JPS5814287B2 - Manufacturing method of fiber reinforced concrete laminated pipe - Google Patents

Manufacturing method of fiber reinforced concrete laminated pipe

Info

Publication number
JPS5814287B2
JPS5814287B2 JP55137067A JP13706780A JPS5814287B2 JP S5814287 B2 JPS5814287 B2 JP S5814287B2 JP 55137067 A JP55137067 A JP 55137067A JP 13706780 A JP13706780 A JP 13706780A JP S5814287 B2 JPS5814287 B2 JP S5814287B2
Authority
JP
Japan
Prior art keywords
metal fibers
fibers
concrete
reinforced concrete
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55137067A
Other languages
Japanese (ja)
Other versions
JPS5761514A (en
Inventor
山川純雄
中川憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Nippon Steel Corp
Original Assignee
Kajima Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Sumitomo Metal Industries Ltd filed Critical Kajima Corp
Priority to JP55137067A priority Critical patent/JPS5814287B2/en
Publication of JPS5761514A publication Critical patent/JPS5761514A/en
Publication of JPS5814287B2 publication Critical patent/JPS5814287B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、コンクリート補強材として、スチールファ
イバー等の金属繊維と炭素繊維等の非金属繊維を用いる
繊維補強コンクリート積層管の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fiber-reinforced concrete laminated pipe using metal fibers such as steel fibers and non-metallic fibers such as carbon fibers as concrete reinforcing materials.

一般に、コンクリート管は鉄筋、石綿、金属繊維等で補
強されたものと、無筋コンクリート管のごとき全く補強
されていないものとの二種類に分けられ、それぞれ用途
、使用目的に応じて使い分けられている。
In general, concrete pipes are divided into two types: those reinforced with reinforcing bars, asbestos, metal fibers, etc., and those that are not reinforced at all, such as unreinforced concrete pipes, and each type is used differently depending on the purpose and purpose of use. There is.

その中で、補強されたコンクリート管の種類としては、
(I)鉄筋を入れた型枠内にコンクリートを投入し、振
動機を用いて締め固めながら製造された鉄筋コンクリー
ト管、(It)鉄筋を入れた型枠内にコンクリートを投
入し、遠心力によって締め固めながら製造された鉄筋コ
ンクリート管、(1)鉄筋を入れた型枠内にコンクリー
トを投入し、ロールを用いてコンクリート表面を転圧し
て締め固めながら製造された鉄筋コンクリート管等があ
る。
Among them, the types of reinforced concrete pipes are:
(I) Reinforced concrete pipe manufactured by pouring concrete into a formwork containing reinforcing bars and compacting it using a vibrator, (It) Concrete being poured into a formwork containing reinforcing bars and compacted by centrifugal force. There are reinforced concrete pipes manufactured while compacting, and (1) reinforced concrete pipes manufactured by pouring concrete into a formwork containing reinforcing bars and compacting it by compacting the concrete surface using rolls.

しかし、これら従来の鉄筋コンクリート管はいずれも重
量が重く、かつひび割れ強度が低く、耐摩耗性が充分で
ないという欠点があった。
However, all of these conventional reinforced concrete pipes have the drawbacks of being heavy, having low cracking strength, and insufficient wear resistance.

かかる欠点を解決するため、コンクリート中にスチール
ファイバー等の金属繊維を混入して補強した繊維補強コ
ンクリート管が製造されているが、前記の金属繊維は比
重が重いため遠心力でまだ固まらないコンクリート類と
分離し、管外面側に集中分散し、管内面側から発生する
亀裂の防止に効果が少いという大きな欠点があった。
In order to solve this problem, fiber-reinforced concrete pipes are manufactured by reinforcing concrete by mixing metal fibers such as steel fibers, but since the metal fibers have a high specific gravity, concrete that does not harden yet due to centrifugal force is manufactured. This has the major drawback that it separates from the pipe, concentrates and disperses on the outside of the pipe, and is less effective in preventing cracks that occur from the inside of the pipe.

