JPS58142151A - Energy accumulating device - Google Patents

Energy accumulating device

Info

Publication number
JPS58142151A
JPS58142151A JP57023972A JP2397282A JPS58142151A JP S58142151 A JPS58142151 A JP S58142151A JP 57023972 A JP57023972 A JP 57023972A JP 2397282 A JP2397282 A JP 2397282A JP S58142151 A JPS58142151 A JP S58142151A
Authority
JP
Japan
Prior art keywords
substance
transmission pipe
sunlight
light
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57023972A
Other languages
Japanese (ja)
Inventor
Manabu Ishizuka
学 石塚
Hiroshi Ogawa
洋 小川
Masaaki Kaji
加治 雅章
Tadao Mikami
三上 忠雄
Shoichi Suzuki
鈴木 昭一
Kozo Kimura
興造 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Takenaka Komuten Co Ltd
Original Assignee
Kawamura Institute of Chemical Research
Takenaka Komuten Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Takenaka Komuten Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP57023972A priority Critical patent/JPS58142151A/en
Publication of JPS58142151A publication Critical patent/JPS58142151A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To improve the efficiency of utilization of sunlight by a method wherein in the titled device in which optical energy such as sunlight is released as thermal energy in time of need, a transfer pipe is connected to a sealed vessel through which an optical energy storing chemical compound circulates, so that the optical energy is eleased into the sealed vessel. CONSTITUTION:In case the energy accumulating device is used, a light collecting unit 24 of a light collecting device 12 is moved to follow the sun and the sunlight converged by converging lenses 28 is introduced into the sealed vessel 24 arranged in an underground room 43 through a bundle of optical fiber cables 32 and the transfer pipe 38. In this case, the sealed vessel 44 includes therein an N-substance (a chemical compound capable of being highly distorted) transferred from an N-substance storage vessel 66 through the operation of a pump 68 and such N-substance is coverted into a Q-substance (a highly distortional chemical compound) as a result of its optical reactions against the sunlight from the transfer pipe 38. The Q-substance is then stored in a storage vessel 56 through a pipe 54 and after that, it is transferred to a catalyst device 62 within a hot water storage tank 60 by means of a pump 58. Thus, the water in the tank 60 is heated by the thermal reactions of the Q-substance against the catalyst and the Q-substance itself is converted into the N-substance so as to be returned to the N-substance storage vessel 66.

Description

【発明の詳細な説明】 本発明は太陽光等の光エネルギを蓄積し必要時に熱エネ
ルギとして放出可能なエネルギ蓄積装置i゛に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an energy storage device i' that can store light energy such as sunlight and release it as heat energy when necessary.

光エネルギを蓄積することができるエネルギ蓄積装置と
しては構築物天井部に集熱器を設け、この集熱器へ水を
循環させ光エネルギを熱エネルギに変換して蓄積する装
置が知られている。
As an energy storage device capable of storing light energy, a device is known in which a heat collector is provided on the ceiling of a building, and water is circulated through the heat collector to convert light energy into thermal energy and store the heat energy.

しかしこの従来のエネルギ蓄積装置でri IIJIT
 f1M物上部などに設置される集熱器−・熱媒体−(
°ある水を循環輸送する必要があり、集熱器内・\、導
いた太陽光を水へ熱エネルギとして蓄積させるもlJ)
で頭゛換効率が悪く熱エネルギに変換された後VCも熱
損失が大きく長期間のエネルギ蓄積は不用°能どなっ(
いる。
However, with this conventional energy storage device, ri IIJIT
Heat collector/thermal medium installed on top of f1M object etc.
° It is necessary to transport some water in a circular manner, and the sunlight that is guided into the water must be stored in the water as heat energy in a heat collector.
VC also has a high heat loss after being converted into heat energy due to its poor conversion efficiency, making it unnecessary to store energy for a long period of time (
There is.

本発明は上記事実を考慮し、熱媒体を長距離に亘って循
環搬送する必要がなく、利用光効率が高く貯蓄時のエネ
ルギ損失がないエネルギ蓄積装+7+を得ることが目的
である。
In consideration of the above facts, the present invention aims to provide an energy storage device +7+ that does not require circulating heat medium over a long distance, has high light utilization efficiency, and has no energy loss during storage.

