JPS58143154A - Carburetor - Google Patents

Carburetor

Info

Publication number
JPS58143154A
JPS58143154A JP2651682A JP2651682A JPS58143154A JP S58143154 A JPS58143154 A JP S58143154A JP 2651682 A JP2651682 A JP 2651682A JP 2651682 A JP2651682 A JP 2651682A JP S58143154 A JPS58143154 A JP S58143154A
Authority
JP
Japan
Prior art keywords
fuel
intake
jet
passage
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2651682A
Other languages
Japanese (ja)
Inventor
Shuichi Kitamura
修一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2651682A priority Critical patent/JPS58143154A/en
Publication of JPS58143154A publication Critical patent/JPS58143154A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/12Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves
    • F02M7/22Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves fuel flow cross-sectional area being controlled dependent on air-throttle-valve position

Abstract

PURPOSE:To make the fuel in a proper mixture ratio feedable to an engine, by varying the effective sectional area of a fuel jet which is formed so as to make its pressure at the inlet side constant at all times. CONSTITUTION:Fuel from a float chamber 11 is led into a fuel jet 9 via a fuel intake passage 10 and thereby the pressure at the inlet side of the fuel jet 9 is always kept constant. An intake air stream detecting plate 4 being eccentrically secured to a rotary shaft 3 detects the quantity of the intake air stream but simultaneously shifts a metering needle 8 via a lever 7 secured to the rotary shaft 3, altering the effective sectional area of the fuel jet 9 in response to the air flow and metering the fuel consumption, and then this metered fuel is discharged to an atmospheric chamber 12. This fuel is spouted into an intake air passage 1 and makes up a proper mixture ratio required by the engine.

Description

【発明の詳細な説明】 本発明はポンプから圧送されてくる吸気の高速気流によ
って、燃料の微粒化を促進する様にした内燃機関の気化
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a carburetor for an internal combustion engine in which atomization of fuel is promoted by a high-speed airflow of intake air fed under pressure from a pump.

一般に、機関に供給される燃料は気化器によって計量・
微粒化されているが、気化器(ベンチュリ部)における
吸気流速を燃料の微粒化促進の為に更に大きく取る事は
吸入抵抗を一段と増す障害を来す結果となり、この為気
化器における燃料微粒化の程度は貧弱とならざるを得ず
、機関側から見れば不満であり、それ故燃料の各気筒へ
の分配性、機関の燃費及び排ガス特性を劣化させていた
Generally, the fuel supplied to the engine is measured and measured by a carburetor.
However, increasing the intake flow velocity in the carburetor (Venturi part) to promote fuel atomization will result in an obstacle that further increases the intake resistance. The degree of fuel consumption was unavoidably poor, which was unsatisfactory from the engine's point of view, and as a result, the fuel distribution to each cylinder, the engine's fuel efficiency, and exhaust gas characteristics were degraded.

本発明は、ポンプから圧送されてくる吸気の高速気流に
よって燃料の微粒化を大幅に促進させて前記欠点を解決
しようとしたもので、以下図面に従って説明する。
The present invention is an attempt to solve the above-mentioned drawbacks by significantly promoting atomization of fuel by using a high-speed airflow of intake air fed under pressure from a pump, and will be described below with reference to the drawings.

第1図は本発明による気化器を示し、機関出力軸、電動
機(モーター)等により駆動されるポンプ17を備えて
いる(小容量のポンプで良い)。
FIG. 1 shows a carburetor according to the present invention, which is equipped with a pump 17 driven by an engine output shaft, an electric motor, etc. (a small-capacity pump may be used).

連絡路13の径に比較して(通常は図示の如く、連絡路
13に径を最も小さく絞った部分を形成するから、この
部分の径に比較して)大気室12の径は十分に大きくし
てあるから、連絡路13に作用する負圧の強さ如何によ
らず(強い負圧が作用しても)大気室12の圧力は常に
大気圧に保たれている。
The diameter of the atmospheric chamber 12 is sufficiently large compared to the diameter of the communication passage 13 (usually, as shown in the figure, since a part with the smallest diameter is formed in the communication passage 13, compared to the diameter of this part). Therefore, regardless of the strength of the negative pressure acting on the communication path 13 (even if strong negative pressure acts), the pressure in the atmospheric chamber 12 is always maintained at atmospheric pressure.

