JPH0760731A - Production of fiber-reinforced cement composite material - Google Patents

Production of fiber-reinforced cement composite material

Info

Publication number
JPH0760731A
JPH0760731A JP21168993A JP21168993A JPH0760731A JP H0760731 A JPH0760731 A JP H0760731A JP 21168993 A JP21168993 A JP 21168993A JP 21168993 A JP21168993 A JP 21168993A JP H0760731 A JPH0760731 A JP H0760731A
Authority
JP
Japan
Prior art keywords
fibers
fiber
cement
composite material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21168993A
Other languages
Japanese (ja)
Other versions
JP2867845B2 (en
Inventor
Miki Aoyama
幹 青山
Yoshimasa Hayashi
好正 林
Haruka Ogawa
晴果 小川
Kazufusa Mitani
一房 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP21168993A priority Critical patent/JP2867845B2/en
Publication of JPH0760731A publication Critical patent/JPH0760731A/en
Application granted granted Critical
Publication of JP2867845B2 publication Critical patent/JP2867845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain a fiber-reinforced cement composite material producing method for preventing fibers from floating by vibrating a form at the time of infiltration of a cement slurry and effectively exhibiting a reinforcing action by the fibers on the tensile stress side. CONSTITUTION:High-strength fibers 2 are spread on a bottom part of a form 1. Thereon, steel fibers 4 are spread. Thereafter, mortar 3 or the like is cast into the form 1. By vibrating the form 1, the fibers or the like are impregnated with the cement slurry.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繊維補強セメント系複
合材料の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a fiber-reinforced cementitious composite material.

【0002】[0002]

【従来の技術】従来、予め鋼繊維(SF)を型枠中に敷
設し、そこにセメントスラリーを含浸させて鋼繊維補強
コンクリート(SFRC)を形成する方法が実用化され
ている。予め練り混ぜを行う普通の鋼繊維補強コンクリ
ートの場合には、繊維の混入量は容積比2%が限度であ
るが、上記の方法によると、SFRC合成物の鋼繊維混
合比を容積比で18%まで上げることが可能であるとさ
れている。
2. Description of the Related Art Conventionally, a method of laying steel fiber (SF) in a mold in advance and impregnating it with cement slurry to form steel fiber reinforced concrete (SFRC) has been put into practical use. In the case of ordinary steel fiber reinforced concrete that is mixed in advance, the amount of fibers mixed is limited to 2% by volume, but according to the above method, the steel fiber mixture ratio of SFRC composite is 18% by volume. It is said that it is possible to raise it to%.

【0003】一方、鋼繊維に比べ引張強さが大きい高強
度繊維(炭素繊維CF,アラミド繊維AF,ビニロン繊
維VF等)を扱うことも試みられ、鋼繊維の場合と同様
に、高強度繊維とモルタル(コンクリート)とを混ぜ合
わせるため、振動を型枠にかけている。
On the other hand, it has also been attempted to handle high-strength fibers (carbon fiber CF, aramid fiber AF, vinylon fiber VF, etc.) having a higher tensile strength than steel fibers, and as with steel fibers, they are treated as high-strength fibers. Vibration is applied to the formwork to mix with mortar (concrete).

【0004】[0004]

【発明が解決しようとする課題】しかし、炭素繊維C
F,アラミド繊維AF,ビニロン繊維VFといった高強
度繊維の場合には、後記の表1から分かるように、セメ
ントマトリックスよりも比重が小さい。このため、図5
に示すように、高強度繊維2とモルタル(コンクリー
ト)3との混ぜ合わせに際し、型枠1にかける振動によ
って、比重の軽い高強度繊維2は上層に浮き上がってし
まう。
[Problems to be Solved by the Invention] However, carbon fiber C
In the case of high-strength fibers such as F, aramid fiber AF, and vinylon fiber VF, as can be seen from Table 1 below, the specific gravity is smaller than that of the cement matrix. Therefore, in FIG.
As shown in (1), when the high-strength fiber 2 and the mortar (concrete) 3 are mixed, the high-strength fiber 2 having a low specific gravity floats up due to the vibration applied to the formwork 1.