この対策として、型枠へのコンクリート投入の最終工程
で金属繊維混入量の多いコンクリートを投入する方法が
とられたりするが、管内面側にはコンクリート遊離水が
多量に出てくるため十分なひび割れ防止対策とはなり得
ない。
As a countermeasure to this problem, a method is taken in which concrete with a high amount of metal fibers is poured into the formwork in the final step of pouring the concrete into the formwork, but since a large amount of free concrete water comes out on the inner surface of the pipe, it is difficult to crack the concrete. It cannot be used as a preventive measure.

この発明は、従来の前記した問題を解消するためになさ
れたもので、既存のコンクリート管に比べ耐摩耗性にす
ぐれかつ軽量で高強度のコンクリート管の製造法を提案
することを目的とするものである。
This invention was made in order to solve the above-mentioned conventional problems, and the purpose is to propose a method for manufacturing a concrete pipe that is lighter and has higher strength than existing concrete pipes and has excellent wear resistance. It is.

この発明は、スチールファイバー等の金属繊維と炭素繊
維等の非金属繊維をセメントコンクリート類中に混入分
散させこれを未硬化状態で遠心成形機にかけて製造する
方法であり、前記金属繊維と非金属繊維の比重差を利用
して金属繊維豊富混入層を管外面側に、非金属繊維豊富
混入層を管内面側にそれぞれ分離積層させることを特徴
とするものである。
This invention is a method of manufacturing by mixing and dispersing metal fibers such as steel fibers and non-metallic fibers such as carbon fibers in cement concrete, and subjecting the mixture in an uncured state to a centrifugal molding machine. The method is characterized in that a layer rich in metal fibers is layered on the outer surface of the tube, and a layer rich in non-metal fibers is layered on the inner surface of the tube, using the difference in specific gravity.

すなわち、スチールファイバー等の金属繊維と炭素繊維
等の非金属繊維の比重は、前者が重く後者が軽いため、
この金属繊維と非金属繊維を混入させた未硬化状態のコ
ンクリート類を遠心成形機にかけると、比重の重い金属
繊維は大半が管外面側に集中して金属繊維豊富混入層が
形成され、比重の軽い非金属繊維は大半が管内面側に集
中して非金属繊維豊富混入層が形成され、管内外面共に
耐ひび割れ性、耐摩耗性に富むコンクリート管を製造し
得る。
In other words, the specific gravity of metal fibers such as steel fibers and non-metallic fibers such as carbon fibers is that the former is heavier and the latter is lighter.
When this uncured concrete mixed with metal fibers and non-metallic fibers is applied to a centrifugal molding machine, most of the metal fibers with heavy specific gravity are concentrated on the outer surface of the tube, forming a layer rich in metal fibers, and Most of the light non-metallic fibers are concentrated on the inner surface of the tube to form a layer rich in non-metallic fibers, making it possible to produce a concrete tube that is highly resistant to cracking and abrasion on both the inner and outer surfaces of the tube.

この発明における金属繊維としては、普通鋼、ステンレ
ス鋼、あるいは防錆処理が施された鋼繊維等、素材が金
属繊維であって比重が非金属繊維より太きいものであれ
ば特に限定されない。
The metal fibers used in the present invention are not particularly limited as long as they are made of metal fibers and have a higher specific gravity than non-metallic fibers, such as ordinary steel, stainless steel, or steel fibers treated with anti-rust treatment.

また非金属繊維としては炭素繊維、ガラス繊維、石綿、
岩綿等いずれでも良いが、望ましくは比重が小さい炭素
繊維が特に効果的である。
In addition, non-metallic fibers include carbon fiber, glass fiber, asbestos,
Any material such as rock wool may be used, but preferably carbon fiber having a low specific gravity is particularly effective.

そして、前記金属繊維と非金属繊維は弾性係数比および
比重比が2〜6となるものを用いることとし、かつ両繊
維は容積混入率比が0.05〜6となるようにコンクリ
ートあるいはモルタル中に混入することを条件とする。
The metal fibers and the non-metal fibers should have an elastic modulus ratio and a specific gravity ratio of 2 to 6, and both fibers should be placed in concrete or mortar so that the volume ratio is 0.05 to 6. subject to the condition that it be mixed with

前記金属繊維と非金属繊維の弾性係数比を2〜6と限定
したのは次の理由による。
The reason why the elastic modulus ratio of the metal fiber and non-metal fiber is limited to 2 to 6 is as follows.

