP7228477B2 publication Critical patent/JP7228477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

本発明の実施形態は、原子炉プラントの運転を停止した後に発生する崩壊熱を除去する残留熱除去技術に関する。 An embodiment of the present invention relates to a residual heat removal technique for removing decay heat generated after stopping the operation of a nuclear reactor plant.

沸騰水型軽水炉には、一次系配管が破断し圧力容器内の冷却材が流出する過酷事故が発生した場合であっても、炉心の崩壊熱を適切に除去する仕組みが備わっている。そのような崩壊熱の除去機能を発揮する残留熱除去設備は、(i)低圧注水モード、(ii)格納容器冷却モード、(iii)停止時冷却モード、(iv)圧力抑制室プール水冷却モード、(v)使用済み燃料プール水冷却モードの五つの運転モードを備えている。これらのうち、(i)、(ii)の運転モードは過酷事故等が発生した非常時に実行されるもので、(iii)、(iv)、(v)の運転モードは原子炉が正常状態にある通常時に実行される。 Boiling water reactors are equipped with a mechanism to properly remove decay heat from the reactor core even in the event of a severe accident in which the primary system piping breaks and the coolant in the pressure vessel leaks out. Residual heat removal equipment that exerts such decay heat removal function is (i) low pressure water injection mode, (ii) containment vessel cooling mode, (iii) shutdown cooling mode, (iv) pressure suppression chamber pool water cooling mode. , (v) spent fuel pool water cooling mode. Among these, operation modes (i) and (ii) are executed in an emergency such as when a severe accident occurs, and operation modes (iii), (iv) and (v) are when the reactor is in a normal state. executed at some normal time.

そして、残留熱除去設備は、圧力抑制室(サプレッションチェンバ)に収容されるプール水を水源として用い、このプール水を外部循環させる配管と、プール水に循環圧力を付与するポンプと、循環するプール水を除熱する熱交換器と、を備えている。さらにこの熱交換器で回収された排熱は、さらに海水等を冷媒とする原子炉補器冷却設備により外部放出される。 The residual heat removal equipment uses the pool water contained in the suppression chamber as a water source. and a heat exchanger for removing heat from the water. Furthermore, the exhaust heat recovered by this heat exchanger is released to the outside by a reactor auxiliary cooling system using seawater or the like as a coolant.

これまで残留熱除去設備は、過酷事故が発生した時における圧力抑制室のプール水の到達上限温度を100℃に想定し、設計されていた。つまり、圧力容器に接続する配管のうち最も口径の大きい配管が完全に破断して冷却材が圧力抑制室に流入しても、プール水の水温は100℃を超えないとの想定を行っていた。そして、残留熱除去設備が非常時の運転モードを実施する時に要求される熱交換器の除熱容量は、除熱対象のプール水が100℃以下であるという想定の下で設計されていた。 Until now, residual heat removal equipment has been designed on the assumption that the upper limit temperature of the pool water in the suppression chamber is 100°C when a severe accident occurs. In other words, it was assumed that the temperature of the pool water would not exceed 100°C even if the pipe with the largest diameter among the pipes connected to the pressure vessel was completely broken and the coolant flowed into the pressure suppression chamber. . The heat removal capacity of the heat exchanger required when the residual heat removal equipment implements the emergency operation mode was designed under the assumption that the pool water from which heat is to be removed is 100° C. or less.

特許出願公告昭58-4999号公報Patent Application Publication No. 58-4999

しかし、東日本大震災後においては、これまで想定していた規模を超える重大事故の発生を考慮する必要性が生じている。このため、圧力抑制室のプール水の到達上限温度を、従来の100℃を超える150℃程度に想定することが検討されている。このようにプール水が当初の想定温度(100℃)を超えてしまうことは、熱交換器の除熱容量をオーバーすることになる。 However, after the Great East Japan Earthquake, there is a need to consider the occurrence of a serious accident that exceeds the scale assumed so far. For this reason, it is being considered to assume that the upper limit temperature of pool water in the pressure suppression chamber is about 150°C, which exceeds the conventional 100°C. When the temperature of the pool water exceeds the initially assumed temperature (100° C.) in this way, the heat removal capacity of the heat exchanger is exceeded.

上述した原子炉補器冷却設備は、残留熱除去設備の熱交換器以外にも、その他の種々の設備から排熱を回収する役割を持つ。そして、この熱交換器が除熱容量をオーバーして稼働すると、原子炉補器冷却設備の冷却能力が低下してしまう。その結果、原子炉補器冷却設備から供給される冷却水が定格温度(35℃)を超えてしまい、その他の種々の機器の運転に支障をきたすことが懸念される。 The above-described reactor auxiliary cooling equipment has a role of recovering waste heat from various equipment other than the heat exchanger of the residual heat removal equipment. When this heat exchanger operates in excess of its heat removal capacity, the cooling capacity of the reactor auxiliary cooling equipment is reduced. As a result, the cooling water supplied from the reactor auxiliary cooling system will exceed the rated temperature (35° C.), which may hinder the operation of various other equipment.

本来であれば、これら熱交換器及び原子炉補器冷却設備の設計を見直して、除熱容量及び冷却能力を増加させることが望ましい。しかし、既設の原子炉プラントに対し、そのような改造をすることは、極めて困難である。 Originally, it would be desirable to review the design of these heat exchangers and reactor auxiliary cooling equipment to increase the heat removal capacity and cooling capacity. However, it is extremely difficult to make such modifications to existing nuclear reactor plants.

本発明の実施形態はこのような事情を考慮してなされたもので、現有設備を最大限活用し、重大事故の発生時は熱交換器の除熱容量をオーバーしない範囲で速やかに格納容器の冷却を行える残留熱除去技術を提供することを目的とする。 The embodiment of the present invention has been made in consideration of such circumstances, making maximum use of the existing equipment, and in the event of a serious accident, the containment vessel can be cooled quickly within a range that does not exceed the heat removal capacity of the heat exchanger. It is an object of the present invention to provide a residual heat removal technique capable of performing

実施形態に係る残留熱除去設備は、格納容器に設けられた圧力抑制室に保持されるプール水の水温を計測する温度計と、相互に並列接続する熱交換器及びバイパス路が設けられる配管回路と、前記圧力抑制室に保持されているプール水を前記配管回路に流出させるポンプと、前記配管回路に流出された後に前記格納容器内に放出される前記プール水の全流量値を計測する流量計と、を備える原子力プラントの残留熱除去設備において、計測した前記水温が閾値を超過する場合に、前記熱交換器に流出させる前記プール水の流量が、前記水温に応じて予め設定された上限値を超えないように調整される。 The residual heat removal equipment according to the embodiment includes a thermometer that measures the temperature of the pool water held in the pressure suppression chamber provided in the containment vessel, a heat exchanger connected in parallel with each other, and a piping circuit provided with a bypass. a pump for flowing out the pool water held in the pressure suppression chamber to the piping circuit; and a residual heat removal facility for a nuclear power plant, wherein the flow rate of the pool water flowing out to the heat exchanger is an upper limit set in advance according to the water temperature when the measured water temperature exceeds a threshold adjusted so that the value is not exceeded.

本発明の実施形態により、現有設備を最大限活用し、過酷事故の発生時は熱交換器の除熱容量をオーバーしない範囲で速やかに格納容器の冷却を行える残留熱除去技術が提供される。 The embodiment of the present invention provides residual heat removal technology that makes the most of existing facilities and can quickly cool the containment vessel within a range that does not exceed the heat removal capacity of the heat exchanger in the event of a severe accident.

本発明の第1実施形態に係る残留熱除去設備の回路図。1 is a circuit diagram of residual heat removal equipment according to a first embodiment of the present invention; FIG. 第1実施形態に係る残留熱除去設備の制御部のブロック図。FIG. 2 is a block diagram of the control unit of the residual heat removal equipment according to the first embodiment; 第1相関データ及び第2相関データを示すグラフ。Graph showing first correlation data and second correlation data. 第1実施形態に係る残留熱除去設備の動作説明図。FIG. 4 is an explanatory diagram of the operation of the residual heat removal equipment according to the first embodiment; 本発明の第2実施形態に係る残留熱除去設備の回路図。The circuit diagram of the residual heat removal equipment which concerns on 2nd Embodiment of this invention. 第2実施形態に係る残留熱除去設備の制御部のブロック図。The block diagram of the control part of the residual heat removal equipment which concerns on 2nd Embodiment. 第2実施形態及び第3実施形態に係る残留熱除去設備の動作説明図。FIG. 11 is an operation explanatory diagram of the residual heat removal equipment according to the second embodiment and the third embodiment; 本発明の第3実施形態に係る残留熱除去設備の回路図。The circuit diagram of the residual heat removal equipment which concerns on 3rd Embodiment of this invention. 第3実施形態に係る残留熱除去設備の制御部のブロック図。FIG. 11 is a block diagram of a control unit of residual heat removal equipment according to the third embodiment; 第3相関データを示すグラフ。Graph showing third correlation data. 各実施形態に係る残留熱除去設備の運転方法のフローチャート。4 is a flow chart of a method for operating residual heat removal equipment according to each embodiment.