【0005】このため、得られた繊維補強セメント系複
合材料たるセメント製品10については、鋼繊維よりも
引張強度は大きいが、図6に示すように、部材が曲げモ
ーメントを受けた場合、引張応力側でクラック11が生
ずる等、繊維による有効な補強効果が得られないという
欠点があった。
Therefore, the obtained cement product 10 which is a fiber-reinforced cementitious composite material has a higher tensile strength than steel fiber, but as shown in FIG. There is a defect that an effective reinforcing effect due to the fiber cannot be obtained, for example, cracks 11 are generated on the side.

【0006】そこで、本発明の目的は、上記課題を解決
し、セメントスラリー含浸の際の振動によって繊維が浮
き上がるのを抑さえ、引張応力側で繊維による補強作用
を有効に発揮させ得る繊維補強セメント系複合材料の製
造方法を提供することにある。
Therefore, an object of the present invention is to solve the above problems and to prevent the fibers from floating due to vibration during impregnation of the cement slurry, and to effectively exert the reinforcing action of the fibers on the tensile stress side. It is to provide a method for producing a composite material.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明による繊維補強セメント系複合材料の製造方
法は、繊維補強セメント系複合材料の製造に際し、セメ
ント系マトリックスよりも比重の軽い繊維を型枠の下層
部に敷設し、該セメント系マトリックスよりも比重の重
い繊維をその上に敷設した後、セメントスラリー若しく
はモルタル等の該セメント系マトリックスを該型枠内に
流し込みまたは注入し、該型枠に振動を与えて、該セメ
ント系マトリックスをこれら繊維に含浸させるものであ
る(請求項1)。
In order to achieve the above object, the method for producing a fiber-reinforced cementitious composite material according to the present invention is characterized in that when the fiber-reinforced cementitious composite material is produced, fibers having a specific gravity lower than that of the cementitious matrix are used. Laying in the lower layer of the mold, laying fibers having a heavier specific gravity than the cement matrix, and then pouring or pouring the cement matrix such as cement slurry or mortar into the mold, A frame is vibrated to impregnate these fibers with the cementitious matrix (Claim 1).

【0008】上記セメント系マトリックスよりも比重の
軽い繊維を高強度繊維とし、また上記セメント系マトリ
ックスよりも比重の重い繊維を鋼繊維として、これら高
強度繊維と鋼繊維は、高強度繊維を短繊維又はメッシュ
繊維の形態で敷設し、鋼繊維を短繊維又はメッシュ繊維
の形態で敷設する形態の組み合わせとすることができる
(請求項2及び請求項3)。
Fibers having a specific gravity lower than that of the cement-based matrix are used as high-strength fibers, and fibers having a specific gravity higher than those of the cement-based matrix are used as steel fibers. Alternatively, it may be a combination of laying in the form of mesh fibers and laying steel fibers in the form of short fibers or mesh fibers (claims 2 and 3).

【0009】[0009]

【作用】請求項1〜3で取り扱う高強度繊維は、鋼繊維
SFに比べて引張り強さが大きいもの、例えば炭素繊維
CF,アラミド繊維AF,ビニロン繊維VF等であり、
これらはセメント系マトリックスよりも比重が小さい
(表1参照)。一方、鋼繊維SFはセメント系マトリッ
クスよりも比重が大きい。
The high-strength fibers handled in claims 1 to 3 are those having a higher tensile strength than the steel fibers SF, such as carbon fibers CF, aramid fibers AF, vinylon fibers VF, and the like.
These have a lower specific gravity than the cement-based matrix (see Table 1). On the other hand, the steel fiber SF has a larger specific gravity than the cement-based matrix.

【0010】この比重差の関係から、高強度繊維は鋼繊
維により抑さえられ、セメントスラリー含浸時に型枠に
振動を与えても、振動によって高強度繊維が浮き上がっ
て来ない。従って、得られる繊維補強セメント系複合材
料は、その部材の引張り側表層部近くにも高強度繊維が
充分に分散されており、その部材表層部に引張応力が作
用した際の繊維による補強効果を著しく向上させる。ま
た、補強材として性質の異なる2種類の繊維を利用して
いることから、ハイブリッド効果が得られる。
Due to this difference in specific gravity, the high-strength fibers are suppressed by the steel fibers, and even if vibration is applied to the form during impregnation of the cement slurry, the high-strength fibers do not come up due to the vibration. Therefore, the obtained fiber-reinforced cementitious composite material, high-strength fibers are sufficiently dispersed near the tensile side surface layer portion of the member, the reinforcing effect by the fiber when tensile stress acts on the member surface layer portion. Significantly improve. Moreover, since two types of fibers having different properties are used as the reinforcing material, a hybrid effect can be obtained.