一方、燃料ジェット9には燃料導入通路10を介してフ
ロート室11からの燃料が導かれており、これにより燃
料ジェット9の入口側の圧力は常に一定に(フロート室
11の燃料油面高さは常時一定である故)保たれている
On the other hand, the fuel from the float chamber 11 is introduced into the fuel jet 9 via the fuel introduction passage 10, so that the pressure on the inlet side of the fuel jet 9 is always constant (the height of the fuel oil level in the float chamber 11). is always constant).

(燃料導入通路10を燃料が多量に流れる様になると、
厳密にはこの燃料流量に応じて燃料ジェット9の入口側
の圧力も僅かな変化をなしてゆくが、通常は燃料導入通
路10の径を十分に大きくとるから、一般には燃料ジェ
ット9の入口側の圧力は常に一定であるとされる)。
(When a large amount of fuel begins to flow through the fuel introduction passage 10,
Strictly speaking, the pressure on the inlet side of the fuel jet 9 will change slightly depending on the fuel flow rate, but since the diameter of the fuel introduction passage 10 is normally set to be sufficiently large, generally the pressure on the inlet side of the fuel jet 9 will change slightly depending on the fuel flow rate. pressure is assumed to be constant).

従って、気化器の吸気通路1を流れる吸気流量に応じて
(見合う如く)燃料ジェット9の有効断面積(燃料が通
過する有効断面積)を変化させてやれば、機関に適正混
合比を供給できる事は明らかである。
Therefore, by changing the effective cross-sectional area (the effective cross-sectional area through which fuel passes) of the fuel jet 9 (as appropriate) in accordance with the intake flow rate flowing through the intake passage 1 of the carburetor, the proper mixture ratio can be supplied to the engine. The matter is clear.

この目的の為に、回転軸3に偏心して固着された吸気流
量検出板4が備えられている。
For this purpose, an intake flow rate detection plate 4 is provided eccentrically fixed to the rotating shaft 3.

即ち今、吸気通路1を吸気が通過すると吸気流量検出板
4はその前後の圧力差によって開弁トルクを受けると共
に、この開弁トルクと吸気流量検出板4にバネ等により
予め与え等得た閉鎖トルクとが釣り合う開度まで開かれ
、吸気流量を検出する様になる。
That is, when the intake air passes through the intake passage 1, the intake flow rate detection plate 4 receives a valve opening torque due to the pressure difference before and after the intake passage 1, and this valve opening torque and the intake flow rate detection plate 4 are subject to a predetermined closing force applied by a spring or the like. It is opened to an opening that balances the torque, and the intake flow rate is detected.

同時に、回転軸3に固着されたレバー7を介してメータ
リングニードル8を移動させ、燃料ジェット9の有効断
面積を変化させて燃料を計量し、これを大気室12へ流
出させる。
At the same time, a metering needle 8 is moved via a lever 7 fixed to the rotary shaft 3 to change the effective cross-sectional area of the fuel jet 9 and meter the fuel, which flows out into the atmospheric chamber 12.

大気室12に流出された燃料は、更に連絡路13を経て
(吸い上げられて)ノズル14(連絡路13の一部を成
すものである)から吸気通路1へ噴出し、かくして機関
の要求する適正混合比を形成する。
The fuel that has flowed out into the atmospheric chamber 12 further passes through the communication passage 13 (is sucked up) and is ejected from the nozzle 14 (forming a part of the communication passage 13) into the intake passage 1, thus achieving the proper conditions required by the engine. Form the mixing ratio.

ポンプ17から圧送されてくる吸気の圧力は正圧である
が、吸気ノズル15から吸気が高速度で噴出すると先ず
周囲の圧力まで減圧され、続いてそれ自身の持つ速度エ
ネルギーによって更に減圧される(負圧となる)為、燃
料ジェット9から流出した燃料を連結路13を経て吸い
上げることができるのである。
The pressure of the intake air pumped from the pump 17 is a positive pressure, but when the intake air is jetted out at high speed from the intake nozzle 15, it is first reduced to ambient pressure, and then further reduced by its own velocity energy ( Therefore, the fuel flowing out from the fuel jet 9 can be sucked up through the connecting path 13.

この時、吸気ノズル15から噴出する吸気の速度は極め
て大であるから、ノズル14から噴出した燃料は非常に
良く微粒化される。
At this time, since the speed of the intake air jetted out from the intake nozzle 15 is extremely high, the fuel jetted out from the nozzle 14 is atomized very well.