本発明に係るエネルギ蓄積装置は光エネルギ貯蔵化合物
を密閉容器の一端から他端へ流通させ、この密閉容器へ
は伝送パイプを連通し、この伝送パイプの先端部を集光
部へ連通して集光部からの光を伝送パイプの鏡面で反射
させながら密閉容器へ導き、光エネルギ貯蔵化合物が光
を受けて化学変化を生じ光エネルギを蓄積するようにな
っている。
The energy storage device according to the present invention allows a light energy storage compound to flow from one end of a closed container to the other end, a transmission pipe is connected to the closed container, and a tip of the transmission pipe is connected to a light collecting section to collect the light energy. The light from the light section is reflected by the mirror surface of the transmission pipe and guided into the sealed container, and the light energy storage compound undergoes a chemical change upon receiving the light and stores light energy.

以下本発明の実施例を図面に従い説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図に示される本実施例では構築物10の屋上に集光
部としての集光装置12が設けられている。
In this embodiment shown in FIG. 1, a light condensing device 12 as a light condensing unit is provided on the roof of a building 10.

この集光装置12tま構築物10へ固着された基音14
の垂直軸16へ水平旋回フレーム18が軸支されており
、この水平旋回フレーム18の水平軸20へ垂直旋回フ
レーム22が軸支されている。
The fundamental tone 14 fixed to the structure 10 by this light condensing device 12t
A horizontal rotating frame 18 is pivotally supported on a vertical axis 16 of the horizontal rotating frame 18, and a vertical rotating frame 22 is pivotally supported on a horizontal axis 20 of this horizontal rotating frame 18.

この垂直旋回フレーム22にF′i集光ユニット24′
L六 が複数個固着されている。この集光ユニット24では第
2図に示される如くり゛−ス26の開口部へ複数個の集
光し/ズ28が光軸を互に平行とじて取付けられている
。これらの集光レンズ28の焦点には光ファイバ30の
一端がそれぞれ配置されて太陽光を入光するようになっ
ている。これらの光フアイバケーブル30は集束され−
Cバノドル光ファイバケーブル32となっている。
F'i condensing unit 24' is attached to this vertically rotating frame 22.
A plurality of L6s are fixed. In this condensing unit 24, as shown in FIG. 2, a plurality of condensing/lenses 28 are attached to an opening of a lens 26 with their optical axes parallel to each other. One end of an optical fiber 30 is placed at the focal point of each of these condensing lenses 28 to allow sunlight to enter. These fiber optic cables 30 are bundled and -
It is a C-vano dollar optical fiber cable 32.

ここに水平旋回フレーム18は基台14へ設けられた図
示しない駆動装置で垂直軸16回りに水平旋回可能であ
り、垂直旋回フレーム22は水平旋回フレーム18へ設
けられた図示しない駆動装置で水平軸20回りに垂直旋
回可能となっている。
Here, the horizontal rotation frame 18 can be horizontally rotated around the vertical axis 16 by a drive device (not shown) provided to the base 14, and the vertical rotation frame 22 can be horizontally rotated around the vertical axis 16 by a drive device (not shown) provided to the horizontal rotation frame 18. It can turn vertically around 20 degrees.

これらの駆動装置は垂直旋回フレーム22へ取付けられ
た太陽光追跡セ/す34またげ予め太陽光の移動軌跡を
記憶した記憶装置からの指令によって集光ユニット24
を常に太陽光に対向させるようになっている。
These driving devices straddle the sunlight tracking unit 34 attached to the vertically rotating frame 22 and move the light condensing unit 24 in response to instructions from a storage device that stores the movement trajectory of sunlight in advance.
is designed to always face sunlight.

バンドル光フアイバケーブル32の他端はコネクタ36
を介して伝送パイプ38の上端部へ連通されており、と
の伝送パイプ38が集光装置12の垂直軸16内を垂下
して構築物10内へ導かれている。伝送パイプ381j
第3.4図に示される如く互に同軸的に配置される複数
本の単位伝送パイプ40から構成されている。これらの
単位伝送パイプ401.i (:の内周面が鏡面とされ
て一端から送り込まれる太陽光を反射させなから他端へ
送り出すようになっている。この単位伝送パイプ40は
内部へ反射フィルムや反射鏡を設けたり、内周面にAf
蒸着、A/蒸着を施す等の手段で容品に反射効率のよい
鏡面を得ることができる。
The other end of the bundle optical fiber cable 32 is connected to a connector 36.
and to the upper end of a transmission pipe 38 which depends within the vertical axis 16 of the concentrator 12 and is guided into the structure 10 . Transmission pipe 381j
As shown in Fig. 3.4, it is composed of a plurality of unit transmission pipes 40 arranged coaxially with each other. These unit transmission pipes 401. The inner circumferential surface of i (: is made into a mirror surface so that the sunlight sent from one end is not reflected but sent to the other end.This unit transmission pipe 40 is provided with a reflective film or a reflective mirror inside, Af on the inner peripheral surface
A mirror surface with good reflection efficiency can be obtained on the container by means of vapor deposition, A/vapor deposition, or the like.