【0011】繊維の利用形態としては、請求項2または
3の如く、高強度繊維及び鋼繊維共に、短繊維あるいは
長繊維として利用することができる。
As for the form of use of the fibers, as in claim 2 or 3, both the high-strength fibers and the steel fibers can be used as short fibers or long fibers.

【0012】[0012]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。 (実施例1)図1に示すように、成形に際してまず、炭
素繊維CF,アラミド繊維AF,ビニロン繊維VF等の
高強度繊維2から成る短繊維21を、型枠1の下層部に
敷設して、その上に鋼繊維4から成る短繊維41を敷設
した後、セメントスラリー若しくはモルタル(セメン
ト)3を型枠1内に流し込みまたは注入して、型枠1に
振動を与えて、繊維等にセメントスラリーを含浸させ
る。
An embodiment of the present invention will be described in detail below with reference to the accompanying drawings. (Example 1) As shown in FIG. 1, at the time of molding, first, short fibers 21 made of high-strength fibers 2 such as carbon fibers CF, aramid fibers AF, and vinylon fibers VF were laid in the lower layer of the formwork 1. After laying short fibers 41 made of steel fibers 4 on it, cement slurry or mortar (cement) 3 is poured or poured into the mold 1 to give vibration to the mold 1 to cement the fibers or the like. Impregnate the slurry.

【0013】表1に示すように、高強度繊維2は、セメ
ント系マトリックスよりも比重の小さい繊維であるが、
鋼繊維4はセメント系マトリックスよりも比重が大き
い。このため、このようにすると、セメントスラリー含
浸時に与える振動に対して、浮き上がろうとする高強度
短繊維21は鋼短繊維41により抑さえられ、浮き上が
らなくなる。よって、得られたコンクリート製品10に
おいては、内部で比較的均一に高強度繊維2が分散さ
れ、少くとも図1の下側にも高強度繊維2が存在するの
で、部材の表層部に引張応力が作用した際、繊維による
補強効果が顕著に現われる。従って、上記SFRC合成
物の含浸法を利用し、セメント系マトリックスよりも比
重の小さい高強度繊維で補強したFRCの製造が可能で
ある。
As shown in Table 1, the high-strength fiber 2 has a specific gravity smaller than that of the cement matrix,
The steel fiber 4 has a larger specific gravity than the cement matrix. Therefore, in this way, the high-strength short fibers 21 that try to float up are suppressed by the steel short fibers 41 and do not float up against the vibration given at the time of impregnating the cement slurry. Therefore, in the obtained concrete product 10, the high-strength fibers 2 are relatively evenly dispersed inside and the high-strength fibers 2 are also present at least in the lower side of FIG. When the fiber acts, the reinforcing effect of the fiber appears remarkably. Therefore, it is possible to manufacture the FRC reinforced with the high-strength fiber having a smaller specific gravity than the cement-based matrix by using the impregnation method of the SFRC compound.

【0014】この製造方法は、補強材として、性質の異
なる2種類の繊維2,4を利用していることから、ハイ
ブリッド効果が得られるものである。また、炭素繊維C
F,アラミド繊維AF,ビニロン繊維VFといった繊維
を利用しているため、鋼繊維SFの場合のように部材の
表面における錆の問題も発生しない。
Since this manufacturing method uses two types of fibers 2 and 4 having different properties as the reinforcing material, a hybrid effect can be obtained. Also, carbon fiber C
Since fibers such as F, aramid fiber AF, and vinylon fiber VF are used, the problem of rust on the surface of the member does not occur unlike the case of the steel fiber SF.