(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。図1は、本発明の第1実施形態に係る残留熱除去設備10A(10)の回路図である。各実施形態の残留熱除去設備10は、格納容器25に設けられた圧力抑制室35に保持されるプール水36の水温Tpを計測する温度計37と、相互に並列接続する熱交換器15及びバイパス路16が設けられる配管回路20と、圧力抑制室35に保持されているプール水36を配管回路20(の上流側20b)に流出させるポンプ17と、配管回路20に流出された後に格納容器25内に放出されるプール水36の全流量値Faを計測する流量計13と、を備えている。
(First embodiment)
An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a circuit diagram of residual heat removal equipment 10A (10) according to the first embodiment of the present invention. The residual heat removal equipment 10 of each embodiment includes a thermometer 37 for measuring the water temperature Tp of the pool water 36 held in the pressure suppression chamber 35 provided in the containment vessel 25, and the heat exchangers 15 connected in parallel with each other. and a piping circuit 20 provided with a bypass passage 16, a pump 17 for flowing out the pool water 36 held in the pressure suppression chamber 35 to (the upstream side 20b of) the piping circuit 20, and a storage after flowing out to the piping circuit 20 and a flow meter 13 for measuring the total flow value F a of the pool water 36 discharged into the container 25 .

そして、各実施形態の残留熱除去設備10は、計測した水温Tpが閾値Thを超過する場合(Th<Tp;図4,図7参照)に、熱交換器15に流出させるプール水36の流量が、水温Tpに応じて予め設定された上限値を超えないように調整される。 Then, in the residual heat removal equipment 10 of each embodiment, when the measured water temperature T p exceeds the threshold value T h (T h <T p ; see FIGS. 4 and 7), the pool that flows out to the heat exchanger 15 The flow rate of the water 36 is adjusted so as not to exceed a preset upper limit according to the water temperature Tp .

なお各実施形態において、プール水36の水温Tpは、圧力抑制室35に保持されているプール水36の温度を計測したものを採用している。しかし、プール水36の水温Tpの計測位置は、これに限定されることはなく、圧力抑制室35から熱交換器15に至る配管の任意位置で計測されたものを採用することができる。 In each embodiment, the water temperature T p of the pool water 36 is the temperature of the pool water 36 held in the pressure suppression chamber 35 that is measured. However, the measurement position of the water temperature T p of the pool water 36 is not limited to this, and can be measured at any position on the pipe from the pressure suppression chamber 35 to the heat exchanger 15 .

なお残留熱除去設備10は、一系統の配管回路20に一台のポンプ17及び一台の熱交換器15が少なくとも接続されてループが形成されているが、このようなループが複数設けられている。また配管回路20に設けられている各々の弁は、白抜表示が対応する配管を開放状態にしており、黒抜表示が対応する配管を閉止状態にしている。 In the residual heat removal equipment 10, at least one pump 17 and one heat exchanger 15 are connected to one piping circuit 20 to form a loop. there is In each valve provided in the piping circuit 20, the piping corresponding to the white display is in the open state, and the piping corresponding to the black display is in the closed state.

図1に示すように各実施形態の残留熱除去設備10が適用される原子力プラント90は、核燃料の核分裂により発熱する炉心24及び炉水23を密閉収容する圧力容器28と、この圧力容器28及び制御棒駆動機構(図示略)等を密閉収容し放射性物質の放散を防止する格納容器25と、炉心24により炉水23を加熱して発生させた蒸気の熱エネルギーを回転運動エネルギーに変換するタービン(図示略)と、この回転運動エネルギーを電気エネルギーに変換する発電機(図示略)と、タービンで仕事をした蒸気を冷却し凝縮して復水にする復水器(図示略)と、を有している。 As shown in FIG. 1, a nuclear power plant 90 to which the residual heat removal equipment 10 of each embodiment is applied includes a pressure vessel 28 that hermetically accommodates a reactor core 24 and reactor water 23 that generate heat due to nuclear fission of nuclear fuel, the pressure vessel 28 and A containment vessel 25 that hermetically houses a control rod drive mechanism (not shown) and the like to prevent the release of radioactive materials, and a turbine that converts the thermal energy of steam generated by heating the reactor water 23 with the core 24 into rotational kinetic energy. (not shown), a generator (not shown) that converts this rotational kinetic energy into electrical energy, and a condenser (not shown) that cools and condenses the steam that has worked in the turbine to make condensate. have.

圧力抑制室35は、格納容器25の下部に設けられており、圧力容器28の内圧が上昇した時に蒸気を逃がしてその内圧の上昇を抑制する。また過酷事故が発生し、上述した図示略の機器と圧力容器28とを接続する配管が破断したときは、配管の破断口から放出された炉水23は、圧力抑制室35に溜まりプール水36となる。そして、このプール水36は、残留熱除去設備10により圧力容器28の内側又は外側に循環供給され、炉心24を冠水させたり蒸気を冷却・凝縮して圧力上昇を抑制したりする。 The pressure suppression chamber 35 is provided in the lower part of the containment vessel 25, and when the internal pressure of the pressure vessel 28 rises, steam is released to suppress the rise of the internal pressure. In addition, when a severe accident occurs and the pipe connecting the above-described equipment (not shown) and the pressure vessel 28 is broken, the reactor water 23 released from the broken pipe accumulates in the pressure suppression chamber 35 and pool water 36 . becomes. The pool water 36 is circulated inside or outside the pressure vessel 28 by the residual heat removal equipment 10 to submerge the core 24 or cool and condense the steam to suppress pressure rise.

配管回路20の分岐配管48は、圧力容器28から炉水23が格納容器25に流出する事故が発生した場合、炉心24が気相に露出し過熱することを防止するため、プール水36を圧力容器28の上部から注入するものである。この場合、調整弁18,19を全閉し、分岐配管45,47を閉止して、熱交換器15で除熱を行わずプール水36を圧力容器28に注入する。 The branch piping 48 of the piping circuit 20 is designed to keep the pool water 36 under pressure in order to prevent the core 24 from being exposed to the gas phase and overheating in the event of an accident in which the reactor water 23 flows out from the pressure vessel 28 into the containment vessel 25 . It is to be injected from the top of the container 28 . In this case, the regulating valves 18 and 19 are fully closed, the branch pipes 45 and 47 are closed, and the pool water 36 is injected into the pressure vessel 28 without heat removal by the heat exchanger 15 .

配管回路20の下流側20a先端は、ドライウェルスプレイスパージャ27が接続されている。圧力容器28から炉水23が格納容器25に流出する事故が発生した場合、この炉水23が蒸気となって格納容器25の内部の温度・圧力を上昇させる。このとき、調整弁18を開放しプール水36をドライウェルスプレイスパージャ27から放出して、ドライウェル空間部26の温度を下げて、蒸気を凝縮し圧力上昇を抑制する。またこのとき、分岐配管46の調整弁18を開放し、プール水36を圧力抑制室スプレイスパージャ44から放出する場合もある。 A dry well spray sparger 27 is connected to the downstream side 20 a tip of the piping circuit 20 . In the event of an accident in which the reactor water 23 flows out from the pressure vessel 28 into the containment vessel 25 , the reactor water 23 becomes steam and raises the temperature and pressure inside the containment vessel 25 . At this time, the regulating valve 18 is opened to discharge the pool water 36 from the drywell spray sparger 27, the temperature of the drywell space 26 is lowered, the steam is condensed, and the pressure rise is suppressed. Also, at this time, the regulating valve 18 of the branch pipe 46 may be opened to discharge the pool water 36 from the pressure suppression chamber spray sparger 44 .

配管回路20の分岐配管45は、圧力抑制室35に保持されるプール水36を冷却するときに使用するものである。通常運転時に圧力容器28の蒸気を圧力抑制室35に逃がして圧力上昇を抑制した場合、過熱したプール水36を冷却する。この場合、調整弁18,19を全閉し、分岐配管47,48を閉止し、さらにバイパス路16に接続する第2開閉弁12を全閉して、プール水36の全量を除熱してから注入する。 A branch pipe 45 of the pipe circuit 20 is used when cooling the pool water 36 held in the pressure suppression chamber 35 . When the steam in the pressure vessel 28 is released to the pressure suppression chamber 35 during normal operation to suppress the pressure rise, the overheated pool water 36 is cooled. In this case, the regulating valves 18 and 19 are fully closed, the branch pipes 47 and 48 are closed, and the second on-off valve 12 connected to the bypass passage 16 is fully closed to remove heat from the pool water 36. inject.

