JPS58143216A - Slope meter of water surface - Google Patents

Slope meter of water surface

Info

Publication number
JPS58143216A
JPS58143216A JP2706982A JP2706982A JPS58143216A JP S58143216 A JPS58143216 A JP S58143216A JP 2706982 A JP2706982 A JP 2706982A JP 2706982 A JP2706982 A JP 2706982A JP S58143216 A JPS58143216 A JP S58143216A
Authority
JP
Japan
Prior art keywords
water
water level
points
water surface
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2706982A
Other languages
Japanese (ja)
Other versions
JPS6253059B2 (en
Inventor
Toshiaki Kimura
木村 俊晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIZU KANRI KOGAKU KENKYUSHO KK
Original Assignee
MIZU KANRI KOGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIZU KANRI KOGAKU KENKYUSHO KK filed Critical MIZU KANRI KOGAKU KENKYUSHO KK
Priority to JP2706982A priority Critical patent/JPS58143216A/en
Publication of JPS58143216A publication Critical patent/JPS58143216A/en
Publication of JPS6253059B2 publication Critical patent/JPS6253059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/002Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow wherein the flow is in an open channel
    • G01F1/005Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow wherein the flow is in an open channel using floats

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain a slope meter of water surface having high accuracy, by conducting water by pipes to one place from two points of the up and down streams and detecting the difference of water level. CONSTITUTION:Tanks 1, 2 in which sand is sunk disposed at two points of the up and down streams at a distance of the length L of a section where the water level is measured, are connected to a pressure tank 5 by water conducting pipes 3, 4. The air in the tank 5 is evacuated by a suction pump 6 and the water in the tanks 1, 2 are sucked up, and floats 7, 8 are connected to a differential gear mechanism 9 by a pulley, and the difference of water level is converted to a rotation angle of the differential gear and is detected by a potentiometer or an encoder.

Description

【発明の詳細な説明】 近時、洪水予報や水利調整など河川水管理の高度化の要
請が強くなり、河川流量の測定精度の向上および自動化
の必要性が増大している。
[Detailed Description of the Invention] Recently, there has been a strong demand for more sophisticated river water management such as flood forecasting and water use adjustment, and there is an increasing need for improved accuracy and automation of river flow measurement.

河川など開水路の光重を測定する方法としては一般に流
速計や浮子による方法が用いられているが、これらはい
ずれも実施に人手を必要とし、継続的に流量を測定する
ことはできない。
Methods using current meters and floats are generally used to measure light gravity in open waterways such as rivers, but these methods both require human labor and cannot continuously measure flow rates.

開水路の自動流量測定装置としては超音波流速計が試験
的に利用されているが、実河川においては横断面形状が
整正でないことや洪水時の濁水の影響などのためあまり
よい結果はえられていない。
Ultrasonic current meters have been experimentally used as automatic flow rate measurement devices in open channels, but in actual rivers, the results have not been very good due to irregular cross-sectional shapes and the effects of turbid water during floods. It has not been done.

したがって、継続的に流量を測定するには水位を継続的
に測定し、水位−流量曲線を用いて流量に換算する方法
がが広く採用されているが、河川のように洪水ごとに横
断形状が変化する状況のもとでは流量観測による水位−
流量曲線の作製に数カ月〜1年の期間を必要とするため
即時の流量が必要な管理問題の要求を満足させることが
できない。また、感潮区域・可動堰の上流地点および合
流点上流地点など水位と独立に水面こう配が変化する地
点では水位−流量曲線そのものが成り立たない。
Therefore, in order to continuously measure the flow rate, the widely adopted method is to continuously measure the water level and convert it to flow rate using a water level-flow curve. Under changing conditions, the water level by flow observation -
The preparation of the flow rate curve requires a period of several months to a year, which does not satisfy the demands of management problems that require immediate flow rates. Furthermore, the water level-flow rate curve itself does not hold at points where the water surface gradient changes independently of the water level, such as upstream points of tidal areas, movable weirs, and upstream points of confluence points.

一方、小水路では測水堰やパーシャルフリュームなども
使用できるが、河川や大水路では施設の設置が困難であ
るためこの方法は利用できない場合が多い。
On the other hand, gauging weirs and partial flumes can be used in small waterways, but this method is often not available in rivers and large waterways because it is difficult to install such facilities.

ところで、流量Qは流速iと断面積Aの積Q=A−1・
・・・・・・・・・・・・・・・・・・・・(1)であ
り、流速Vはマンニング式 %式%(2) で代表されるように、定数である粗度係数n5水位の関
数として定まる径深Rおよび水面こう配■によって計算
されるから、水位の外に水面こう配を継続的に測定すれ
ば、流速および流量を継続的に計算によって求めること
ができる。
By the way, the flow rate Q is the product of the flow rate i and the cross-sectional area A: Q=A-1・
・・・・・・・・・・・・・・・・・・・・・(1), and the flow velocity V is a constant roughness coefficient as represented by the Manning formula % formula %(2) Since it is calculated by the diameter depth R and the water surface gradient (2), which are determined as a function of the n5 water level, if the water surface gradient is continuously measured in addition to the water level, the flow velocity and flow rate can be continuously calculated.