【0015】[0015]

【表1】 上記利点を有する高強度繊維で補強したFRCは、下記
の実施例2〜4の製造方法によっても同様に得られるも
のである。
[Table 1] The FRC reinforced with the high-strength fiber having the above advantages can be similarly obtained by the production methods of Examples 2 to 4 below.

【0016】(実施例2)図2に示すように、成形に際
してまず、炭素繊維CF,アラミド繊維AF,ビニロン
繊維VF等の高強度繊維2から成る短繊維を、型枠1の
下層部に敷設することは上記と同じであるが、その上に
敷設するのは鋼繊維4から成る短繊維ではなくワイヤメ
ッシュ42の形の長繊維とする。後は上記と同じで、セ
メントスラリー若しくはモルタル(セメント)3を型枠
1内に流し込みまたは注入し、型枠1に振動を与えて、
繊維等にセメントスラリーを含浸させる。
(Example 2) As shown in FIG. 2, at the time of molding, first, short fibers composed of high-strength fibers 2 such as carbon fibers CF, aramid fibers AF, and vinylon fibers VF are laid in the lower layer of the formwork 1. What is done is the same as above, but what is laid on it is not the short fibers consisting of the steel fibers 4 but the long fibers in the form of the wire mesh 42. After that, the same as above, the cement slurry or the mortar (cement) 3 is poured or poured into the mold 1, and the mold 1 is vibrated,
The fibers are impregnated with the cement slurry.

【0017】(実施例3)図3に示すように、成形に際
してまず、炭素繊維CF,アラミド繊維AF,ビニロン
繊維VF等の高強度繊維2を、短繊維ではなく、メッシ
ュ22の形の長繊維として型枠1の下層部に敷設する。
そして、その上に鋼繊維4から成る短繊維41を敷設
し、セメントスラリー若しくはモルタル(セメント)3
を型枠1内に流し込みまたは注入し、型枠1に振動を与
えて、繊維等にセメントスラリーを含浸させる。
(Example 3) As shown in FIG. 3, in molding, first, high strength fibers 2 such as carbon fibers CF, aramid fibers AF and vinylon fibers VF were replaced with long fibers in the form of mesh 22 instead of short fibers. Is laid in the lower layer of the formwork 1.
Then, a short fiber 41 made of steel fiber 4 is laid thereon, and cement slurry or mortar (cement) 3
Is poured or poured into the mold 1, and the mold 1 is vibrated to impregnate the fibers and the like with the cement slurry.

【0018】(実施例4)図4に示すように、成形に際
してまず、炭素繊維CF,アラミド繊維AF,ビニロン
繊維VF等の高強度繊維2を、図3の場合と同様に、メ
ッシュ22の形の長繊維として型枠1の下層部に敷設す
る。そして、その上に鋼繊維4から成る長繊維をワイヤ
メッシュ42の形態で敷設し、セメントスラリー若しく
はモルタル(セメント)3を型枠1内に流し込みまたは
注入し、型枠1に振動を与えて、繊維等にセメントスラ
リーを含浸させる。
(Embodiment 4) As shown in FIG. 4, at the time of molding, first, high strength fibers 2 such as carbon fibers CF, aramid fibers AF, vinylon fibers VF and the like are formed into a mesh 22 in the same manner as in FIG. It is laid in the lower layer part of the formwork 1 as the long fibers. Then, a long fiber made of steel fiber 4 is laid on it in the form of a wire mesh 42, and cement slurry or mortar (cement) 3 is poured or poured into the mold 1 to give vibration to the mold 1, The fibers are impregnated with the cement slurry.

【0019】[0019]

【発明の効果】以上要するに本発明によれば、次のよう
な効果が得られる。 1)セメント系マトリックスに対する比重差の関係か
ら、高強度繊維は鋼繊維により抑さえられ、セメントス
ラリー含浸時に型枠に振動を与えても、振動によって高
強度繊維が浮き上がって来ない。従って、得られる繊維
補強セメント系複合材料は、その部材の引張り側表層部
近くにも高強度繊維が充分に分散されており、その部材
表層部に引張応力が作用した際の繊維による補強効果を
著しく向上させる。
In summary, according to the present invention, the following effects can be obtained. 1) Due to the difference in specific gravity with respect to the cement-based matrix, the high-strength fibers are suppressed by the steel fibers, and even if vibration is applied to the form during impregnation of the cement slurry, the high-strength fibers do not come up due to the vibration. Therefore, the obtained fiber-reinforced cementitious composite material, high-strength fibers are sufficiently dispersed near the tensile side surface layer portion of the member, the reinforcing effect by the fiber when tensile stress acts on the member surface layer portion. Significantly improve.