配管回路20の分岐配管47は、通常運転時の原子炉停止中の崩壊熱の除去に用いるものである。原子炉再循環系(図示略)から炉水23を取水し、熱交換器15で全量を除熱してから、圧力容器28の内部に戻す。この場合、調整弁18,19を全閉し、分岐配管45,48を閉止し、さらにバイパス路16に接続する第2開閉弁12を全閉して、プール水36の全量を除熱してから注入する。 A branch pipe 47 of the pipe circuit 20 is used for removing decay heat during normal operation and shutdown of the reactor. Reactor water 23 is taken from a reactor recirculation system (not shown), the heat is completely removed by the heat exchanger 15 , and then returned to the inside of the pressure vessel 28 . In this case, the regulating valves 18 and 19 are fully closed, the branch pipes 45 and 48 are closed, and the second on-off valve 12 connected to the bypass passage 16 is fully closed to remove heat from the pool water 36. inject.

原子炉補器冷却設備60は、残留熱除去設備10の熱交換器15を含む、原子力プラント90の種々の設備61(61a,61b,61c)から排熱を回収する。そして、これら熱交換器15や設備61は、冷却水63を循環させる循環路65を介して冷却設備66に接続されている。この冷却設備66は、海水等を冷媒68とし、熱交換器15や設備61(61a,61b,61c)から回収した排熱を海洋等に外部放出する。 The reactor auxiliary cooling facility 60 recovers waste heat from various facilities 61 (61a, 61b, 61c) of the nuclear power plant 90, including the heat exchanger 15 of the residual heat removal facility 10. These heat exchanger 15 and equipment 61 are connected to a cooling equipment 66 via a circulation path 65 through which cooling water 63 is circulated. The cooling equipment 66 uses seawater or the like as a coolant 68, and releases exhaust heat recovered from the heat exchanger 15 and the equipment 61 (61a, 61b, 61c) to the ocean or the like.

そして熱交換器15や設備61(61a,61b,61c)の各々に供給される冷却水63は、それぞれに接続され流量調節弁62(62a,62b,62c,62d)を調節することにより供給量が調節される。そして冷却設備66は、初期温度Twが定格温度(35℃)を超えないように、冷却水63を冷却制御する。また循環ポンプ67は、熱交換器15が必要とする流量Fdやその他の設備61が必要とする流量の冷却水63を供給するように、冷却水63を循環させる。 The cooling water 63 supplied to each of the heat exchanger 15 and the equipment 61 (61a, 61b, 61c) is connected to each of them, and the supply amount is adjusted by adjusting the flow control valve 62 (62a, 62b, 62c, 62d). is regulated. The cooling equipment 66 cools the cooling water 63 so that the initial temperature T w does not exceed the rated temperature (35° C.). Further, the circulation pump 67 circulates the cooling water 63 so as to supply the cooling water 63 at the flow rate F d required by the heat exchanger 15 and the flow rate required by the other equipment 61 .

図2は、第1実施形態に係る残留熱除去設備10Aの制御部50Aのブロック図であり、図3は第1相関データD1及び第2相関データD2を示すグラフである。このように制御部50Aは、バイパス路16(図1)を閉止してプール水36を流出させた場合に熱交換器15の除熱量が限界となる水温Tpと上限値Fとの第1相関データD1を保持する第1保持部51と、バイパス路16を開放してプール水36を流出させた場合に熱交換器15の除熱量が限界となる水温Tpと上限値Fとの第2相関データD2を保持する第2保持部52と、熱交換器15及びバイパス路16よりも下流側20a(又は上流側20b)の配管回路20に設けられ全流量値Faを調整する調整弁18を操作する操作部38と、熱交換器15に分流するプール水36を開放/閉止する第1開閉弁11及びバイパス路16に分流するプール水36を開放/閉止する第2開閉弁12の設定を切り替える切替部39と、を備えている。 FIG. 2 is a block diagram of the control section 50A of the residual heat removal equipment 10A according to the first embodiment, and FIG. 3 is a graph showing the first correlation data D1 and the second correlation data D2 . In this manner, the control unit 50A controls the water temperature T p at which the amount of heat removed by the heat exchanger 15 is the limit when the bypass 16 (FIG. 1) is closed and the pool water 36 is allowed to flow out, and the upper limit value F is the first A first holding unit 51 holding the correlation data D1 , a water temperature T p at which the amount of heat removed by the heat exchanger 15 is limited when the bypass 16 is opened and the pool water 36 is allowed to flow out, and an upper limit value F. A second holding unit 52 holding the second correlation data D2 , and the piping circuit 20 on the downstream side 20a (or upstream side 20b) of the heat exchanger 15 and the bypass 16 are provided to adjust the total flow rate value Fa. An operation unit 38 that operates the regulating valve 18, a first on-off valve 11 that opens/closes the pool water 36 diverted to the heat exchanger 15, and a second on-off valve that opens/closes the pool water 36 diverted to the bypass passage 16. and a switching unit 39 for switching between 12 settings.

さらに制御部50Aは、温度計37から水温Tpの計測データを受信する水温受信部57と、流量計13から全流量値Faの計測データを受信する全流量値受信部58と、を有している。そして判定部54において上述した操作部38及び切替部39における動作を判定している。 Further, the control unit 50A has a water temperature receiving unit 57 that receives measurement data of the water temperature T p from the thermometer 37 and a total flow value receiving unit 58 that receives measurement data of the total flow value Fa from the flow meter 13. are doing. The determination unit 54 determines the operation of the operation unit 38 and the switching unit 39 described above.

第1相関データD1は、第1開閉弁11を全開にし第2開閉弁12を全閉にして、熱交換器15に流入するプール水36の水温Tpに対し、除熱量が設計上の限界となるような全流量値Faを、熱交換器15の性能計算で求めている。第2相関データD2は、第1開閉弁11及び第2開閉弁12を全開にして、熱交換器15に流入するプール水36の水温Tpに対し、除熱量が設計上の限界となるような全流量値Faを、熱交換器15の性能計算で求めている。なお第1相関データD1は、図4に示すように、水温Tpの閾値Thとポンプ流量値の定格値Frとの交点座標を通るように設定される。 The first correlation data D 1 indicates that the amount of heat removed from the design is A total flow rate F a that is the limit is obtained by performance calculation of the heat exchanger 15 . In the second correlation data D2 , the amount of heat removed becomes the design limit with respect to the water temperature Tp of the pool water 36 flowing into the heat exchanger 15 with the first on-off valve 11 and the second on-off valve 12 fully opened. Such a total flow rate value F a is obtained by performance calculation of the heat exchanger 15 . As shown in FIG. 4, the first correlation data D 1 is set so as to pass through the coordinates of the intersection of the threshold value T h of the water temperature T p and the rated value F r of the pump flow rate value.

図4は第1実施形態に係る残留熱除去設備10Aの動作説明図である。第1実施形態の制御部50Aは、水温Tpが閾値Thを超過する場合(Th<Tp)、第1開閉弁11(図1)及び第2開閉弁12を共に開放に設定する。そして、計測した水温Tpを第2相関データD2に照合して得た上限値Fが全流量値Faとして計測されるように調整弁18を操作する。さらに、この全流量値Faがポンプ17の定格値Frに到達した時点P1の水温Tpを第1相関データD1に照合して得た上限値Fが全流量値Faとして計測されるように調整弁18を操作する。 FIG. 4 is an operation explanatory diagram of the residual heat removal equipment 10A according to the first embodiment. When the water temperature T p exceeds the threshold value T h (T h <T p ), the control unit 50A of the first embodiment sets both the first on-off valve 11 (FIG. 1) and the second on-off valve 12 to open. . Then, the regulating valve 18 is operated so that the upper limit value F obtained by comparing the measured water temperature T p with the second correlation data D 2 is measured as the total flow rate value Fa . Furthermore, the upper limit value F obtained by collating the water temperature T p at the time point P 1 when the total flow rate value Fa reaches the rated value F r of the pump 17 with the first correlation data D 1 is measured as the total flow rate value F a . Operate the regulating valve 18 so that

さらに、計測される水温Tp及び全流量値Faが第1相関データD1に乗った時点P2で第2開閉弁12の設定を開放から閉止に切り替える。そして、計測した水温Tpを第1相関データD1に照合して得た上限値Fが全流量値Faとして計測されるように調整弁18を操作する。そして、水温Tpが閾値Thを超過しなくなった時点P3(Tp<Th)で、全流量値Faがポンプ17の定格値Frに略一致するように調整弁18を操作する。 Furthermore, the setting of the second on-off valve 12 is switched from open to closed at the time point P2 when the measured water temperature Tp and the total flow rate value Fa are on the first correlation data D1 . Then, the regulating valve 18 is operated so that the upper limit value F obtained by comparing the measured water temperature T p with the first correlation data D 1 is measured as the total flow rate value Fa . Then, at the time point P 3 (T p <T h ) when the water temperature T p no longer exceeds the threshold value T h , the regulating valve 18 is operated so that the total flow rate F a substantially coincides with the rated value F r of the pump 17 . do.