従って、燃料室の各気筒への分配性が向上し、気化が促
進されて燃料の完全燃焼が可能となるから、機関の燃費
及び排ガス特性は大幅に改善される。
Therefore, the distribution of the fuel chamber to each cylinder is improved, vaporization is promoted, and complete combustion of the fuel becomes possible, so that the fuel efficiency and exhaust gas characteristics of the engine are significantly improved.

この場合、ポンプ吐出側通路16を排ガス、電気ヒータ
ー等で積極的に加熱する様にすると、高温の吸気が吸気
ノズル15から噴出するから、一層効果がある。
In this case, if the pump discharge side passage 16 is actively heated with exhaust gas, an electric heater, etc., high temperature intake air will be ejected from the intake nozzle 15, which will be even more effective.

5はダンパー板、6はダンパー室で吸気流入検出板4の
作動を安定させている。
5 is a damper plate, and 6 is a damper chamber that stabilizes the operation of the intake air inflow detection plate 4.

本発明においては、機関停止時等の燃料供給不要時には
二点鎖線で示す遮断弁18(図では電磁式遮断弁を使用
している)によって燃料導入通路10を閉鎖せしめ、燃
料ジェット9からの燃料の流出を防止して、大気室12
に多量の燃料が溜るのを回避する事が望ましい。
In the present invention, when fuel supply is not required, such as when the engine is stopped, the fuel introduction passage 10 is closed by the cutoff valve 18 (in the figure, an electromagnetic cutoff valve is used) shown by the chain double-dashed line, and the fuel from the fuel jet 9 is removed. Atmospheric chamber 12
It is desirable to avoid a large amount of fuel from accumulating in the tank.

尚、燃料ジェット9から流出した燃料は、フロート室1
の燃料油面よりも高いところを通過させた後に気化器の
吸気通路1へ噴出させる様にしているが、二点鎖線示の
如く絞弁2の下流側に配置されたノズル14′(即ち、
フロート室11の燃料油面よりも低いところに配置され
ている)から噴出させ、ポンプ17から圧送されてくる
吸気の高速気流に衝突させて微粒化する様にする事も考
えられる(この場合、燃料供給不要示には遮断弁18に
よって燃料ジェット9からの燃料の流出を防止する様に
する事が必要である)。
Incidentally, the fuel flowing out from the fuel jet 9 is transferred to the float chamber 1.
The fuel is jetted into the intake passage 1 of the carburetor after passing through a place higher than the oil level of the fuel oil, but the nozzle 14' (i.e.,
It is also conceivable to eject it from the float chamber 11 (located below the fuel oil level) and collide with the high-speed airflow of intake air pumped from the pump 17 to atomize it (in this case, In order to indicate that fuel supply is not required, it is necessary to prevent the fuel from flowing out from the fuel jet 9 using the shutoff valve 18).

この方法によれば連結路13′の距離を短縮する事がで
きるから、機関の応答性は極めて良くなる(図では連結
路13′の距離が余り短縮されていないが、実際には相
当短縮できるものである)。
According to this method, the distance of the connecting path 13' can be shortened, so the responsiveness of the engine is extremely improved. ).

15′はポンプ17から圧送されてくる吸気が噴出する
吸気ノズルである。
Reference numeral 15' denotes an intake nozzle through which intake air pumped from the pump 17 is jetted out.

次ぎに、吸気流量を検出する吸気流量検出板4を板弁1
9及び吸気流量検出ダイアフラム装置22に代えた本発
明の実施例を第2図に示す。
Next, the intake flow rate detection plate 4 that detects the intake flow rate is connected to the plate valve 1.
FIG. 2 shows an embodiment of the present invention in which the intake air flow rate detection diaphragm device 9 and the intake air flow rate detection diaphragm device 22 are replaced.

即ち、第2図において板弁19はその中央部に回転軸3
が固着され、回転軸3を中心として回転自在に備えられ
ており、板弁19の下流側で発声した負圧が吸気流量検
出ダイアフラム装置22へ導入されている。
That is, in FIG. 2, the plate valve 19 has the rotating shaft 3 at its center.
is fixed and rotatable about the rotating shaft 3, and the negative pressure generated downstream of the plate valve 19 is introduced into the intake flow rate detection diaphragm device 22.