水面こう配Iは開水路の上下流2地点間の水位差△Hを
区間長いで除したものであるから、■=ΔH/L  ・
・・・・・・・・・・・・・・・・・・・・・・・(3
)数学的には上下流の2地点にそれぞれ水位針を設置し
て水位を測定し、その差を計算して区間長で除すればよ
いわけであるが、測定論的にはこの方法では水位差に比
べて測定範囲が広い九めに相対的に大きい水位測定誤差
や上下流2地点間の相対的な位置関係の保全の困難など
が水位差の測定精度に大きく影響するため実効のある結
果はえられない。
Water surface slope I is the water level difference △H between two points upstream and downstream of an open channel divided by the length of the section, so ■=ΔH/L ・
・・・・・・・・・・・・・・・・・・・・・・・・(3
) Mathematically, it is sufficient to install water level needles at two points upstream and downstream, measure the water level, calculate the difference, and divide by the length of the section, but from a measurement perspective, this method This is an effective result because the measurement range is wide compared to the difference, the relatively large water level measurement error and the difficulty in maintaining the relative positional relationship between two upstream and downstream points greatly affect the measurement accuracy of the water level difference. It can't fly.

*区間長りはΔ1■の測定精度および測定すべき水面こ
う配の最大値によって異るが、実際には30〜2007
#である。
*The length of the section varies depending on the measurement accuracy of Δ1■ and the maximum value of the water surface gradient to be measured, but in reality it is between 30 and 2007
It is #.

この発明は上下流2地点からパイプで導水して1カ所に
形成した2水面間の水位差を1コの検知器で検知するこ
とによって高い測定精度を確保することを特徴とする水
面こう配計を提供しようとするものである。
This invention is a water surface gradient meter that is characterized by ensuring high measurement accuracy by detecting the water level difference between two water surfaces formed in one place by introducing water from two points upstream and downstream using a single detector. This is what we are trying to provide.

図において、lおよび2は水位測定区間長りを距1て上
下流2地点に設置された沈砂槽であり、3および4の導
水パイプによって圧力タンク5に接続している。圧力タ
ンク5は逆サイフオンを形成しており、内部の空気は吸
引ポンプ6によって減圧され、上下流沈砂槽がらの水を
吸上げている。7および8は圧力タンク内の2水面に浮
べたフロートであり、プーリーによって差動ギヤー機構
9に接続しており、水位差は差動ギヤーの回転角に変換
され、ポテンショメータまたはエンコーダによって検出
される。
In the figure, 1 and 2 are sand settling tanks installed at two points, upstream and downstream, separated by a distance of 1 the length of the water level measurement section, and connected to the pressure tank 5 by water guide pipes 3 and 4. The pressure tank 5 forms an inverted siphon, and the air inside is reduced in pressure by a suction pump 6 to suck up water from the upstream and downstream sediment tanks. 7 and 8 are two floats floating on the water surface in the pressure tank, which are connected to the differential gear mechanism 9 by a pulley, and the water level difference is converted into the rotation angle of the differential gear, which is detected by a potentiometer or encoder. .

ここで、開水路の流れの変化が十分緩慢であれば、沈砂
槽・導水パイプ・圧力タンク内の水には静水力学が適用
できるから、大気圧Po1タンク内空気圧P5上流側水
位H1%下流側水位H2、タンク内上流側水位H1′、
タンク内下流側水位H2/とすると、次式の関係が成立
する。
Here, if the change in the flow of the open channel is slow enough, hydrostatics can be applied to the water in the sand settling tank, water guide pipe, and pressure tank, so atmospheric pressure Po1 air pressure in tank P5 upstream water level H1% downstream Water level H2, tank upstream water level H1',
When the downstream water level in the tank is H2/, the following relationship holds true.

Pa +H1w P +1(1’・・・・・・−・・・
・・・・−(4)Po + H2= P +HX・・・
・・・・・・・−・・・・(5)(4)式−(5)式に
より Hl−)]2= H1’ −H2’ ==△H・旧・・
(6)すなわち、大気圧Poおよびタンク内空気圧Pの
値と無関係にタンク内2水面の水位差が上下流2地点間
の水位差に等しい。
Pa +H1w P +1(1'・・・・・・−・
...-(4)Po + H2= P +HX...
・・・・・・・・・・・・・(5) (4) formula − (5) formula Hl−)]2= H1'−H2' ==△H・Old・・
(6) That is, regardless of the values of atmospheric pressure Po and tank air pressure P, the water level difference between two water surfaces in the tank is equal to the water level difference between two upstream and downstream points.