なお第1実施形態の上述の説明において、全流量値Faの調整に調整弁18のみを操作する運用例を示したが、分岐配管46の調整弁19も併せて操作する運用もある。また調整弁18,19を閉止してスプレーを行わず、分岐配管45の調整弁を調節して熱交換器15及び圧力抑制室35のみでプール水36を循環させる場合もある。 In the above description of the first embodiment, an operation example in which only the regulating valve 18 is operated to adjust the total flow rate value Fa was shown, but there is also an operation in which the regulating valve 19 of the branch pipe 46 is also operated. Alternatively, the pool water 36 may be circulated only in the heat exchanger 15 and the pressure suppression chamber 35 by adjusting the regulating valve of the branch pipe 45 without spraying by closing the regulating valves 18 and 19 .

また第1実施形態の上述の説明において、水温Tpが閾値Thを超過する場合に、第1開閉弁11及び第2開閉弁12を共に開放に設定する運用例を示した。しかし第1実施形態は、第1開閉弁11を開放に常時設定し、第2開閉弁12を閉止に常時設定する運用も考えられる。この場合、計測した水温Tpを第1相関データD1に照合して得た上限値Fが全流量値Faとして計測されるように調整弁18を操作する。そして、水温Tpが閾値Thを超過しなくなった時点P3(Tp<Th)で、全流量値Faがポンプ17の定格値Frに略一致するように調整弁18を操作する。 Further, in the above description of the first embodiment, an operation example is shown in which both the first on-off valve 11 and the second on-off valve 12 are set to open when the water temperature T p exceeds the threshold value T h . However, in the first embodiment, an operation in which the first on-off valve 11 is always set to be open and the second on-off valve 12 is always set to be closed is also conceivable. In this case, the regulating valve 18 is operated so that the upper limit value F obtained by comparing the measured water temperature T p with the first correlation data D 1 is measured as the total flow rate value Fa . Then, at the time point P 3 (T p <T h ) when the water temperature T p no longer exceeds the threshold value T h , the regulating valve 18 is operated so that the total flow rate F a substantially coincides with the rated value F r of the pump 17 . do.

第1実施形態によれば、第1開閉弁11及び第2開閉弁12を「全開」「全閉」のいずれかに切り替えることで、現有の残留熱除去設備10を改造することなく、過酷事故の発生時に、熱交換器15の除熱容量がオーバーすることを避けながら、格納容器25を速やかに冷却することができる。 According to the first embodiment, by switching the first on-off valve 11 and the second on-off valve 12 to either "fully open" or "fully closed", a severe accident can be prevented without modifying the existing residual heat removal equipment 10. is generated, the containment vessel 25 can be quickly cooled while avoiding the heat removal capacity of the heat exchanger 15 from exceeding.

なお、本実施形態では、熱交換器15おける除熱量が設計上の限界になるように、この熱交換器15に流出させるプール水36の流量を、上限値に調整するものとして説明したが、熱熱交換器の除熱量の観点では、この上限値よりも低ければ一致してなくともよい。プール水36を冷却する観点から、熱交換器15おける除熱量が設計上の限界に略一致することが望ましいものである。 In this embodiment, the flow rate of the pool water 36 flowing out of the heat exchanger 15 is adjusted to the upper limit so that the amount of heat removed in the heat exchanger 15 reaches the design limit. From the viewpoint of the amount of heat removed by the heat exchanger, if it is lower than this upper limit, it does not have to match. From the viewpoint of cooling the pool water 36, it is desirable that the amount of heat removed in the heat exchanger 15 approximately matches the design limit.

(第2実施形態)
次に図5を参照して本発明における第2実施形態について説明する。図5は本発明の第2実施形態に係る残留熱除去設備10Bの回路図である。図6は第2実施形態に係る残留熱除去設備10Bの制御部50Bのブロック図である。なお、図5において図1と共通の構成又は機能もしくは図6において図2と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a circuit diagram of residual heat removal equipment 10B according to the second embodiment of the present invention. FIG. 6 is a block diagram of the control section 50B of the residual heat removal equipment 10B according to the second embodiment. In FIG. 5, portions having the same configuration or function as in FIG. 1 or in FIG. 6 having the same configuration or function as in FIG.

このように第2実施形態の制御部50Bは、第1実施形態と同様に第1相関データD1を保持する第1保持部51と、熱交換器15に分流するプール水36の分流量値Fbを調整する第1調整弁21を操作する第1操作部31と、バイパス路16に分流するプール水36の流量を調整する第2調整弁22を操作する第2操作部32と、を備えている。 As described above, the control unit 50B of the second embodiment has the first holding unit 51 holding the first correlation data D 1 and the split flow rate value of the pool water 36 split to the heat exchanger 15, as in the first embodiment. A first operation unit 31 that operates the first adjustment valve 21 that adjusts Fb , and a second operation unit 32 that operates the second adjustment valve 22 that adjusts the flow rate of the pool water 36 diverted to the bypass passage 16. I have.

さらに制御部50Bは、上述した水温Tpの受信部57及び全流量値Faの受信部58に加え、流量計29から分流量値Fbの計測データを受信する分流量値受信部59を有している。そして判定部54において上述した第1操作部31及び第2操作部32の動作を判定している。 Further, the control unit 50B includes, in addition to the water temperature Tp receiving unit 57 and the total flow rate value Fa receiving unit 58 described above, a divided flow rate value receiving unit 59 that receives measurement data of the divided flow rate value Fb from the flow meter 29. have. The determination unit 54 determines the operations of the first operation unit 31 and the second operation unit 32 described above.

図7は第2実施形態に係る残留熱除去設備10Bの動作説明図である。第2実施形態の制御部50Bは、水温Tpが閾値Thを超過する場合(Th<Tp)、計測した水温Tpを第1相関データD1に照合して得た上限値Fが分流量値Fbとして計測されるように第1調整弁21を操作する。そして全流量値Faが定格値Frとして計測されるように第2調整弁22を操作する。そして水温Tpが閾値Thを超過しなくなった時点P4(Tp<Th)で、第1調整弁21を全開に第2調整弁22を全閉に操作し、分流量値Fbを定格値Frに略一致させる。 FIG. 7 is an operation explanatory diagram of the residual heat removal equipment 10B according to the second embodiment. When the water temperature T p exceeds the threshold value T h (T h <T p ) , the control unit 50B of the second embodiment controls the upper limit value F is measured as the divided flow rate value Fb . Then, the second control valve 22 is operated so that the total flow rate value Fa is measured as the rated value Fr. Then, at the time point P 4 (T p <T h ) when the water temperature T p no longer exceeds the threshold value T h , the first control valve 21 is fully opened and the second control valve 22 is fully closed, and the divided flow rate value F b is approximately equal to the rated value Fr.

第2実施形態によれば、プール水36の水温Tpにかかわらず、全流量値Faを定格値Frに一致させて、配管回路20にプール水36を循環させることができる。これにより過酷事故の発生時に、熱交換器15の除熱容量がオーバーすることを避けながら、格納容器25を速やかに冷却することができる。 According to the second embodiment, regardless of the water temperature T p of the pool water 36 , the pool water 36 can be circulated through the piping circuit 20 by matching the total flow rate value F a with the rated value F r . As a result, when a severe accident occurs, the containment vessel 25 can be quickly cooled while avoiding an excess of the heat removal capacity of the heat exchanger 15 .

(第3実施形態)
次に図8を参照して本発明における第3実施形態について説明する。図8は本発明の第3実施形態に係る残留熱除去設備10Cの回路図である。図9は、第3実施形態に係る残留熱除去設備10Cの制御部50Cのブロック図である。なお、図8において図1又は図5と共通の構成又は機能もしくは図9において図2又は図6と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 8 is a circuit diagram of residual heat removal equipment 10C according to the third embodiment of the present invention. FIG. 9 is a block diagram of the controller 50C of the residual heat removal equipment 10C according to the third embodiment. In FIG. 8, parts having the same configuration or function as those in FIG. 1 or 5 or in FIG. 9 having the same configuration or function as those in FIG.

このように第3実施形態の残留熱除去設備10Cは、第1調整弁21の第1弁開度A1を検出する第1開度計41と、第2調整弁22の第2弁開度A2を検出する第2開度計42と、をさらに備えている。そして、制御部50Cは、第1実施形態又は第2実施形態と同様に第1相関データを保持する第1保持部51と、熱交換器15に分流するプール水36の流量を調整する第1調整弁21を操作する第1操作部31と、バイパス路16に分流するプール水36の流量を調整する第2調整弁22を操作する第2操作部32と、全流量値Faがポンプ17の定格値Frとして計測される第1弁開度A1と第2弁開度A2との第3相関データD3を保持する第3保持部53と、を備えている。 Thus, the residual heat removal equipment 10C of the third embodiment includes the first opening meter 41 for detecting the first opening degree A1 of the first regulating valve 21, the second opening degree of the second regulating valve 22 and a second opening meter 42 for detecting A 2 . Then, the control unit 50C adjusts the flow rate of the pool water 36 branched to the first holding unit 51 holding the first correlation data and the heat exchanger 15 in the same manner as in the first embodiment or the second embodiment. A first operating unit 31 that operates the regulating valve 21, a second operating unit 32 that operates the second regulating valve 22 that adjusts the flow rate of the pool water 36 diverted to the bypass passage 16, and a total flow rate value F a of the pump 17 and a third holding unit 53 that holds third correlation data D3 between the first valve opening degree A1 and the second valve opening degree A2 measured as the rated value F r of .