【0020】2)補強材として性質の異なる2種類の繊
維を利用していることから、ハイブリッド効果が得られ
る。
2) Since two kinds of fibers having different properties are used as the reinforcing material, a hybrid effect can be obtained.

【0021】3)SFRC合成物の含浸法を利用し、セ
メント系マトリックスよりも比重の小さい高強度繊維で
補強したFRCの製造が可能である。
3) It is possible to manufacture an FRC reinforced with high-strength fibers having a specific gravity smaller than that of a cementitious matrix by utilizing the impregnation method of SFRC compound.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の繊維補強セメント系複合材料の製造方
法の第1の実施例を示す図である。
FIG. 1 is a diagram showing a first embodiment of the method for producing a fiber-reinforced cementitious composite material of the present invention.

【図2】本発明の製造方法の第2の実施例を示す図であ
る。
FIG. 2 is a diagram showing a second embodiment of the manufacturing method of the present invention.

【図3】本発明の製造方法の第3の実施例を示す図であ
る。
FIG. 3 is a diagram showing a third embodiment of the manufacturing method of the present invention.

【図4】本発明の製造方法の第4の実施例を示す図であ
る。
FIG. 4 is a diagram showing a fourth embodiment of the manufacturing method of the present invention.

【図5】従来の繊維補強セメント系複合材料の製造方法
を示す図である。
FIG. 5 is a diagram showing a conventional method for producing a fiber-reinforced cementitious composite material.

【図6】従来の繊維補強セメント系複合材料の引張り側
でのクラックを示す図である。
FIG. 6 is a diagram showing cracks on the tensile side of a conventional fiber-reinforced cementitious composite material.

【符号の説明】[Explanation of symbols]

1 型枠 2 高強度繊維 3 セメントスラリー若しくはモルタル 4 鋼繊維 10 セメント製品(繊維補強セメント系複合材料) 11 クラック 21 短繊維 22 メッシュ 41 短繊維 42 ワイヤメッシュ 1 Formwork 2 High-strength fiber 3 Cement slurry or mortar 4 Steel fiber 10 Cement product (fiber reinforced cementitious composite material) 11 Crack 21 Short fiber 22 Mesh 41 Short fiber 42 Wire mesh

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三谷 一房 東京都清瀬市下清戸4丁目640番地 株式 会社大林組技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Ichifusa Mitani 4-640 Shimoseido, Kiyose-shi, Tokyo Inside Obayashi Corporation Technical Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 繊維補強セメント系複合材料の製造に際
し、セメント系マトリックスよりも比重の軽い繊維を型
枠の下層部に敷設し、該セメント系マトリックスよりも
比重の重い繊維をその上に敷設した後、セメントスラリ
ー若しくはモルタル等の該セメント系マトリックスを該
型枠内に流し込みまたは注入し、該型枠に振動を与え
て、該セメント系マトリックスをこれら繊維に含浸させ
ることを特徴とする繊維補強セメント系複合材料の製造
方法。
1. When manufacturing a fiber-reinforced cementitious composite material, fibers having a specific gravity lower than that of the cementitious matrix are laid in the lower part of the formwork, and fibers having a heavier specific gravity than the cementitious matrix are laid thereon. Thereafter, the cement-based matrix such as cement slurry or mortar is poured or poured into the mold, and the mold is vibrated to impregnate the fibers with the cement-based matrix. Method for manufacturing a composite material.
【請求項2】 上記セメント系マトリックスよりも比重
の軽い繊維が高強度繊維であって、該高強度繊維を短繊
維又はメッシュ繊維の形態で敷設することを特徴とする
請求項1記載の繊維補強セメント系複合材料の製造方
法。
2. The fiber reinforcement according to claim 1, wherein the fibers having a specific gravity lower than that of the cement-based matrix are high-strength fibers, and the high-strength fibers are laid in the form of short fibers or mesh fibers. Cement-based composite material manufacturing method.
【請求項3】 上記セメント系マトリックスよりも比重
の重い繊維が鋼繊維であって、該鋼繊維を短繊維又はメ
ッシュ繊維の形態で敷設することを特徴とする請求項1
または2記載の繊維補強セメント系複合材料の製造方
法。
3. The fiber having a higher specific gravity than the cement-based matrix is a steel fiber, and the steel fiber is laid in the form of a short fiber or a mesh fiber.
Alternatively, the method for producing the fiber-reinforced cementitious composite material according to the item 2.
JP21168993A 1993-08-26 1993-08-26 Method for producing fiber-reinforced cementitious composite material Expired - Lifetime JP2867845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21168993A JP2867845B2 (en) 1993-08-26 1993-08-26 Method for producing fiber-reinforced cementitious composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21168993A JP2867845B2 (en) 1993-08-26 1993-08-26 Method for producing fiber-reinforced cementitious composite material