タンク内の水位差の検知については図に示したダブルフ
ロート方式によって0.1%の高精度かえられているが
、差圧計方式によっても0.5チの精度は容易に確保で
きる。
Regarding the detection of the water level difference in the tank, the double float method shown in the figure achieves a high accuracy of 0.1%, but the differential pressure gauge method can also easily ensure an accuracy of 0.5 inches.

河川のような大水路における水面測定でもっとも問題と
なるのは風波や動水圧などの短周期の波の消去であるが
、この発明の装置ではパイプの摩擦によって容易に消去
できる。また、維持管理上の困難の原因となる土砂・ご
み・へどろなどの排除については、沈砂槽の構造の合理
的設計および定期の点検、清掃によって対応できる。
The biggest problem when measuring water levels in large waterways such as rivers is the cancellation of short-period waves such as wind waves and dynamic water pressure, but with the device of this invention, this can be easily canceled by the friction of the pipe. In addition, the removal of earth, sand, garbage, sludge, etc. that cause difficulties in maintenance and management can be dealt with by rationally designing the structure of the settling tank, and by periodically inspecting and cleaning it.

この発明の装置の特徴はつぎのとおりである。The features of the device of this invention are as follows.

(1)堰による堰上げやフリュームによる絞りなど開水
路の流水に何ら影響を与えることなく流量を測定できる
(1) The flow rate can be measured without affecting the flowing water of an open channel, such as by raising the weir with a weir or restricting it with a flume.

(2)水理公式を基礎としているため、従来から経験値
の集積されている粗度係数を利用し、断面積・径深なと
断面特性を用いて流速・流量が計算できる。
(2) Since it is based on hydraulic formulas, flow velocity and flow rate can be calculated using roughness coefficients for which empirical values have been accumulated and cross-sectional area, diameter depth, and cross-sectional characteristics.

(3)流量観測など較正作業によって粗度係数などの水
理学的知識の集積ができる。
(3) Hydraulic knowledge such as roughness coefficients can be accumulated through calibration work such as flow rate observation.

(4)水位差の最大値をフルスケールとすればよいので
高精度が確保でき、上下流導水口の基準高の保持に特別
の注意をはらう必要がないので維持管理がし易い。
(4) High accuracy can be ensured because the maximum value of the water level difference is set to the full scale, and maintenance is easy because there is no need to pay special attention to maintaining the reference height of the upstream and downstream water inlets.

(5)施設が土木・・機械的であるため河川技術者によ
る保守がし易く、動作の信頼度が高い。
(5) Since the facility is civil engineering/mechanical, it is easy to maintain by river engineers and its operation is highly reliable.

(6)低水から腐水まで河川流量の全範囲について利用
することができる。
(6) Can be used for the entire range of river flow rates, from low water to rotten water.

(7)感潮区域など順・逆流の生ずる地点においても利
用できる。
(7) It can also be used in locations where forward or reverse currents occur, such as in tidal areas.

(8)導水方法として吸上げ方式を利用すれば、圧力タ
ンクや導水パイプの設置や維持管理が容易であり、土砂
の流入防止や排除がし易く、低水時の導水が確実である
などの効果がある。
(8) If the suction method is used as a water conveyance method, it is easy to install and maintain pressure tanks and water conveyance pipes, it is easy to prevent and remove earth and sand, and water can be conveyed reliably in times of low water. effective.

この発明の水面こう配計を水位計と併用し、近時進歩の
いちじるしいマイクロコンピュータを利用すれば、河川
等の現場で自動的・継続的に流量を測定・記録・表示す
ることができるので、即時の流量を必要とする水利調整
や洪水予報に対する効果は絶大であり、河川水管理シス
テムのトータルな自動化がはじめて可能となる。オた、
従来各河川で多大の人手をかけて実施されている調査目
的のための流量観測業務についても大巾な省力化が期待
できる。
If the water surface gradient meter of this invention is used in conjunction with a water level meter and a recently advanced microcomputer is utilized, flow rates can be automatically and continuously measured, recorded, and displayed at river sites, etc. This will have a tremendous effect on water use adjustment and flood forecasting, which require the flow of water, and will enable total automation of river water management systems for the first time. Ota,
Significant labor savings can also be expected in flow rate observation work for survey purposes, which has traditionally required a large amount of manpower on each river.