さらに制御部50Cは、上述した水温Tpの受信部57及び全流量値Faの受信部58に加え、第1開度計41及び第2開度計42から各々の第1弁開度A1及び第2弁開度A2の検出データを受信する弁開度情報受信部56を有している。そして判定部54において上述した第1操作部31及び第2操作部32における動作を判定している。 Further, the control unit 50C, in addition to the water temperature T p receiving unit 57 and the total flow rate value F a receiving unit 58, receives the first valve opening A from the first opening meter 41 and the second opening meter 42. 1 and the second valve opening A2 . The determination unit 54 determines the operations of the first operation unit 31 and the second operation unit 32 described above.

図10は第3相関データを示すグラフである。図7及び図10を参照して第3実施形態に係る残留熱除去設備10Cの動作を説明する。第3実施形態の制御部50Cは、水温Tpが閾値Thを超過する場合(Th<Tp)、計測した水温Tpを第1相関データD1に照合して対応する上限値Fを取得する。そして、この取得した上限値Fを第3相関データD3に照合し対応する第1弁開度A1及び前記第2弁開度A2となるように第1調整弁21及び第2調整弁22の各々を操作する。そして、水温Tpが閾値Thを超過しなくなった時点P4(Tp<Th)で、第1弁開度A1が100%及び第2弁開度A2が0%となるように第1調整弁21及び第2調整弁22の各々を操作する。 FIG. 10 is a graph showing third correlation data. The operation of the residual heat removal equipment 10C according to the third embodiment will be described with reference to FIGS. 7 and 10. FIG. When the water temperature T p exceeds the threshold value T h (T h <T p ), the control unit 50C of the third embodiment collates the measured water temperature T p with the first correlation data D 1 and determines the corresponding upper limit value F to get Then, the acquired upper limit value F is collated with the third correlation data D3 , and the first control valve 21 and the second control valve are adjusted so that the corresponding first valve opening degree A1 and second valve opening degree A2 are obtained. 22 each. Then, at the time point P 4 (T p <T h ) when the water temperature T p does not exceed the threshold value T h , the first valve opening degree A 1 becomes 100% and the second valve opening degree A 2 becomes 0%. , each of the first control valve 21 and the second control valve 22 is operated.

第3実施形態によれば、配管回路20を改造することなく、プール水36の水温Tpにかかわらず、全流量値Faを定格値Frに一致させて、プール水36を配管回路20に循環させることができる。これにより過酷事故の発生時に、熱交換器15の除熱容量がオーバーすることを避けながら、格納容器25を速やかに冷却することができる。 According to the third embodiment, without modifying the piping circuit 20, regardless of the water temperature Tp of the pool water 36, the total flow rate value Fa is made to match the rated value Fr , and the pool water 36 is supplied to the piping circuit 20 can be circulated to As a result, when a severe accident occurs, the containment vessel 25 can be quickly cooled while avoiding an excess of the heat removal capacity of the heat exchanger 15 .

なお、各実施形態の説明において、第1開閉弁11,第2開閉弁12,第1調整弁21、第2調整弁22、調整弁18,19は、制御部50(50A,50B,50C)から自動制御するものを例示した。しかし、これらの弁は、運転員による遠隔手動操作される場合もある。 In the description of each embodiment, the first on-off valve 11, the second on-off valve 12, the first adjustment valve 21, the second adjustment valve 22, and the adjustment valves 18 and 19 are controlled by the control unit 50 (50A, 50B, 50C). An example of automatic control from However, these valves may also be remotely manually operated by an operator.

図11のフローチャートに基づいて各実施形態に係る残留熱除去設備10の運転方法を説明する(適宜、図1参照)。まず、判定を実施するための閾値Thを取得する(S11)。圧力抑制室35に保持されるプール水36の水温Tpを温度計37で計測する(S12)。 A method of operating the residual heat removal equipment 10 according to each embodiment will be described based on the flowchart of FIG. 11 (see FIG. 1 as appropriate). First, a threshold value T h for performing determination is acquired (S11). The water temperature T p of the pool water 36 held in the pressure suppression chamber 35 is measured by the thermometer 37 (S12).

そして、計測した水温Tpが閾値Thを超過する場合(S13 Yes)、バイパス路16を開放設定にして(S14)プール水36を分流させ、さらに熱交換器15が設けられる配管回路20を開放設定して(S15)プール水36を分流させ除熱する。 When the measured water temperature T p exceeds the threshold value T h (S13 Yes), the bypass 16 is set to be open (S14) to divert the pool water 36, and the piping circuit 20 provided with the heat exchanger 15 is opened. The opening is set (S15) to divert the pool water 36 to remove heat.

この水温Tpが閾値Thを超過する場合(S13 Yes)の具体的な運転動作は、各実施形態において相違し、次の通りである。第1実施形態では、第1相関データD1及び第2相関データD2を参照し、第1開閉弁11及び第2開閉弁12の「全開」「全閉」設定の切替と調整弁18の操作とにより実施する。第2実施形態では、熱交換器15に分流するプール水36の分流量値Fbが第1相関データD1に基づくように、かつ全流量値Faが定格値Frに略一致するように第1調整弁21及び第2調整弁22を調整する。第3実施形態では、プール水36の水温Tpに対応する第1調整弁21及び第2調整弁22の開度を第3相関データD3に基づいて調整し、全流量値Faを定格値Frに略一致させる。 When the water temperature T p exceeds the threshold value T h (Yes in S13), the specific driving operation is different in each embodiment and is as follows. In the first embodiment, the first correlation data D 1 and the second correlation data D 2 are referred to, and switching between the “fully open” and “fully closed” settings of the first on-off valve 11 and the second on-off valve 12 and the setting of the adjustment valve 18 are performed. operation. In the second embodiment, the split flow rate value Fb of the pool water 36 diverted to the heat exchanger 15 is based on the first correlation data D1 , and the total flow rate value Fa substantially matches the rated value Fr. , the first adjusting valve 21 and the second adjusting valve 22 are adjusted. In the third embodiment, the opening degrees of the first regulating valve 21 and the second regulating valve 22 corresponding to the water temperature Tp of the pool water 36 are adjusted based on the third correlation data D3 , and the total flow rate Fa is set to the rated value. substantially match the value F r .

さらにプール水36の水温Tpの計測を続け(S16 No,S12)、計測した水温Tpが閾値Thを超過しなくなったところで(S13 No)、バイパス路16を閉止設定にする(S17)。そして、熱交換器15が設けられる配管回路20を開放設定にし(S15)、プール水36の全量を除熱する。そして、格納容器25が十分に冷却したところで、残留熱除去設備10の運転モードを終了させる(S16 Yes、END)。 Further, the measurement of the water temperature Tp of the pool water 36 is continued (S16 No, S12), and when the measured water temperature Tp no longer exceeds the threshold Th (S13 No), the bypass 16 is closed (S17). Then, the piping circuit 20 provided with the heat exchanger 15 is set to be open (S15), and the heat of the entire amount of the pool water 36 is removed. Then, when the containment vessel 25 is sufficiently cooled, the operation mode of the residual heat removal equipment 10 is terminated (S16 Yes, END).

以上述べた少なくともひとつの実施形態の残留熱除去設備によれば、プール水の水温に従って熱交換器のバイパス路を開放/閉止することにより、現有設備を最大限活用し重大事故の発生時は熱交換器の除熱容量をオーバーしない範囲で速やかに格納容器の冷却を行うことが可能となる。 According to the residual heat removal equipment of at least one embodiment described above, by opening/closing the bypass passage of the heat exchanger according to the water temperature of the pool water, the existing equipment can be utilized to the fullest extent and heat can be removed in the event of a serious accident. It is possible to quickly cool the containment vessel within a range that does not exceed the heat removal capacity of the exchanger.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.