これらの単位伝送パイプ40の接合部は特に第3図に詳
細に示される如く、一方の単位伝送パイプ40の出光端
部を先端部にかけて次第に小径とし、他方の単位伝送パ
イプ40の入党端部ケ先端部にかけて次第に大径としこ
の入党端部へ出光端部を嵌入させることにより連結され
ており、これによって一方の伝送パイプ40の出光部か
ら反射光が逆戻りすることなく、連結された単位連送パ
イプの入光部へと入り込むことができる。単位伝送パイ
プ40の接合部は上記構造に限らず、一方の単位伝送パ
イプの真直端部を他方の真直端部内へ挿入して重合する
接合構造、単位伝送パイプの端面を互に突き合わせる接
合構造等が適用で炒る。
As shown in particular in detail in FIG. 3, the joint portion of these unit transmission pipes 40 has a diameter that gradually decreases from the light output end of one unit transmission pipe 40 to the tip, and the joining end of the other unit transmission pipe 40. The diameter gradually increases toward the tip, and the light output end is fitted into the input end of the pipe to connect the connected unit continuous transmission without the reflected light returning from the light output part of one of the transmission pipes 40. It can enter the light entrance part of the pipe. The joints of the unit transmission pipes 40 are not limited to the above structure, but may include a joint structure in which the straight end of one unit transmission pipe is inserted into the other straight end and overlapped, and a joint structure in which the end surfaces of the unit transmission pipes are butted against each other. etc. are applied and roasted.

また伝送パイプ38の中間部には第4図に示される如く
適宜位置に屈曲部42を設ければ構築物10内の任意の
場所へ伝送パイプ38を配設することができると共に温
度変化による伸縮をも吸収することができる。
Further, by providing a bending portion 42 at an appropriate position in the middle of the transmission pipe 38 as shown in FIG. 4, the transmission pipe 38 can be placed anywhere within the structure 10 and can be prevented from expanding or contracting due to temperature changes. can also be absorbed.

#)を封入することが好ましい。この封入に際して必要
であれば伝送パイプ38の軸方向端部ヘガラス、レンズ
等を取付けて密閉構造とする。
#) is preferably included. During this sealing, if necessary, a glass, lens, etc. is attached to the axial end of the transmission pipe 38 to create a sealed structure.

不活性ガスの封入により伝送パイプ38内の発程度)と
すれば気体分子、水蒸気による散乱を防止して進行する
光の戻り成分の発生を回避することができる。さらに伝
送パイプ内の水蒸気凝縮を防止するためには不活性ガス
封入の他、パイプ内を脱気した9五酸化リン、シリカゲ
ル活性炭等の乾燥剤を設けることも可能である。
If the amount of light emitted within the transmission pipe 38 is reduced by filling in an inert gas, scattering by gas molecules and water vapor can be prevented, and generation of return components of the traveling light can be avoided. Furthermore, in order to prevent water vapor condensation within the transmission pipe, in addition to filling the pipe with an inert gas, it is also possible to provide a desiccant such as deaerated phosphorus 9 pentoxide or silica gel activated carbon inside the pipe.

伝送パイプ38の出光部である端部は第1図に示される
如く構築物10の地下室43へ設けられた密閉容器44
−\接続されている。この密閉容器44は第4図にも示
される如く截頭円錐形状で内面は鏡面となっている。こ
の鏡面は伝送パイプ38の場合と同様な手段で取付は可
能である。
The end of the transmission pipe 38, which is the light output part, is connected to a closed container 44 provided in the basement 43 of the structure 10, as shown in FIG.
−\Connected. As shown in FIG. 4, this closed container 44 has a truncated conical shape and has a mirror surface inside. This mirror surface can be attached by the same means as in the case of the transmission pipe 38.

伝送パイプ38の端部は密閉容器440頂面を貫通して
密閉容器44と連通されており、集光装置12からの太
陽光を密閉容器内へ放出するようになっている。この密
閉容器44it伝送パイプ38からの太陽光のうち紫外
線領域の光によって温度上昇するが、冷却手段を設は密
閉容器からの回収熱をも利用可能である。
The end of the transmission pipe 38 passes through the top surface of the closed container 440 and is communicated with the closed container 44, so that sunlight from the light condensing device 12 is emitted into the closed container. Although the temperature rises due to the ultraviolet light of the sunlight coming from the 44-it transmission pipe 38 in the sealed container, it is also possible to utilize the heat recovered from the sealed container by providing a cooling means.