この発明の装置を給体的に必要とするのは感潮区域・可
動堰上流地点・合流点上流地点など水位と水面こう配が
独立に変化する地点であるが、一般の河川や用排水路で
も実際には水位とともに水面こう配が変化するケースが
多いので、この発明の装置の利用により流量測定精度の
向上や省力化が期待できるほか、とくに、出水の早い小
河川における洪水ピーク流量の測定に対する効果は非常
に大きい。
The device of this invention is needed as a water supply at points where the water level and water surface gradient change independently, such as tidal areas, upstream points of movable weirs, and upstream points of confluence points, but it can also be used in general rivers and irrigation channels. In reality, there are many cases where the water surface slope changes with the water level, so the use of the device of this invention can be expected to improve flow measurement accuracy and save labor, and is particularly effective in measuring flood peak flow in small rivers with rapid flow. is very large.

【図面の簡単な説明】[Brief explanation of the drawing]

図は開水路の上下流2地点からパイプで揚水して中央地
点に設置した圧力タンク内に測定すべき水位差を発生す
るこの発明の基本機構を示す図である。
The figure shows the basic mechanism of the present invention, which pumps up water using pipes from two points up and down an open channel and generates a water level difference to be measured in a pressure tank installed at a central point.

Claims (1)

【特許請求の範囲】[Claims] 開水路の上下流2地点からその中点へ流水方向に沿って
パイプで導水してえられる2つの静水面間の水位差を測
定し、それを上下流2地点間の距離で除して流水の水面
こう配を求めることを特徴とする水面こう配計。
Measure the water level difference between two static water surfaces obtained by conveying water from two points upstream and downstream to the midpoint of an open channel with a pipe along the flow direction, and divide it by the distance between the two points upstream and downstream to calculate the flow rate. A water surface gradient meter characterized by determining the water surface gradient.
JP2706982A 1982-02-20 1982-02-20 Slope meter of water surface Granted JPS58143216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2706982A JPS58143216A (en) 1982-02-20 1982-02-20 Slope meter of water surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2706982A JPS58143216A (en) 1982-02-20 1982-02-20 Slope meter of water surface

Publications (2)

Publication Number Publication Date
JPS58143216A true JPS58143216A (en) 1983-08-25
JPS6253059B2 JPS6253059B2 (en) 1987-11-09

Family

ID=12210775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2706982A Granted JPS58143216A (en) 1982-02-20 1982-02-20 Slope meter of water surface

Country Status (1)

Country Link
JP (1) JPS58143216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621850A1 (en) * 2004-07-26 2006-02-01 Walter Albrecht Measuring apparatus for determining level differences

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516062A (en) * 1974-07-02 1976-01-19 Tokyo Keiki Kk Kyabashitansugatakaisuiroryuryokei
JPS5329763A (en) * 1976-08-31 1978-03-20 Sharp Corp Flow rate and flow velocity measuring system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516062A (en) * 1974-07-02 1976-01-19 Tokyo Keiki Kk Kyabashitansugatakaisuiroryuryokei
JPS5329763A (en) * 1976-08-31 1978-03-20 Sharp Corp Flow rate and flow velocity measuring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621850A1 (en) * 2004-07-26 2006-02-01 Walter Albrecht Measuring apparatus for determining level differences

Also Published As

Publication number Publication date
JPS6253059B2 (en) 1987-11-09

Similar Documents

Publication Publication Date Title
Rantz Measurement and computation of streamflow
Herschy Streamflow measurement
CN107490410A (en) It is a kind of based on represent vertical line point flow velocity measurement Gao Hong contactless flow measurement method
Krone A field study of flocculation as a factor in estuarial shoaling processes
Clemmens et al. Portable RBC flumes for furrows and earthen channels
James The measurement of benthal respiration
CN107167188B (en) A method of applied to rectangular open channel flow measurement
Glovatskii et al. Hydrometric flow measurement in water management
Gwinn et al. Discharge equations for HS, H, and HL flumes
Kilpatrick et al. Use of flumes in measuring discharge
Palmer et al. Adaptation of Venturi flumes to flow measurements in conduits
White Discharge measuring methods in open channels
JPS58143216A (en) Slope meter of water surface
CN206756872U (en) Horizontal ADCP flow measurement platforms
CN110887534B (en) Rainstorm runoff experiment point location arrangement and detection system and method
CN217637479U (en) Water system of measurationing of channel
Replogle Practical technologies for irrigation flow control and measurement
Sumi et al. Development of the suspended-sediment concentration measuring system with differential pressure transmitter in rivers and reservoirs
Bennett Cutthroat flume discharge relations
US4195519A (en) Measurement of water flow rate
CN116644499B (en) Determination method suitable for action range of canal wave bank slope impact area and ship traveling wave model test device
Yoder Plumbing the depths of open-channel flow measurement
Yoo et al. Water Measurement
FLUMES INVESTIGATION ON PERFORMANCE OF
Replogle Some observations on irrigation flow measurements at the end of the millennium