Publications (2)

Publication Number Publication Date
JPH0760731A true JPH0760731A (en) 1995-03-07
JP2867845B2 JP2867845B2 (en) 1999-03-10

Family

ID=16609963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21168993A Expired - Lifetime JP2867845B2 (en) 1993-08-26 1993-08-26 Method for producing fiber-reinforced cementitious composite material

Country Status (1)

Country Link
JP (1) JP2867845B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241937A (en) * 2005-03-07 2006-09-14 Sumitomo Osaka Cement Co Ltd Method of producing fiber reinforced concrete
JP2011256080A (en) * 2010-06-10 2011-12-22 Taiheiyo Cement Corp Cementitious hardened material
JP2014189988A (en) * 2013-03-26 2014-10-06 Ohbayashi Corp Fiber-reinforced cement board, method of manufacturing the same, handrail wall, and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241937A (en) * 2005-03-07 2006-09-14 Sumitomo Osaka Cement Co Ltd Method of producing fiber reinforced concrete
JP2011256080A (en) * 2010-06-10 2011-12-22 Taiheiyo Cement Corp Cementitious hardened material
JP2014189988A (en) * 2013-03-26 2014-10-06 Ohbayashi Corp Fiber-reinforced cement board, method of manufacturing the same, handrail wall, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2867845B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
EP0010777B1 (en) Shaped article and composite material and method for producing same
CN103964795A (en) Reinforced cement based composite material with fiber woven mesh and preparation method of reinforced cement based composite material
WO2019214187A1 (en) Trc reinforcement method for improving anti-earthquake performance of multi-piece brick masonry wall
CN107327078A (en) A kind of Novel steel continuous fiber composite reinforcing ECC concrete composite beams and preparation method thereof
JP2002129754A (en) Reinforcing method for concrete structure
JP2867845B2 (en) Method for producing fiber-reinforced cementitious composite material
CN107795071A (en) A kind of non-adhesive superhigh tenacity cement-base composite material functionally gradient beam and method
KR101309135B1 (en) A Fiber Reinforced Concrete For Floor Slab
CA3015511A1 (en) Fibers for reinforcing concrete
FI110494B (en) A method of making facade material
Majumdar Fibre cement and concrete—A review
JP2558100B2 (en) Hybrid type fiber reinforced lightweight concrete structure
JPS62178644A (en) Fiber reinforced concrete structure
JPH10249844A (en) Fiber-reinforced polymer cement composition and its forming method
JP2628959B2 (en) Manufacturing method of lightweight concrete board
KR100514351B1 (en) Concrete artificial fishing reef using recycled aggregate
JPS62241884A (en) Surface inforcement for concrete structure
JP2007514077A (en) Component
WO2023282216A1 (en) Concrete pouring method
JP3024991B2 (en) Architectural plate
RU2744905C2 (en) Method of improving reliability and durability of reinforced concrete structures
JP3928011B2 (en) Method for reinforcing concrete structures
JP2005262713A (en) Concrete molded body and method for manufacturing it
JP2001003569A (en) Method for placing joint of concrete
JPS63270337A (en) Reinforcing material for slab or like and manufacture