密閉容器44内−\貫入した伝送パイプ38の端部には
第5図に示されるプリズム46が取付けられている。こ
のプリズム46は上端部が伝送パイプ38の出光部へ接
続されるガラス柱48の下端部に円錐状の空気封入部5
0が・藤□けられている。
A prism 46 shown in FIG. 5 is attached to the end of the transmission pipe 38 penetrating into the closed container 44. This prism 46 has a conical air sealing part 5 at the lower end of a glass column 48 whose upper end is connected to the light output part of the transmission pipe 38.
0 is ・Wisteria□.

従って伝送パイプ38からの太陽光はガラス柱48を軸
方向に貫通した後に封入部500円錐傾斜面で反射して
ガラス柱48の半径方向へ放出されるようになっており
、これによって伝送パイプ38からの太陽光を効率よく
分散して密閉容器44内へ出光することができる。
Therefore, sunlight from the transmission pipe 38 passes through the glass column 48 in the axial direction, is reflected by the conical inclined surface of the enclosing part 500, and is emitted in the radial direction of the glass column 48. The sunlight can be efficiently dispersed and emitted into the closed container 44.

またこの密閉容器44の1ljLII側面にけトートに
配管52.54が連通されて光エネルギ貯蔵化合物の入
口及び出口を構成しこの光エネルギ貯蔵化合物を矢印A
B力方向移動させるようになっている。
Also, pipes 52 and 54 are connected to the tote on the 1ljLII side of this airtight container 44 to constitute an inlet and an outlet of the light energy storage compound.
It is designed to move in the B force direction.

この実施例では光エネルギ貯蔵化合物として第6図に示
される不飽和炭化水素ノルボルナジエ/(以下N体と称
する)が用いられている。このN体は紫外線領域の短波
長光を照射すると常温域で光反応によりクワドリシクレ
/(以下9体と称する)に変化する物質であり、この9
体は触媒(コバルトテトラフェニルボリフイリンメ錯体
やコバルトフタロシアニン錯体)内を通過させると、触
媒熱反応をおこしN体に復帰する。この9体からN体へ
の状ai化ヤ22 Kd /Mat (24QKcJ/
 f )前後の発熱を生じる。
In this embodiment, the unsaturated hydrocarbon norbornadier/(hereinafter referred to as N-form) shown in FIG. 6 is used as a light energy storage compound. This N-isomer is a substance that changes into quadricycle/(hereinafter referred to as 9-isomer) through a photoreaction at room temperature when irradiated with short wavelength light in the ultraviolet region.
When the body passes through a catalyst (such as a cobalt tetraphenyl borophylline complex or a cobalt phthalocyanine complex), a catalytic thermal reaction occurs and the body returns to the N form. The state of ai from these 9 bodies to N bodies is 22 Kd /Mat (24QKcJ/
f) Generates back and forth fever.

従って配管52で密閉容器44内へ送られたN体は伝送
パイプ38からの太陽光を受は光反応を生じ−09体に
変化し、配管54から密閉容器44外へ搬出されるよう
になっている。
Therefore, the N body sent into the sealed container 44 through the pipe 52 receives sunlight from the transmission pipe 38, undergoes a photoreaction, changes to -09 body, and is carried out from the pipe 54 to the outside of the sealed container 44. ing.

配管54は第1図に示される如くQ体計蔵谷器56、ボ
/プ58を介して貯湯槽60内へ設置された触媒装置6
2へ連通されている。この触媒装置t62Uコバルト7
タロシアニ/@体が内蔵されており、配管54から送ら
れる9体と接触してN体へ変化させると共に発熱させる
ようになっている。
As shown in FIG. 1, the piping 54 connects to the catalyst device 6 installed in the hot water storage tank 60 via a Q-body metering tank 56 and a pipe 58.
It is connected to 2. This catalyst device t62U cobalt 7
A tarosyani/@ body is built in, and when it comes into contact with the 9 bodies sent from the pipe 54, it changes into an N body and generates heat.

この触媒装置62には配管64が接続されており、触媒
装置62で触媒反応により生成されたN体をN体計蔵容
器66へ送り込むようになっている。このN体計蔵容器
66には密閉容器44へ連通された配管52がボンプロ
8を介して連通されている。
A pipe 64 is connected to this catalytic device 62, and the N-bodies produced by the catalytic reaction in the catalytic device 62 are sent to an N-body storage container 66. A pipe 52 that communicates with the closed container 44 is connected to this N-body storage container 66 via a bomber 8.