従って、吸気通路1を吸気が通過すると、吸気流量検出
ダイアフラム装置22はロッド21、レバー20を介し
て回転軸3に開弁トルクを与えると共に、この開弁トル
クとバネ等により板弁19に(即ち回転軸3に)予め与
えられた閉鎖トルクとが釣り合う開度まで板弁19を開
き、空気流量を検出するに到る。
Therefore, when the intake air passes through the intake passage 1, the intake flow rate detection diaphragm device 22 applies a valve opening torque to the rotary shaft 3 via the rod 21 and the lever 20, and also applies the valve opening torque to the plate valve 19 ( That is, the plate valve 19 is opened to an opening degree that balances the closing torque given in advance to the rotating shaft 3, and the air flow rate is detected.

同時に、レバー7を介してメータリングニードル(図示
せず)を移動させ、燃料ジェット(図示せず)の有効断
面積を変化させて流量を計量し、かくして第一図と同様
に機関の要求する適正混合比を形成する。
At the same time, a metering needle (not shown) is moved via lever 7 to vary the effective cross-sectional area of the fuel jet (not shown) and meter the flow rate, thus achieving the engine's demand as in Figure 1. Form a proper mixing ratio.

次いで、第3図に示す本発明の実施例を説明する。Next, an embodiment of the present invention shown in FIG. 3 will be described.

即ち第3図においては、ポンプ17から圧送されてくる
吸気は絞り部23を経て噴出通路24へ噴出する様にな
っており、絞り部23の直前の圧力が正圧であっても絞
り部23を吸気が高速度で通過する事によって減圧され
、絞り部23に開口する連絡路13に負圧を作用させて
いるのである。
That is, in FIG. 3, the intake air that is force-fed from the pump 17 is ejected into the jetting passage 24 through the constriction part 23, and even if the pressure immediately before the constriction part 23 is positive, the constriction part 23 As the intake air passes through at a high speed, the pressure is reduced, and a negative pressure is applied to the communication passage 13 that opens to the constriction part 23.

これにより、燃料ジェット9から流出した燃料は連絡路
13を経て噴出通路24へ導かれる様になり、更に噴出
部25(噴出通路24の一部を成すものである)から激
しく噴出して極めて良く微粒化されるに到る。
As a result, the fuel flowing out from the fuel jet 9 is guided to the jetting passage 24 through the communication passage 13, and is further jetted out violently from the jetting part 25 (which forms a part of the jetting passage 24), resulting in an extremely smooth flow. This results in atomization.

従って、燃料の各気筒への分配性、機関の燃料及び排ガ
ス特性が大幅に改善される(ポンプ17から圧送されて
くる吸気の高速気流を、更に二点鎖線示の如く噴出部2
5に衝突させる様にすると、一層効果がある)。
Therefore, the distribution of fuel to each cylinder and the fuel and exhaust gas characteristics of the engine are greatly improved.
It will be even more effective if you make it collide with 5).

この時、噴出通路24はポンプ17から圧送されてくる
吸気が通過するから、噴出通路24内の燃料及び吸気は
極めて高速度で流れる事になり、従って燃料ジェット9
から流出した燃料がそれだけ早く吸気通路1へ噴出する
為、機関の応答性は良好となる(連絡路13はできる限
り短くする事が望ましい)。
At this time, since the intake air pressure-fed from the pump 17 passes through the injection passage 24, the fuel and intake air in the injection passage 24 flow at an extremely high speed, and therefore the fuel jet 9
Since the fuel flowing out from the intake passage 1 is jetted out into the intake passage 1 more quickly, the response of the engine is improved (it is desirable to make the communication passage 13 as short as possible).

ポンプ17の吐出圧がかなり高い場合には、ポンプ吐出
側通路16を長くしたり、この内部に抵抗体を設置する
等の手段により圧力損失を増加させ、絞り部23の直前
の圧力をできる限る低下させる様にするのが良く、これ
により連絡路13に強い負圧を作用させることができる
If the discharge pressure of the pump 17 is quite high, increase the pressure loss by lengthening the pump discharge side passage 16 or installing a resistor inside it to reduce the pressure immediately before the constriction part 23 as much as possible. It is preferable to lower the pressure, so that a strong negative pressure can be applied to the communication path 13.

4は吸気流量検出板、8はモータリングニードル、9は
燃料ジェット、12は大気室で、それらの作用は第1図
で説明した通りである。
4 is an intake flow rate detection plate, 8 is a motoring needle, 9 is a fuel jet, and 12 is an atmospheric chamber, and their functions are as explained in FIG. 1.