金属繊維と非金属繊維の弾性係数比が2未満では、ひび
割れ強度の向上には効果があるが、靭性、、変形能が乏
しくなり、また6を越えると、非金属繊維によるひび割
れ強度、引張強度、曲げ強度に対する補強効果が期待で
きない。
If the elastic modulus ratio of metal fibers and non-metallic fibers is less than 2, it is effective in improving cracking strength, but the toughness and deformability become poor, and if it exceeds 6, the cracking strength and tensile strength due to non-metallic fibers are reduced. , no reinforcement effect on bending strength can be expected.

また前記鋼繊維の比重(ρA)は7,87で、炭素繊維
の比重(ρB)は1.4〜1.8、ガラス繊維のρBは
2.5、アスベス,トのρBは2.4〜3.−4である
ことから、ρA/ρ8も2〜6と限定した。
Further, the specific gravity (ρA) of the steel fiber is 7.87, the specific gravity (ρB) of carbon fiber is 1.4-1.8, the ρB of glass fiber is 2.5, and the ρB of asbestos is 2.4-1.8. 3. -4, ρA/ρ8 was also limited to 2 to 6.

また前記金属繊維と非金属繊維の容積混入率比を0.0
5〜6と限定した理由は、両繊維の補強効果が同等とな
るための混入率から決定したもので、0.05未満では
金属繊維によるひび割れ強度、引張強度、曲げ強度の改
善効果がほとんどなくなり、6を越えると非金属繊維に
よるひび割れ強度、引張強度、曲げ強度の改善効果が期
待できなくなる。
In addition, the volume mixing ratio of the metal fibers and non-metal fibers is set to 0.0.
The reason why it was limited to 5 to 6 was determined from the mixing ratio so that the reinforcing effect of both fibers would be equal.If it is less than 0.05, the improvement effect of metal fibers on cracking strength, tensile strength, and bending strength will be almost gone. , 6, the effect of improving cracking strength, tensile strength, and bending strength by nonmetallic fibers cannot be expected.

次に、この発明の一実施例を、図面を参照しつつ説明す
る。
Next, one embodiment of the present invention will be described with reference to the drawings.

先ず、弾性係数比および比重比が2〜6の金属繊維aと
非金属繊維bとを容積混入率比が0,05〜6の範囲と
なるように混合し、これをセメント、骨材、水、混和剤
等のマトリックスを形成する材料と共に混練する。
First, metal fibers a with an elastic modulus ratio and specific gravity ratio of 2 to 6 and non-metal fibers b are mixed so that the volume mixing ratio is in the range of 0.05 to 6, and this is mixed with cement, aggregate, and water. , kneading together with materials forming a matrix such as admixtures.

この金属繊維aと非金属繊維bを混入せしめたコンクリ
ート、モルタル類を、回転支持ローラ2上で円周方向に
回転駆動中の型枠1内に投入する。
Concrete and mortar mixed with the metal fibers a and non-metal fibers b are poured into the formwork 1 which is being rotated in the circumferential direction on the rotary support rollers 2.

この遠心成形により、比重の大きな金属繊維aは比重の
小さい非金属繊維bより大きな遠心力を受けて管外面側
に集中し、金属繊維豊富混入層3aが形成される。
By this centrifugal forming, the metal fibers a having a high specific gravity are subjected to a larger centrifugal force than the non-metallic fibers b having a lower specific gravity and are concentrated on the outer surface of the tube, forming a layer 3a rich in metal fibers.

また同時に、非金属繊維bは管内面側に集中し非金属繊
維豊富混入層3bが形成される。
At the same time, the nonmetallic fibers b are concentrated on the inner surface of the tube to form a nonmetallic fiber rich mixed layer 3b.