貯湯槽60にはその下部に配管70が設けられており、
この配管70は中間部にボ/プ72を有すると共に図示
I1.ない給水源に接続されて給水源からの水を貯湯槽
60内へ送り込らようになっている。また貯湯槽60件
捨頂部には、配管74が設けられて図示し7ない冷暖房
装置、給湯装置等へ連通されている。
The hot water storage tank 60 is provided with piping 70 at its lower part.
This piping 70 has a bo/p 72 in the middle and is shown in I1. The hot water tank 60 is connected to a water supply source that is not connected to the hot water supply tank 60, and water from the water supply source is sent into the hot water tank 60. A pipe 74 is provided at the top of the 60 hot water storage tanks and communicates with an air conditioning system, a hot water supply system, etc. (not shown).

次にこのように構成された本実施例の作動を説明する。Next, the operation of this embodiment configured as described above will be explained.

集光装置412は集光ユニット24が常に太陽に追従し
て太陽光分バ/ドル光ファイバケーブル32へ集光する
。このパフドル光ファイバケーブル32は集光された太
陽光を伝送パイプ38へ送り込むので太陽光は伝送パイ
プ38内の鏡面を反射」7ながら地下室43の密閉容器
44へと至る。
In the light collecting device 412, the light collecting unit 24 always follows the sun and collects the sunlight onto the solar fiber optic cable 32. This puff dollar optical fiber cable 32 sends concentrated sunlight to the transmission pipe 38, so that the sunlight reflects off the mirror surface inside the transmission pipe 38 and reaches the sealed container 44 in the basement 43.

密閉容器44へはボンプロ8の作動でN体計蔵谷器66
内のN体がその上端部から送り込まれ、伝送パイプ38
からの太陽光を受け、常温域において光反応を生じ9体
に変化する。この密閉容器44内では伝送パイプ38か
らプリズム46を介して内周面へ均等に分散された太陽
光が傾斜内角面を複数回反射しながら底部方向へと移動
するので太陽光の利用光効率を著しく向上することがで
きる。
The airtight container 44 is filled with N-body meter 66 by the operation of Bonpro 8.
The N bodies inside are fed into the transmission pipe 38 from its upper end.
When exposed to sunlight, it undergoes a photoreaction at room temperature and changes into nine forms. In this airtight container 44, sunlight that is evenly distributed from the transmission pipe 38 to the inner peripheral surface via the prism 46 moves toward the bottom while reflecting multiple times on the slanted inner angle surface, thereby increasing the efficiency of sunlight utilization. can be significantly improved.

密閉容器44内で生じたQ体は配管54を通ってQ体計
蔵養器56内へ蓄積される。このQ体は常温域での化学
変化を利用しているため貯蔵のための熱損失がなく、Q
体計蔵谷器56では断熱材が不要であると共に数ケ月又
は数年の長期貯蔵が可能である。さらにこの実施例で用
−たN体とQ体は凝固点が一20℃以下であるので凍結
の虞れがない。
The Q body generated in the closed container 44 passes through the piping 54 and is accumulated in the Q body reservoir 56 . This Q body utilizes chemical changes at room temperature, so there is no heat loss during storage, and the Q
The body storage device 56 does not require any heat insulating material and can be stored for a long period of several months or years. Furthermore, since the N-form and Q-form used in this example have a freezing point of 120° C. or lower, there is no risk of freezing.

Q体計蔵谷器56内のQ体は必要時にボ/プ58を作動
させることにより貯湯槽60内の触媒装置62へと送ら
れる。この触媒装置62でQ体は触媒反応によりN体に
変化し発熱する。従って貯湯槽60内の水を温度ト昇さ
せ給湯、暖房、冷房、発電等に使用可能とする。
The Q body in the Q body meter storage tank 56 is sent to the catalyst device 62 in the hot water storage tank 60 by operating the valve 58 when necessary. In this catalytic device 62, the Q-form changes into the N-form through a catalytic reaction, generating heat. Therefore, the temperature of the water in the hot water storage tank 60 is raised and it can be used for hot water supply, heating, cooling, power generation, etc.

またこの触媒装置62で生じたN体は配管64でN体計
蔵容器66内へ蓄積され、必要時にボンプロ8で阿び密
閉容器44へ送られる。
Further, the N bodies generated in the catalyst device 62 are accumulated in the N body storage container 66 through a pipe 64, and are sent to the airtight container 44 by the bomber 8 when necessary.