例えば、オペレータが、水温と流量の計測データを読み取り、予め作成された流量の上限値と水温の関係のデータと照合して、弁の操作を行ってもよい。流量の上限と水温の関係のデータを用いて弁を操作することにより、オペレータが確実に熱交換器15におけるプール水36の除熱量が設計上限値を超えないように制御することができる。また、上限値Fを、熱交換器15の除熱量が設計上の限界と一致するように設定するものとして説明したが、これは、除熱量の設計上の限界から安全性のマージンを考慮した分だけ低い除熱量に対応して上限値Fを設定した場合をも含む。 For example, the operator may read the measurement data of the water temperature and the flow rate, compare it with the data of the relationship between the upper limit value of the flow rate and the water temperature created in advance, and operate the valve. By operating the valve using data on the relationship between the upper limit of the flow rate and the water temperature, the operator can reliably control the amount of heat removed from the pool water 36 in the heat exchanger 15 so as not to exceed the design upper limit. Also, the upper limit value F is set so that the amount of heat removed by the heat exchanger 15 matches the design limit, but this is based on the design limit of the heat removal amount and the safety margin. It also includes the case where the upper limit value F is set corresponding to the amount of heat removed that is lower by the amount.

10(10A,10B,10C)…残留熱除去設備、11…第1開閉弁、12…第2開閉弁、13…流量計、14…流量計、15…熱交換器、16…バイパス路、17…ポンプ、18…調整弁、20…配管回路、20a…上流側の配管回路、20b…下流側の配管回路、21…第1調整弁、22…第2調整弁、23…炉水、24…炉心、25…格納容器、26…ドライウェル空間部、27…ドライウェルスプレイスパージャ、28…圧力容器、31…第1操作部、32…第2操作部、35…圧力抑制室、36…プール水、37…温度計、38…操作部、39…切替部、41…第1開度計、42…第2開度計、44…圧力抑制室スプレイスパージャ、45,46,47,48…分岐配管、50(50A,50B,50C)…制御部、51…第1保持部、52…第2保持部、53…第3保持部、54…判定部、56…弁開度情報受信部、57…水温受信部、58…全流量値受信部、59…分流量値受信部、60…原子炉補器冷却設備、61(61a,61b,61c)…その他の設備、62…流量調節弁、63…冷却水、65…循環路、66…冷却設備、
67…循環ポンプ、68…冷媒、90…原子力プラント、Tp…水温、Th…閾値、Fa…全流量値、Fb…分流量値、Fr…定格値、D1…第1相関データ、D2…第2相関データ、P(P1,P2,P3,P4)…時点。
DESCRIPTION OF SYMBOLS 10 (10A, 10B, 10C)... Residual heat removal equipment, 11... 1st opening-and-closing valve, 12... 2nd opening-and-closing valve, 13... Flow meter, 14... Flow meter, 15... Heat exchanger, 16... Bypass path, 17 Pump 18 Regulating valve 20 Piping circuit 20a Piping circuit on the upstream side 20b Piping circuit on the downstream side 21 First regulating valve 22 Second regulating valve 23 Reactor water 24 Core 25 Containment vessel 26 Dry well space 27 Dry well spray sparger 28 Pressure vessel 31 First operation unit 32 Second operation unit 35 Pressure suppression chamber 36 Pool water , 37... thermometer, 38... operating unit, 39... switching unit, 41... first opening meter, 42... second opening meter, 44... pressure suppression chamber spray sparger, 45, 46, 47, 48... branch pipe , 50 (50A, 50B, 50C)...control section, 51...first holding section, 52...second holding section, 53...third holding section, 54...judgment section, 56...valve opening degree information receiving section, 57... Water temperature receiving unit 58 Total flow value receiving unit 59 Partial flow value receiving unit 60 Reactor auxiliary component cooling equipment 61 (61a, 61b, 61c) Other equipment 62 Flow control valve 63 cooling water, 65... circulation path, 66... cooling equipment,
67 Circulation pump 68 Refrigerant 90 Nuclear power plant T p Water temperature T h Threshold value F a Total flow value F b Partial flow value F r Rated value D 1 First correlation Data, D 2 . . . second correlation data, P(P 1 , P 2 , P 3 , P 4 ) .

Claims (6)