尚、連絡路13・絞り部23を通過した燃料は、二点鎖
線示の如く絞り弁2の下流側に配置された噴出部25′
(噴出通路24′の一部を成すものである)から吸気通
路1へ噴出させる様にしても良いものである。
Incidentally, the fuel that has passed through the communication path 13 and the throttle section 23 is sent to the jet section 25' located downstream of the throttle valve 2 as shown by the two-dot chain line.
The air may be ejected from the air inlet (which forms part of the ejection passage 24') into the intake passage 1.

この場合、噴出部25′はフロート室11の燃料油面よ
りも低いところにあるから、燃料供給不要示には二点鎖
線で示す遮断弁18によって燃料ジェット9からの燃料
の流出を防止させる事が必要である。
In this case, since the jetting portion 25' is located at a lower level than the fuel oil level in the float chamber 11, the outflow of fuel from the fuel jet 9 is prevented by the shutoff valve 18 shown by the two-dot chain line when fuel supply is not required. is necessary.

本発明は以上の如く、入口側の圧力が常に一定である様
にされた燃料ジェットを備え、吸気流量に応じて作動す
る吸気流量検出装置(吸気流量検出板、板弁及び吸気流
量検出ダイアフラム装置等)によってこの燃料ジェット
の有効断面積を変化させて燃料を計量し、更に前記燃料
ジェットからの燃料を大気圧が作用する大気室に流出さ
せた後に連絡路を通過せしめる様にし、この燃料をポン
プから圧送されてくる吸気の高速気流に衝突させ、かく
して燃料を供給する様にしたので、燃料の各気筒への分
配性、機関の燃費及び排ガス特性を大幅に改善すること
ができる。
As described above, the present invention provides an intake flow rate detection device (an intake flow rate detection plate, a plate valve, and an intake flow rate detection diaphragm device) that is equipped with a fuel jet whose pressure on the inlet side is always constant, and that operates according to the intake flow rate. etc.), the effective cross-sectional area of this fuel jet is changed to measure the fuel, and the fuel from the fuel jet is flowed out into an atmospheric chamber where atmospheric pressure acts, and then passed through a communication passage, and this fuel is Since the fuel is supplied by colliding with the high-speed airflow of intake air pumped from the pump, it is possible to greatly improve the distribution of fuel to each cylinder, the fuel efficiency of the engine, and the exhaust gas characteristics.

尚、本発明におけるポンプは燃料を微粒過する為の専用
のものである必要は特になく、他の目的の為に備えられ
たポンプ(例えば排、ガス浄化の為に排ガス中に空気を
噴射するポンプ)であっても良い。
It should be noted that the pump in the present invention does not need to be dedicated to filtering fuel into fine particles, and may be a pump provided for other purposes (for example, to inject air into exhaust gas for exhaust gas purification). pump).

【図面の簡単な説明】[Brief explanation of drawings]

第1・3図は本発明による気化器の断面図、第2図は吸
気流量検出装置の図である。 1は気化器の吸気通路、2は絞弁、3は回転軸、4は吸
気流量検出板、5はダンパー板、6はダンパー室、7・
20はレバー、8はメータリングニードル、9は燃料ジ
ェット、10は燃料導入通路、11はフロート室、12
は大気室、13・13′は連絡路、14・14′はノズ
ル、15・15′は吸気ノズル、16はポンプ吐出側通
路、17はポンプ、18は遮断弁、19は板弁、21は
ロッド、22は吸気流量検出ダイアフラム装置、23は
絞り部、24・24′は噴出通路、25・25′は噴出
部である。 特許出願人 北村修一
1 and 3 are cross-sectional views of a carburetor according to the present invention, and FIG. 2 is a diagram of an intake air flow rate detection device. 1 is an intake passage of the carburetor, 2 is a throttle valve, 3 is a rotating shaft, 4 is an intake flow rate detection plate, 5 is a damper plate, 6 is a damper chamber, 7.
20 is a lever, 8 is a metering needle, 9 is a fuel jet, 10 is a fuel introduction passage, 11 is a float chamber, 12
is an atmospheric chamber, 13 and 13' are connecting passages, 14 and 14' are nozzles, 15 and 15' are intake nozzles, 16 is a pump discharge side passage, 17 is a pump, 18 is a cutoff valve, 19 is a plate valve, and 21 is The rod, 22 is an intake flow rate detection diaphragm device, 23 is a constriction part, 24 and 24' are jet passages, and 25 and 25' are jet parts. Patent applicant Shuichi Kitamura

Claims (4)