このように本実施例でtj矢11ra元を効率よく蓄積
できる他、集光装置と密閉容器とを伝送パイプ38で連
結して込るので熱媒体である吸光放熱主材を(11) 集光循環12まで循環、搬送する必要がなく詰設備が簡
単となり、密閉容器へのパイプライ/−にさが短くなる
。さらに吸光放熱王制が可燃性、毒性を有する場合にも
隔離した地下室等の場所へ安全゛に収納させることがで
き蕗甫時等の事故発生を・未然に防止することかで籾る
In this way, in this embodiment, in addition to efficiently accumulating 11 ra of light, since the condensing device and the sealed container are connected by the transmission pipe 38, the light absorbing and heat dissipating main material, which is a heat medium, can be concentrated (11). There is no need to circulate or transport the product to the circulation 12, which simplifies the filling equipment and shortens the time required to pipe the product into a closed container. Furthermore, even if the light-absorbing and heat-radiating system is flammable or toxic, it can be safely stored in an isolated location such as a basement, thereby preventing accidents during use.

上記実施例では光エネルギ貯蔵化合物がノルボルナジエ
/である実施例を示したが1本発明はこれに限らず、ア
ゼピ/%ジシクロペンタジェノ/等の可逆的異性化反応
によって光エネルギの吸収と熱エネルギの放出を反復し
得るMt、動性の元エネルギ貯蔵化合物であれば全て適
用可能である。またこの光エネルギ貯蔵化合物は流体状
に限らずスラリー状でもよく、流動性を有する状醐であ
れば全て使用可能である。
In the above embodiment, the light energy storage compound is norbornadien/, but the present invention is not limited to this. Any Mt or dynamic energy storage compound that can repeatedly release energy is applicable. Further, this optical energy storage compound is not limited to a fluid form, but may be a slurry form, and any form having fluidity can be used.

さらに上記実施例では集光装置12と伝送パイプ38と
の間を光7アイパー30で連結する構造を示したが、集
光装置12の集光部へ伝送パイプ88の端部を配置して
太陽光を直接伝送パイプ38へ入党可能である。これに
よって太陽光内の短波(12) 投光も有効に伝送パイプ38を介して密閉容器44へ送
ることができる。伝送パイプ38も上記実施レリ構造に
限らす各種の連結構造が採用可能であ凱il能であれば
集光装置と密閉容器とを可撓性合成樹脂等の一本の伝送
パイプで連結してもよい。
Further, in the above embodiment, a structure is shown in which the light concentrating device 12 and the transmission pipe 38 are connected by the optical 7-eyeper 30, but the end of the transmission pipe 88 is arranged in the condensing part of the condensing device 12, It is possible to enter the light directly into the transmission pipe 38. As a result, short wave (12) light in sunlight can also be effectively transmitted to the closed container 44 via the transmission pipe 38. The transmission pipe 38 can also adopt various connection structures other than the above-mentioned relay structure, and if possible, the condensing device and the closed container can be connected with a single transmission pipe such as a flexible synthetic resin. Good too.

またさらに本−’ih明の密閉容器は上記実施例の円錐
形状に限らず柱状体、ブpツク体等の各種形状が考えら
れ、伝送パイプ38の出光部は密閉容器の頂部へ連通す
るものに限らず側面等の他の部分へ連通することもでき
る。
Furthermore, the airtight container of this invention is not limited to the conical shape of the above embodiment, but may have various shapes such as a columnar shape, a block shape, etc., and the light output portion of the transmission pipe 38 communicates with the top of the airtight container. It is also possible to communicate with other parts such as the side surface.

密閉容器44it伝送パイプ38からの太陽光を分散し
て密閉容器内へ放出することが好ましく、また放出され
た太陽光は密閉容器44内の鏡面で複数回反射して有効
にN体を照射することが望ましい。このためには伝送パ
イプからの光が鏡面の垂線に対して傾斜して入射するよ
うに構成すればよい。
It is preferable to disperse sunlight from the sealed container 44-it transmission pipe 38 and release it into the sealed container, and the emitted sunlight is reflected multiple times on the mirror surface inside the sealed container 44 to effectively irradiate the N body. This is desirable. For this purpose, the configuration may be such that the light from the transmission pipe is incident at an angle with respect to the perpendicular to the mirror surface.

第7図には伝送パイプの他の実施例が示されている。こ
の実施例の伝送パイプ138は複数本の合成樹脂可撓管
80(図示例では3本ンで太陽光を分散して密閉容器へ
送るようになっている。このため各可撓管80の内周面
はAfA着等にCる鏡面とされている。
Another embodiment of the transmission pipe is shown in FIG. The transmission pipe 138 in this embodiment includes a plurality of synthetic resin flexible tubes 80 (three in the illustrated example) to disperse sunlight and send it to the sealed container. The peripheral surface is a mirror surface such as AfA.