格納容器に設けられた圧力抑制室に保持されるプール水の水温を計測する温度計と、
相互に並列接続する熱交換器及びバイパス路が設けられる配管回路と、
前記圧力抑制室に保持されているプール水を前記配管回路に流出させるポンプと、
前記配管回路に流出された後に前記格納容器内に放出される前記プール水の全流量値を計測する流量計と、を備え
計測した前記水温が閾値を超過する場合に、前記熱交換器に流出させる前記プール水の流量が、前記水温に応じて予め設定された上限値を超えないように調整される残留熱除去設備であって、
前記バイパス路を閉止して前記プール水を流出させた場合、前記熱交換器の除熱量が限界となる前記水温と前記上限値との第1相関データを保持する第1保持部と、
前記バイパス路を開放して前記プール水を流出させた場合、前記熱交換器の除熱量が限界となる前記水温と前記上限値との第2相関データを保持する第2保持部と、
前記熱交換器及び前記バイパス路よりも上流側又は下流側の前記配管回路に設けられ前記全流量値を調整する調整弁を操作する操作部と、
前記熱交換器に分流する前記プール水を開放/閉止する第1開閉弁及び前記バイパス路に分流する前記プール水を開放/閉止する第2開閉弁の設定を切り替える切替部と、を備え、
前記水温が前記閾値を超過する場合、前記第1開閉弁及び前記第2開閉弁を共に開放に設定し、
計測した前記水温を前記第2相関データに照合して得た前記上限値が前記全流量値として計測されるように前記調整弁を操作し、
前記全流量値が前記ポンプの定格値に到達した時点の前記水温を前記第1相関データに照合して得た前記上限値が前記全流量値として計測されるように前記調整弁を操作し、
計測される前記水温及び前記全流量値が前記第1相関データに乗った時点で前記第2開閉弁の設定を開放から閉止に切り替え、
計測した前記水温を前記第1相関データに照合して得た前記上限値が前記全流量値として計測されるように前記調整弁を操作し、
前記水温が前記閾値を超過しなくなった時点で、前記全流量値が前記ポンプの定格値に略一致するように前記調整弁を操作する、残留熱除去設備。
a thermometer for measuring the temperature of the pool water held in the pressure suppression chamber provided in the containment vessel;
A piping circuit provided with a heat exchanger and a bypass channel that are connected in parallel with each other;
a pump that causes the pool water held in the pressure suppression chamber to flow out to the piping circuit;
a flow meter for measuring the total flow rate of the pool water discharged into the containment vessel after being discharged into the piping circuit ;
The residual heat removal equipment is adjusted so that the flow rate of the pool water flowing out to the heat exchanger does not exceed an upper limit set in advance according to the water temperature when the measured water temperature exceeds a threshold value. There is
a first holding unit that holds first correlation data between the water temperature and the upper limit value at which the amount of heat removed by the heat exchanger is limited when the pool water is allowed to flow out by closing the bypass;
a second holding unit that holds second correlation data between the water temperature and the upper limit value at which the amount of heat removed by the heat exchanger is limited when the pool water is allowed to flow out by opening the bypass;
an operation unit that operates an adjustment valve that is provided in the piping circuit on the upstream side or downstream side of the heat exchanger and the bypass passage and that adjusts the total flow rate;
a switching unit that switches settings of a first on-off valve that opens/closes the pool water that is diverted to the heat exchanger and a second on-off valve that opens/closes the pool water that is diverted to the bypass path,
when the water temperature exceeds the threshold, both the first on-off valve and the second on-off valve are set to open;
operating the regulating valve so that the upper limit value obtained by comparing the measured water temperature with the second correlation data is measured as the total flow rate value;
operating the regulating valve so that the upper limit value obtained by comparing the water temperature when the total flow rate reaches the rated value of the pump with the first correlation data is measured as the total flow rate;
Switching the setting of the second on-off valve from open to closed at the time when the measured water temperature and the total flow rate value are on the first correlation data,
operating the regulating valve so that the upper limit value obtained by comparing the measured water temperature with the first correlation data is measured as the total flow rate value;
A residual heat removal facility, wherein once the water temperature no longer exceeds the threshold, the regulating valve is operated such that the total flow value substantially corresponds to the rated value of the pump.
格納容器に設けられた圧力抑制室に保持されるプール水の水温を計測する温度計と、
相互に並列接続する熱交換器及びバイパス路が設けられる配管回路と、
前記圧力抑制室に保持されているプール水を前記配管回路に流出させるポンプと、
前記配管回路に流出された後に前記格納容器内に放出される前記プール水の全流量値を計測する流量計と、を備え
計測した前記水温が閾値を超過する場合に、前記熱交換器に流出させる前記プール水の流量が、前記水温に応じて予め設定された上限値を超えないように調整される残留熱除去設備であって、
前記バイパス路を閉止して前記プール水を流出させた場合、前記熱交換器の除熱量が限界となる前記水温と前記上限値との第1相関データを保持する第1保持部と、
前記熱交換器に分流する前記プール水の分流量値を調整する第1調整弁を操作する第1操作部と、
前記バイパス路に分流する前記プール水の流量を調整する第2調整弁を操作する第2操作部と、を備え、
前記水温が前記閾値を超過する場合、計測した前記水温を前記第1相関データに照合して得た前記上限値が前記分流量値として計測されるように前記第1調整弁を操作し、
前記全流量値が前記ポンプの定格値として計測されるように前記第2調整弁を操作し、
前記水温が前記閾値を超過しなくなった時点で、前記第1調整弁を全開に前記第2調整弁を全閉に操作し、前記分流量値を前記定格値に略一致させる、残留熱除去設備。
a thermometer for measuring the temperature of the pool water held in the pressure suppression chamber provided in the containment vessel;
A piping circuit provided with a heat exchanger and a bypass channel that are connected in parallel with each other;
a pump that causes the pool water held in the pressure suppression chamber to flow out to the piping circuit;
a flow meter for measuring the total flow rate of the pool water discharged into the containment vessel after being discharged into the piping circuit ;
The residual heat removal equipment is adjusted so that the flow rate of the pool water flowing out to the heat exchanger does not exceed an upper limit set in advance according to the water temperature when the measured water temperature exceeds a threshold value. There is
a first holding unit that holds first correlation data between the water temperature and the upper limit value at which the amount of heat removed by the heat exchanger is limited when the pool water is allowed to flow out by closing the bypass;
a first operation unit that operates a first adjustment valve that adjusts a split flow rate value of the pool water that is split into the heat exchanger;
a second operation unit that operates a second adjustment valve that adjusts the flow rate of the pool water diverted to the bypass,
when the water temperature exceeds the threshold, operating the first regulating valve so that the upper limit value obtained by comparing the measured water temperature with the first correlation data is measured as the divided flow rate value;
operating the second control valve so that the total flow rate value is measured as the rated value of the pump;
Residual heat removal equipment, wherein when the water temperature no longer exceeds the threshold value, the first control valve is fully opened and the second control valve is fully closed so that the diversion flow rate value substantially matches the rated value. .
格納容器に設けられた圧力抑制室に保持されるプール水の水温を計測する温度計と、
相互に並列接続する熱交換器及びバイパス路が設けられる配管回路と、
前記圧力抑制室に保持されているプール水を前記配管回路に流出させるポンプと、
前記配管回路に流出された後に前記格納容器内に放出される前記プール水の全流量値を計測する流量計と、を備え
計測した前記水温が閾値を超過する場合に、前記熱交換器に流出させる前記プール水の流量が、前記水温に応じて予め設定された上限値を超えないように調整される残留熱除去設備であって、
前記バイパス路を閉止して前記プール水を流出させた場合、前記熱交換器の除熱量が限界となる前記水温と前記上限値との第1相関データを保持する第1保持部と、
前記熱交換器に分流する前記プール水の流量を調整する第1調整弁を操作する第1操作部と、
前記バイパス路に分流する前記プール水の流量を調整する第2調整弁を操作する第2操作部と、
前記第1調整弁の第1弁開度を検出する第1開度計と、
前記第2調整弁の第2弁開度を検出する第2開度計と、
前記全流量値が前記ポンプの定格値として計測される前記第1弁開度と前記第2弁開度との第3相関データを保持する第3保持部と、を備え、
前記水温が前記閾値を超過する場合、計測した前記水温を前記第1相関データに照合して対応する前記上限値を取得し、
この取得した前記上限値を第3相関データに照合し対応する前記第1弁開度及び前記第2弁開度となるように前記第1調整弁及び前記第2調整弁の各々を操作し、
前記水温が前記閾値を超過しなくなった時点で、前記第1弁開度が100%及び前記第2弁開度が0%となるように前記第1調整弁及び前記第2調整弁の各々を操作する、残留熱除去設備。
a thermometer for measuring the temperature of the pool water held in the pressure suppression chamber provided in the containment vessel;
A piping circuit provided with a heat exchanger and a bypass channel that are connected in parallel with each other;
a pump that causes the pool water held in the pressure suppression chamber to flow out to the piping circuit;
a flow meter for measuring the total flow rate of the pool water discharged into the containment vessel after being discharged into the piping circuit ;
The residual heat removal equipment is adjusted so that the flow rate of the pool water flowing out to the heat exchanger does not exceed an upper limit set in advance according to the water temperature when the measured water temperature exceeds a threshold value. There is
a first holding unit that holds first correlation data between the water temperature and the upper limit value at which the amount of heat removed by the heat exchanger is limited when the pool water is allowed to flow out by closing the bypass;
a first operation unit that operates a first adjustment valve that adjusts the flow rate of the pool water diverted to the heat exchanger;
a second operation unit that operates a second adjustment valve that adjusts the flow rate of the pool water diverted to the bypass;
a first opening meter for detecting a first valve opening of the first regulating valve;
a second opening meter for detecting the opening of the second valve of the second control valve;
a third holding unit holding third correlation data between the first valve opening degree and the second valve opening degree for which the total flow rate value is measured as the rated value of the pump;
if the water temperature exceeds the threshold, comparing the measured water temperature with the first correlation data to obtain the corresponding upper limit;
operating each of the first control valve and the second control valve so that the acquired upper limit value is collated with the third correlation data and the corresponding first valve opening degree and the second valve opening degree are obtained;
When the water temperature no longer exceeds the threshold value, each of the first control valve and the second control valve is adjusted so that the degree of opening of the first valve is 100% and the degree of opening of the second valve is 0%. Residual heat removal equipment to operate.
格納容器に設けられた圧力抑制室に保持されるプール水の水温を計測するステップと、
相互に並列接続する熱交換器及びバイパス路が設けられる配管回路に、前記圧力抑制室に保持されているプール水をポンプで流出させるステップと、
前記配管回路に流出された後に前記格納容器内に放出される前記プール水の全流量値を計測するステップと、
計測した前記水温が閾値を超過する場合に、前記熱交換器に流出される前記プール水の流量が、前記水温に応じて予め設定された上限値を超えないように調整するステップと、を含む残留熱除去方法において、
前記バイパス路を閉止して前記プール水を流出させた場合、前記熱交換器の除熱量が限界となる前記水温と前記上限値との第1相関データを準備するステップと、
前記バイパス路を開放して前記プール水を流出させた場合、前記熱交換器の除熱量が限界となる前記水温と前記上限値との第2相関データを準備するステップと、
前記水温が前記閾値を超過する場合、前記熱交換器に分流する前記プール水を開放/閉止する第1開閉弁及び前記バイパス路に分流する前記プール水を開放/閉止する第2開閉弁を共に開放に設定するステップと、
計測した前記水温を前記第2相関データに照合して得た前記上限値が前記全流量値として計測されるように、前記熱交換器及び前記バイパス路よりも上流側又は下流側の前記配管回路に設けられ前記全流量値を調整する調整弁を操作するステップと、
前記全流量値が前記ポンプの定格値に到達した時点の前記水温を前記第1相関データに照合して得た前記上限値が前記全流量値として計測されるように前記調整弁を操作するステップと、
計測される前記水温及び前記全流量値が前記第1相関データに乗った時点で前記第2開閉弁の設定を開放から閉止に切り替えるステップと、
計測した前記水温を前記第1相関データに照合して得た前記上限値が前記全流量値として計測されるように前記調整弁を操作するステップと、
前記水温が前記閾値を超過しなくなった時点で、前記全流量値が前記ポンプの定格値に略一致するように前記調整弁を操作するステップと、を含む残留熱除去方法。
measuring the temperature of pool water held in a pressure suppression chamber provided in the containment vessel;
a step of pumping out the pool water held in the pressure suppression chamber into a piping circuit provided with a heat exchanger and a bypass passage that are connected in parallel with each other;
measuring the total flow value of the pool water discharged into the containment vessel after being discharged into the piping circuit;
adjusting the flow rate of the pool water flowing out to the heat exchanger not to exceed an upper limit value set in advance according to the water temperature when the measured water temperature exceeds a threshold value. In the residual heat removal method,
a step of preparing first correlation data between the water temperature and the upper limit at which the amount of heat removed by the heat exchanger is limited when the pool water is allowed to flow out by closing the bypass;
a step of preparing second correlation data between the water temperature and the upper limit at which the amount of heat removed by the heat exchanger is limited when the pool water is allowed to flow out by opening the bypass;
When the water temperature exceeds the threshold value, a first on-off valve that opens/closes the pool water diverted to the heat exchanger and a second on-off valve that opens/closes the pool water diverted to the bypass. setting open;
The piping circuit upstream or downstream of the heat exchanger and the bypass so that the upper limit value obtained by comparing the measured water temperature with the second correlation data is measured as the total flow rate value operating a regulating valve for regulating the total flow value provided in
The step of operating the regulating valve so that the upper limit value obtained by comparing the water temperature at the time when the total flow rate reaches the rated value of the pump with the first correlation data is measured as the total flow rate. and,
a step of switching the setting of the second on-off valve from open to closed when the measured water temperature and the total flow rate value are on top of the first correlation data;
a step of operating the regulating valve so that the upper limit value obtained by comparing the measured water temperature with the first correlation data is measured as the total flow rate value;
and, when the water temperature no longer exceeds the threshold, operating the regulating valve such that the total flow value substantially matches the rated value of the pump.
格納容器に設けられた圧力抑制室に保持されるプール水の水温を計測するステップと、
相互に並列接続する熱交換器及びバイパス路が設けられる配管回路に、前記圧力抑制室に保持されているプール水をポンプで流出させるステップと、
前記配管回路に流出された後に前記格納容器内に放出される前記プール水の全流量値を計測するステップと、
計測した前記水温が閾値を超過する場合に、前記熱交換器に流出される前記プール水の流量が、前記水温に応じて予め設定された上限値を超えないように調整するステップと、を含む残留熱除去方法において、
前記バイパス路を閉止して前記プール水を流出させた場合、前記熱交換器の除熱量が前記上限値となる前記水温と前記上限値との第1相関データを準備するステップと、
前記水温が前記閾値を超過する場合、計測した前記水温を前記第1相関データに照合して得た前記上限値が、前記熱交換器に分流する前記プール水の分流量値として計測されるように、この分流量値を調整する第1調整弁を操作するステップと、
前記全流量値が前記ポンプの定格値として計測されるように、前記バイパス路に分流する前記プール水の流量を調整する第2調整弁を操作するステップと、
前記水温が前記閾値を超過しなくなった時点で、前記第1調整弁を全開に前記第2調整弁を全閉に操作し、前記分流量値を前記定格値に略一致させるステップと、を含む残留熱除去方法。
measuring the temperature of pool water held in a pressure suppression chamber provided in the containment vessel;
a step of pumping out the pool water held in the pressure suppression chamber into a piping circuit provided with a heat exchanger and a bypass passage that are connected in parallel with each other;
measuring the total flow value of the pool water discharged into the containment vessel after being discharged into the piping circuit;
adjusting the flow rate of the pool water flowing out to the heat exchanger not to exceed an upper limit value set in advance according to the water temperature when the measured water temperature exceeds a threshold value. In the residual heat removal method,
a step of preparing first correlation data between the water temperature and the upper limit value at which the amount of heat removed by the heat exchanger becomes the upper limit value when the pool water is allowed to flow out by closing the bypass passage;
When the water temperature exceeds the threshold value, the upper limit value obtained by comparing the measured water temperature with the first correlation data is measured as the divided flow rate value of the pool water diverted to the heat exchanger. a step of operating a first regulating valve that adjusts this diversion flow rate;
operating a second regulating valve that adjusts the flow rate of the pool water diverted to the bypass so that the total flow rate value is measured as the rated value of the pump;
when the water temperature no longer exceeds the threshold value, the first regulating valve is fully opened and the second regulating valve is fully closed so that the divided flow rate value substantially matches the rated value. Residual heat removal method.
格納容器に設けられた圧力抑制室に保持されるプール水の水温を計測するステップと、
相互に並列接続する熱交換器及びバイパス路が設けられる配管回路に、前記圧力抑制室に保持されているプール水をポンプで流出させるステップと、
前記配管回路に流出された後に前記格納容器内に放出される前記プール水の全流量値を計測するステップと、
計測した前記水温が閾値を超過する場合に、前記熱交換器に流出される前記プール水の流量が、前記水温に応じて予め設定された上限値を超えないように調整するステップと、を含む残留熱除去方法において、
前記バイパス路を閉止して前記プール水を流出させた場合、前記熱交換器の除熱量が限界となる前記水温と前記上限値との第1相関データを準備するステップと、
前記全流量値が前記ポンプの定格値として計測される、前記熱交換器に分流する前記プール水の流量を調整する第1調整弁の第1弁開度と前記バイパス路に分流する前記プール水の流量を調整する第2調整弁の第2弁開度との第3相関データを準備するステップと、
前記水温が前記閾値を超過する場合、計測した前記水温を前記第1相関データに照合して対応する前記上限値を取得するステップと、
この取得した前記上限値を第3相関データに照合し対応する前記第1弁開度及び前記第2弁開度となるように前記第1調整弁及び前記第2調整弁の各々を操作するステップと、
前記水温が前記閾値を超過しなくなった時点で、前記第1弁開度が100%及び前記第2弁開度が0%となるように前記第1調整弁及び前記第2調整弁の各々を操作するステップと、を含む残留熱除去方法。
measuring the temperature of pool water held in a pressure suppression chamber provided in the containment vessel;
a step of pumping out the pool water held in the pressure suppression chamber into a piping circuit provided with a heat exchanger and a bypass passage that are connected in parallel with each other;
measuring the total flow value of the pool water discharged into the containment vessel after being discharged into the piping circuit;
adjusting the flow rate of the pool water flowing out to the heat exchanger not to exceed an upper limit value set in advance according to the water temperature when the measured water temperature exceeds a threshold value. In the residual heat removal method,
a step of preparing first correlation data between the water temperature and the upper limit at which the amount of heat removed by the heat exchanger is limited when the pool water is allowed to flow out by closing the bypass;
A first valve opening degree of a first adjusting valve for adjusting the flow rate of the pool water diverted to the heat exchanger and the pool water diverted to the bypass passage, wherein the total flow rate value is measured as the rated value of the pump. a step of preparing third correlation data with the second valve opening of the second regulating valve that adjusts the flow rate of
if the water temperature exceeds the threshold, comparing the measured water temperature with the first correlation data to obtain the corresponding upper limit value;
A step of comparing the acquired upper limit value with the third correlation data and operating each of the first control valve and the second control valve so that the corresponding degrees of opening of the first valve and the degrees of opening of the second valve are obtained. and,
When the water temperature no longer exceeds the threshold value, each of the first control valve and the second control valve is adjusted so that the degree of opening of the first valve is 100% and the degree of opening of the second valve is 0%. A method for residual heat removal, comprising the step of operating.
JP2019111585A 2019-06-14 2019-06-14 Residual heat removal equipment, its operating method and residual heat removal method Active JP7228477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019111585A JP7228477B2 (en) 2019-06-14 2019-06-14 Residual heat removal equipment, its operating method and residual heat removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019111585A JP7228477B2 (en) 2019-06-14 2019-06-14 Residual heat removal equipment, its operating method and residual heat removal method