【特許請求の範囲】[Claims] (1)燃料ジェットの入口側圧力が常に一定である様に
された燃料ジェットを備え、吸気流量に応じて作動する
吸気流量検出装置によってこの燃料ジェットの有効断面
積を変化させて燃料を計量し、更に前記燃料ジェットか
らの燃料を大気圧が作用する大気室に流出させた後に連
絡路を通過せしめる様にし、この燃料ポンプから圧送さ
れてくる吸気の高速気流に衝突させ、かくして燃料を供
給する様にしたことを特徴とする気化器。
(1) The fuel jet is equipped with a fuel jet whose inlet side pressure is always constant, and the effective cross-sectional area of the fuel jet is varied by an intake flow rate detection device that operates according to the intake flow rate to measure the fuel. Furthermore, after the fuel from the fuel jet flows out into an atmospheric chamber where atmospheric pressure acts, it is made to pass through a communication passage and collide with the high-speed airflow of intake air pumped from this fuel pump, thus supplying fuel. A vaporizer characterized by the following features:
(2)連絡路を通過してきた燃料をポンプから圧送され
てくる吸気の高速気流に衝突させ、更にこの燃料を噴出
通路を経て噴出せしめ、かくして燃料を供給する様にし
た特許請求の範囲第1項記載の気化器。
(2) The fuel that has passed through the communication path collides with the high-speed airflow of intake air that is force-fed from the pump, and the fuel is further jetted out through the jetting passage, thus supplying fuel. Vaporizer described in section.
(3)燃料ジェットから流出した燃料を、フロート室の
燃料油面よりも高いところを通過させずに低いところか
ら吸気通路へ噴出させる様にした特許請求範囲第1項ま
たは第2項記載の気化器。
(3) The vaporizer according to claim 1 or 2, in which the fuel flowing out of the fuel jet is jetted into the intake passage from a lower level without passing through a higher level than the fuel oil level in the float chamber. vessel.
(4)燃料供給不要示に遮断弁によって燃料ジェットか
らの燃料の流出を防止する様にした特許請求の範囲第1
項ないし第3項のいずれかに記載の気化器。
(4) Claim 1 in which the shutoff valve prevents fuel from flowing out of the fuel jet even when fuel supply is not required.
The vaporizer according to any one of Items 1 to 3.
JP2651682A 1982-02-20 1982-02-20 Carburetor Pending JPS58143154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2651682A JPS58143154A (en) 1982-02-20 1982-02-20 Carburetor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2651682A JPS58143154A (en) 1982-02-20 1982-02-20 Carburetor

Publications (1)

Publication Number Publication Date
JPS58143154A true JPS58143154A (en) 1983-08-25

Family

ID=12195636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2651682A Pending JPS58143154A (en) 1982-02-20 1982-02-20 Carburetor

Country Status (1)

Country Link
JP (1) JPS58143154A (en)

Similar Documents

Publication Publication Date Title
US7458364B2 (en) Internal combustion engine having a fuel injection system
JPH07133727A (en) Air intake device of internal combustion engine
JPS5598654A (en) Fuel injection type multi-cylindered internal combustion engine
US4862837A (en) Fuel injection of coal slurry using vortex nozzles and valves
US4955349A (en) Device for preparation of a fuel-air mixture for internal combustion engines
JPS58143154A (en) Carburetor
US3930470A (en) Vapor injection system for internal combustion engine
MXPA06013607A (en) Fuel conditioning apparatus.
JP2002531752A (en) Fuel injector for internal combustion engine and its injection method
JPS58143153A (en) Carburetor for internal-combustion engine
WO2004025108A1 (en) Additive injector device for internal combustion engines and injection method thereof
MXPA04006577A (en) Fuel supply system for an internal combustion engine.
US6478288B1 (en) High performance carburetor
JPS58206856A (en) Carburetor
US1359837A (en) Cabbtjbeter
JPS5830460A (en) Carburetter
CN2245671Y (en) Nozzle plunger-type carburetor
CN216588865U (en) Carburetor, micro engine and model car
JPS57179332A (en) Intake device for internal combustion engine equipped with fuel injection means
JPS63500533A (en) Fuel system in internal combustion engines
US5499603A (en) Liquid injection system for internal combustion engine
JP2605532B2 (en) Variable venturi carburetor
JPS6113109B2 (en)
JPS5946366A (en) Feeding device for mixed gas
JPS5970865A (en) Carburettor of internal-combustion engine