これらの可撓管8oは外管としての薄肉ステ/L/ 、
X パイプ82内へ挿入されており、可mWs。
These flexible tubes 8o are thin-walled stems /L/ as outer tubes,
X It is inserted into the pipe 82, and mWs is possible.

とステンレスパイプ82との間に11石綿等の多孔質ス
ペーサ84が充填されている。従って可撓管80は外部
からの荷重作用時にも破損することがなく、鏡面の剥離
が防止できる。またこの伝送パイプ138Fiステ/レ
スパイプ82が薄肉であり可撓性を有するので屈曲させ
て任意の配置とすることができる。
A porous spacer 84 made of 11 asbestos or the like is filled between the stainless steel pipe 82 and the stainless steel pipe 82 . Therefore, the flexible tube 80 will not be damaged even when a load is applied from the outside, and peeling of the mirror surface can be prevented. Further, since the transmission pipe 138Fi steering/resistance pipe 82 is thin and flexible, it can be bent into any desired arrangement.

このステ/レスパイプ82内及び可撓管8o内を真空又
は減圧状態とした場合にも外圧はステンレスパイプ82
又はスペーサ84が支持するので可撓管80が大きく変
形することはない。
Even when the inside of the stainless steel pipe 82 and the inside of the flexible tube 8o are in a vacuum or reduced pressure state, the external pressure remains inside the stainless steel pipe 82.
Alternatively, since the spacer 84 supports it, the flexible tube 80 will not be significantly deformed.

またこの伝送パイプ138では太陽光を分散して伝送す
るので、いずれかの可撓管8oが伝送不能となっても他
の可撓管で太陽光を伝送可能でおる。
Furthermore, since the transmission pipe 138 transmits sunlight in a dispersed manner, even if one of the flexible tubes 8o becomes unable to transmit sunlight, it is possible to transmit sunlight using another flexible tube.

lメ−I−説明[2だ如く本発明に係るエネルギ蓄積装
置NFj光エネルギ貯蔵化合物が流通する密閉容器の一
部へ伝送パイプを接続して光を密閉容器へ放出するので
、熱媒体ケ長距離に亘って循環輸送する必要がなく、利
用光効率を向上すると共にエネルギ蓄積時の損失ケなく
して長期間の蓄積を可能とする優れた効果を有する。
1-I-Description [2] Since the energy storage device NFj according to the present invention connects a transmission pipe to a part of the closed container through which the light energy storage compound flows and emits light into the closed container, the heat medium length is It does not need to be circulated and transported over long distances, and has the excellent effect of improving the efficiency of light utilization and enabling long-term storage without loss during energy storage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るエネルギ蓄積装置の第1実施例を
示す断1粕図、第2図は第1図に用いる集光ユニット及
び伝送パイプの一部を示す断面図、第3図は伝送パイプ
の接続部を示す断面図、第4図は伝送パイプ及び密閉容
器を示す断面図、第5図は伝送パイプの端部に設けられ
るプリズムを示す断面図、第6図は本実施例に用いる光
エネルギ貯蔵化合物を示す化学反応式、第7図は伝送パ
イプの他の実施例を示す軸直角断面図である。 10・・・構築物、12・・・集光装m□”、24・・
・集光−=ット、38,138・・・伝送パイプ、40
・・単位伝送バイブ、44・・・密閉容器、52.54
・・・配管。 (15)
FIG. 1 is a cross-sectional view showing a first embodiment of the energy storage device according to the present invention, FIG. 2 is a cross-sectional view showing a part of the condensing unit and transmission pipe used in FIG. 1, and FIG. 4 is a sectional view showing the transmission pipe and the sealed container; FIG. 5 is a sectional view showing the prism provided at the end of the transmission pipe; and FIG. 6 is a sectional view showing the connection part of the transmission pipe. A chemical reaction equation showing the optical energy storage compound used is shown. FIG. 7 is a cross-sectional view perpendicular to the axis showing another embodiment of the transmission pipe. 10...Construction, 12...Concentrator m□", 24...
・Condensing light, 38,138...Transmission pipe, 40
...Unit transmission vibe, 44...Airtight container, 52.54
···Piping. (15)

Claims (4)