Publications (2)

Publication Number Publication Date
JP2020204498A JP2020204498A (en) 2020-12-24
JP7228477B2 true JP7228477B2 (en) 2023-02-24

Family

ID=73838339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019111585A Active JP7228477B2 (en) 2019-06-14 2019-06-14 Residual heat removal equipment, its operating method and residual heat removal method

Country Status (1)

Country Link
JP (1) JP7228477B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171394A (en) * 1987-01-09 1988-07-15 株式会社東芝 Residual heat removal device

Also Published As

Publication number Publication date
JP2020204498A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US20210151208A1 (en) Alternative circulation cooling method for emergency core cooling system, and nuclear power plant
Ishiwatari et al. Safety of super LWR,(I) safety system design
JP7228477B2 (en) Residual heat removal equipment, its operating method and residual heat removal method
KR102214119B1 (en) Coolant recirculation system of nuclear power plant
Ishiwatari et al. Improvements of feedwater controller for the super fast reactor
CN113436760A (en) Debugging test method for heat removal capacity of passive waste heat removal system in thermal state
JP5425002B2 (en) Nuclear power plant isolation cooling system
JP2006083731A (en) Steam turbine power generating unit and its operation method
KR102550140B1 (en) Passive auxiliary feedwater supply system of nuclear power plant using overcooling prevention apparatus
Tian et al. Design characteristics analysis of RTVO for a nuclear power plant
Ma et al. Study on Measures During Loss of Normal Feedwater Accident for AP1000 NPP in Lower Power Operation
Wu et al. Study on Passive Pulse Cooling Method of Secondary Side in PWR Nuclear Power Plant
JP3130095B2 (en) Method and apparatus for removing decay heat of boiling water reactor
JP6678606B2 (en) Valve closing speed control device, boiling water nuclear power plant, and method of operating boiling water nuclear power plant
JP2008157944A (en) Protection system for and method of operating nuclear boiling water reactor
Sato et al. iB1350: Innovative Passive Containment Cooling System for the iB1350
JPS63171394A (en) Residual heat removal device
JP2005172482A (en) Nuclear reactor water injection system
JP2005091291A (en) Super-critical pressure water cooled nuclear power plant
Choa et al. Review on emergency operating procedures for APR1400: feed-and-bleed and RCS rapid cooldown in SLOCA.
Kai et al. Study of Application of Automatic Cooldown/Heatup Technology on CPR1000 Nuclear Power Plant
CN113421671A (en) Debugging test method for heat removal capacity of passive waste heat removal system in thermal state
Matev Analysis of Operator Response to Station Blackout
Kim et al. Study of Multiple Steam Generator Tube Rupture Event in Shin-Kori Units 1 & 2
JPS604439B2 (en) How to operate a nuclear reactor plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7228477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150