この際、型枠1の回転により遠心力を受ける金属繊維a
と非金属繊維bは型枠面に対し円周方向と管軸方向に2
次元的に分散されるので、硬化後の管内外面からの負荷
すなわち管に作用する曲げ、あるいはフープテンンヨン
に対し有利な配向となる。
At this time, the metal fiber a receives centrifugal force due to the rotation of the formwork 1.
and non-metallic fiber b are 2 times in the circumferential direction and the tube axis direction with respect to the formwork surface.
Dimensional distribution provides an advantageous orientation for loads from the inner and outer surfaces of the tube after curing, ie, for bending or hoop tensioning applied to the tube.

また、両繊維は完全に分散し2層となることはなく、金
属繊維豊富混入層3aにも少量の非金属繊維bが、また
非金属繊維豊富混入層3bにも少量の金属繊維aがそれ
ぞれ混入しているため、両繊維の複合した補強効果が期
待できる。
In addition, both fibers are not completely dispersed and do not form two layers, and a small amount of non-metallic fibers b is also present in the layer 3a rich in metal fibers, and a small amount of metal fibers a is also present in the layer 3b rich in non-metallic fibers. Since these fibers are mixed together, a reinforcing effect that combines both fibers can be expected.

なお、鉄筋コンクリート管を製造する場合は予め型枠内
に鉄筋を挿入しておいて繊維混入コンクリート、モルタ
ル類を投入すればよい。
In addition, when manufacturing a reinforced concrete pipe, reinforcing bars may be inserted into the formwork in advance and fiber-mixed concrete and mortar may be added.

以上説明したごとく、この発明によれば、管外面側に金
属繊維を、管内面側に非金属繊維をそれぞれ分散混入さ
せることができるので、管内外面共に耐ひび割れ性、耐
摩耗性に富む補強層を形成せしめることができ、また管
内を流れる液体による錆の問題もなく、高品質のコンク
リート管を製造することができる。
As explained above, according to the present invention, metal fibers can be dispersed and mixed in the outer surface of the tube and non-metallic fibers can be mixed in the inner surface of the tube, so that the reinforcing layer is highly resistant to cracking and wear on both the inner and outer surfaces of the tube. In addition, there is no problem of rust caused by the liquid flowing inside the pipe, and high-quality concrete pipes can be manufactured.

また、繊維補強コンクリートの強度は普通コンクリート
の2〜3倍と高いため、管肉厚の低減が可能な上、鉄筋
と併用する場合にはその使用量を低減することができ、
より高強度、高耐久性のコンクリート管を安価に提供し
得る。
In addition, the strength of fiber-reinforced concrete is two to three times higher than that of ordinary concrete, so it is possible to reduce the pipe wall thickness, and when used in conjunction with reinforcing steel, the amount used can be reduced.
A concrete pipe with higher strength and durability can be provided at a lower cost.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の一実施例を示す説明図である。 図中1……型枠、2……回転支持ローラ、3a……金属
繊維豊富混入層、3b……非金属繊維豊富混入層、a…
…金属繊維、b……非金属繊維。
The drawings are explanatory diagrams showing one embodiment of the present invention. In the figure, 1...formwork, 2...rotating support roller, 3a...layer rich in metal fibers, 3b...layer rich in non-metal fibers, a...
...metallic fiber, b...nonmetallic fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 弾性係数比および比重比が2〜6の金属繊維と非金
属繊維を補強材として用い、前記金属繊維と非金属繊維
を容積混入率比が0.05〜6の範囲となるようにセメ
ントコンクリート類中に混入せしめ該コンクリート類を
遠心成形することにより、前記金属繊維と非金属繊維の
比重差により管外面側に金属繊維豊富混入層を、管内面
側に非金属繊維豊富混入層を形成せしめることを特徴と
する繊維補強コンクリート積層管の製造方法。
1 Using metal fibers and non-metal fibers with an elastic modulus ratio and specific gravity ratio of 2 to 6 as reinforcing materials, cement concrete is made so that the volume mixing ratio of the metal fibers and non-metal fibers is in the range of 0.05 to 6. By centrifugally forming the concrete, a layer rich in metal fibers is formed on the outer surface of the tube and a layer rich in non-metal fibers is formed on the inner surface of the tube due to the difference in specific gravity between the metal fibers and non-metal fibers. A method for manufacturing a fiber-reinforced concrete laminated pipe, characterized by:
JP55137067A 1980-09-30 1980-09-30 Manufacturing method of fiber reinforced concrete laminated pipe Expired JPS5814287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55137067A JPS5814287B2 (en) 1980-09-30 1980-09-30 Manufacturing method of fiber reinforced concrete laminated pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55137067A JPS5814287B2 (en) 1980-09-30 1980-09-30 Manufacturing method of fiber reinforced concrete laminated pipe