【特許請求の範囲】[Claims] (1)一端が集光部へ連通され内周面に設けられた焼面
の反射で光エネルギを他端へ伝送する伝送パイプと、一
端に光エネルギ貯蔵化合物の入口が設けられ他端にこの
光エネルギ貯蔵化合物の出口が設けられると共に一部へ
前記伝送パイプの他端が接続される密閉容器とを有して
光エネルギ貯蔵化合物で光エネルギを蓄積するエネルギ
蓄積装置。
(1) A transmission pipe with one end communicating with the condensing part and transmitting light energy to the other end by reflection from the burning surface provided on the inner circumferential surface, and one end with an inlet of the light energy storage compound and the other end with the transmission pipe. An energy storage device for storing light energy with a light energy storage compound, comprising a closed container provided with an outlet for the light energy storage compound and to which the other end of the transmission pipe is connected.
(2)前記伝送パイプ内は真空又は減圧状態とされるこ
とを特徴とした前記特許請求の範囲第1項に記載のエネ
ルギ蓄積装置。
(2) The energy storage device according to claim 1, wherein the inside of the transmission pipe is in a vacuum or reduced pressure state.
(3)前記伝送パイプ内には不活性ガスが封入されるこ
とを特徴とした前記特許請求の範囲第1項に記載のエネ
ルギ蓄積装置。
(3) The energy storage device according to claim 1, wherein an inert gas is sealed in the transmission pipe.
(4)前記密閉容器は内面が焼面とされ、伝送パイプか
らの光が鏡面の垂線に対して傾斜して入射されることを
特徴とした前記特許請求の範囲第1項乃至第3項のいず
I’lかに記載のエネルギ蓄積装置。
(4) The inner surface of the sealed container is a baked surface, and the light from the transmission pipe is incident at an angle with respect to the perpendicular to the mirror surface. The energy storage device according to item I'l.
JP57023972A 1982-02-17 1982-02-17 Energy accumulating device Pending JPS58142151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57023972A JPS58142151A (en) 1982-02-17 1982-02-17 Energy accumulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57023972A JPS58142151A (en) 1982-02-17 1982-02-17 Energy accumulating device

Publications (1)

Publication Number Publication Date
JPS58142151A true JPS58142151A (en) 1983-08-23

Family

ID=12125460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57023972A Pending JPS58142151A (en) 1982-02-17 1982-02-17 Energy accumulating device

Country Status (1)

Country Link
JP (1) JPS58142151A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766884A (en) * 1982-11-10 1988-08-30 Kei Mori Accumulator arrangement for the sunlight energy
EP1471324A3 (en) * 2003-04-22 2005-11-16 Matsushita Electric Industrial Co., Ltd. Thermal storage apparatus and thermal storage method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766884A (en) * 1982-11-10 1988-08-30 Kei Mori Accumulator arrangement for the sunlight energy
US4982723A (en) * 1982-11-10 1991-01-08 Kei Mori Accumulator arrangement for the sunlight energy
EP1471324A3 (en) * 2003-04-22 2005-11-16 Matsushita Electric Industrial Co., Ltd. Thermal storage apparatus and thermal storage method

Similar Documents

Publication Publication Date Title
US6057504A (en) Hybrid solar collector for generating electricity and heat by separating solar rays into long wavelength and short wavelength
US4186724A (en) Solar energy collector
US3951128A (en) Combined flat plate - focal point solar heat collector
US4052228A (en) Optical concentrator and cooling system for photovoltaic cells
US9194378B2 (en) Electromagnetic radiation collector
Diver Receiver/reactor concepts for thermochemical transport of solar energy
USRE30584E (en) Optical concentrator and cooling system for photovoltaic cells
US5214921A (en) Multiple reflection solar energy absorber
US4335706A (en) Energy collector and transfer apparatus
US4180056A (en) Laminar solar energy collecting unit having absorber plates consisting of hollow fibers
JPS6313112B2 (en)
GB2053455A (en) Collectors for Solar Energy
JPS58142151A (en) Energy accumulating device
CN213119568U (en) Tower type solar heat absorber with heat storage capacity
WO2001096791A1 (en) High temperature solar radiation heat converter
EP3550221B1 (en) Solar power station
JPH0268454A (en) Thermal conducting pipe with thermal accumulation material for thermal receiver
JPS58123056A (en) Energy accumulator
SU883621A1 (en) Solar energy collector
CN111981710B (en) Tower type solar heat absorber with heat storage capacity
JPS5949507B2 (en) solar heat absorption method
CN219531243U (en) Solar heat collection device and heat collection equipment
CN101876493A (en) External quartz-array solar photo-thermal converter and method
RU2253808C1 (en) Solar energy collector
CA2201733C (en) Wavelength separating and light condensing type generating and heating apparatus