Publications (2)

Publication Number Publication Date
JPS5761514A JPS5761514A (en) 1982-04-14
JPS5814287B2 true JPS5814287B2 (en) 1983-03-18

Family

ID=15190117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55137067A Expired JPS5814287B2 (en) 1980-09-30 1980-09-30 Manufacturing method of fiber reinforced concrete laminated pipe

Country Status (1)

Country Link
JP (1) JPS5814287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2643971B2 (en) * 1988-02-25 1997-08-25 株式会社青木建設 Fume tube and manufacturing method
JPH0430062A (en) * 1990-05-25 1992-02-03 Ohbayashi Corp Fiber-reinforced concrete member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116815A (en) * 1975-04-04 1976-10-14 Nippon Yakin Kogyo Co Ltd Method of reinforcing concrete with fibres

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116815A (en) * 1975-04-04 1976-10-14 Nippon Yakin Kogyo Co Ltd Method of reinforcing concrete with fibres

Also Published As

Publication number Publication date
JPS5761514A (en) 1982-04-14

Similar Documents

Publication Publication Date Title
CN101806096B (en) Steel tube-concrete composite structure
Padmini et al. Behaviour of concrete with low-strength bricks as lightweight coarse aggregate
CN205990762U (en) A kind of cylinder ultra-high performance concrete permanent template
JPS5814287B2 (en) Manufacturing method of fiber reinforced concrete laminated pipe
NO771496L (en) CONCRETE COATING STONE AND METHOD OF ITS MANUFACTURE
CN107795071A (en) A kind of non-adhesive superhigh tenacity cement-base composite material functionally gradient beam and method
Yin et al. Interfacial Properties of Textile-Reinforced Concrete and Concrete in Chloride Freezing-and-Thawing Cycle.
JPS5814288B2 (en) Manufacturing method of fiber reinforced concrete laminated pipe
CN205189435U (en) Reinforced concrete reinforced structure
Parameswaran et al. Current research and applications of fiber reinforced concrete composites in India
JP2001152404A (en) Concrete block for water permeable pavement, manufacturing method therefor and water permeable paving slab
CN110130579B (en) Cement-based profile for combined concrete column and construction method thereof
JPH0742305A (en) Centrifugally formed steel pipe concrete pillar and manufacture thereof
JPS6338591B2 (en)
JPH0760731A (en) Production of fiber-reinforced cement composite material
JPH08150613A (en) Fiber reinforced resin concrete hume pipe and its production
SE439770B (en) PROCEDURE FOR PREPARING A COATED RUBBER
JP5332177B2 (en) Laminated board
Mirzamohammadi et al. Impacts of interfacial bonding between concrete substrate and cast/sprayed HPFRCC on flexural behaviour
CN206917083U (en) A kind of reinforcing bar strengthens ECC Combined concrete tee girders
Shao Characterization of high performance fiber-reinforced cement composites
JPS5815140Y2 (en) centrifugal concrete pipe
Khalel et al. Structural behavior of short RC circular columns strengthened by external CFRP
JPS5857285B2 (en) Manufacturing method of concrete composite pipe with built-in steel pipe
Illampas et al. Development and performance evaluation of a novel high-ductility fiber-reinforced lime-pozzolana matrix for textile reinforced mortar (TRM) masonry strengthening applications