JPS58141076A - Picture expanding method - Google Patents

Picture expanding method

Info

Publication number
JPS58141076A
JPS58141076A JP57023199A JP2319982A JPS58141076A JP S58141076 A JPS58141076 A JP S58141076A JP 57023199 A JP57023199 A JP 57023199A JP 2319982 A JP2319982 A JP 2319982A JP S58141076 A JPS58141076 A JP S58141076A
Authority
JP
Japan
Prior art keywords
density
pixel
image
converted
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57023199A
Other languages
Japanese (ja)
Inventor
Hideki Morita
秀樹 森田
Yasuhiko Yasuda
安田 靖彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP57023199A priority Critical patent/JPS58141076A/en
Publication of JPS58141076A publication Critical patent/JPS58141076A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/387Composing, repositioning or otherwise geometrically modifying originals
    • H04N1/393Enlarging or reducing

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Combination Of More Than One Step In Electrophotography (AREA)

Abstract

PURPOSE:To perform excellent expansion even at an oblique line and a right- angled part, by providing plural density distributions of original picture elements, selecting said density distributions according to the pattern of an original picture near picture elements to be converted, and finding the mean density of the original picture at the position of the picture elements to be converted. CONSTITUTION:An area is divided by combinations shown by X and Y. When there is the center of picture elements to be converted in, for example, a division area 8 in the figure (X), a decision on the expansion of a right-angled part is performed because original picture elements A, B, and C and surrounding picture elements L and I are black picture elements in a figure (a) to obtain the density of the picture element to be converted from IR=ID=IO. In figures (b), (c), and (d), IR=ID.(IA+IB+IC)+IA.IB.IC=1. In figures (e), (f), (g), and (h), respective logical equations are used. By using those equations, whether the right-angled part or ablique line part is to be expanded is judged and the density IR of the picture element to be converted is found by only easy judgement.

Description

【発明の詳細な説明】 本発明は、原画像を変換画像面に投影したときに該変換
画像面の一画素内に位置する前記原画像の平均濃度から
、前記変換画像面の前記一画素の濃度を求め、変換画像
を得る画像拡大方法に関する。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, when an original image is projected onto a converted image plane, the average density of the original image located within one pixel of the converted image plane is calculated based on the average density of the original image located within one pixel of the converted image plane. This invention relates to an image enlargement method for determining density and obtaining a converted image.

例えば、編集機能を持ったインテリジェントコピー等に
おいて、特定の領域に画像を割付ける場合に、任意の倍
率で画像を拡大する必要が生じる。又、画像伝送システ
ムにおいては、入出力装置間の走査線密度の相違から、
取扱われる画像の大きさが装置によって変動する場合が
あり、これを補正するのに、画像を拡大する必要が生じ
る場合がある。
For example, when allocating an image to a specific area in an intelligent copy with an editing function, it becomes necessary to enlarge the image at an arbitrary magnification. In addition, in image transmission systems, due to differences in scanning line density between input and output devices,
The size of the image being handled may vary from device to device, and to compensate for this it may be necessary to enlarge the image.

このような場合に画像を拡大する方法として、従来から
、SPC法、論理和法、9分割法及び投影法等が知られ
ており、これらの内、投影法は、他の方法に比べて良好
な画質が得られるとされている。しかし、従来の投影法
においては、大きな拡大倍率時に斜線部分の滑らかさが
失われるという欠点がある。その理由は、原画像の画素
の濃度分布として、それが均一(即ち濃度が1)で且つ
画素と同一形状の正方形パターンを仮定しているからで
ある。
Conventionally, methods such as the SPC method, logical sum method, 9-division method, and projection method have been known as methods for enlarging images in such cases, and among these methods, the projection method is better than other methods. It is said that high image quality can be obtained. However, the conventional projection method has the drawback that the smoothness of the hatched area is lost when the magnification is large. The reason for this is that the density distribution of the pixels of the original image is assumed to be uniform (that is, the density is 1) and to be a square pattern having the same shape as the pixels.

本発明は、この点に鑑みてなされたもので、原画像の画
素の濃度分布として複数種類のものを用意し、変換画像
面の一画素近傍における前記原画像のパターンに応じて
前記画素の濃度分布のいずれかを選択し、該画素の濃度
分布を用いて前記変換画像面の前記−画素内に位@する
前記原画像の平均濃度を求め、画像の拡大を行うことに
より、斜線部分の滑らかさを失うことなく変換画像が得
られる画像拡大方法を実現したものである。
The present invention has been made in view of this point, and includes preparing a plurality of types of density distributions of pixels of the original image, and adjusting the density of the pixels in the vicinity of one pixel on the converted image surface according to the pattern of the original image. By selecting one of the distributions, using the density distribution of the pixel to find the average density of the original image located within the -pixel of the converted image plane, and enlarging the image, the shaded area can be smoothed. This method realizes an image enlargement method that allows a converted image to be obtained without losing image quality.

以下、図面を参照し本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

原画像の画素(以下、これを原画素と記す)が濃度を持
っている場合に、その濃度分布を示す関数としては、種
々のものが考えられるが、ここでは、次の条件を満たす
関数を例にとって、濃度分布の変換画像の画質への影響
を述べる(尚、原画素の縦横の長さは共に1である)。
When pixels of the original image (hereinafter referred to as original pixels) have a density, various functions can be considered to represent the density distribution, but here we will consider a function that satisfies the following conditions. As an example, the influence of the density distribution on the image quality of the converted image will be described (note that the vertical and horizontal lengths of the original pixel are both 1).

(a )  原画像の一つの画素について、その中心を
原点とし、横軸をX、縦軸をYとしたとき、点(X、Y
)での濃度を示す関数f  (X、Y)に次式が成り立
つこと。
(a) For one pixel of the original image, if its center is the origin, the horizontal axis is X, and the vertical axis is Y, then the point (X, Y
) The following equation holds true for the function f (X, Y) that indicates the concentration at

f  (X、Y)d Xd Y=1−(1)(b)  
原画素の中心では、濃度が1であるこ(C)  濃度を
持った画素(以下、この画素を黒画素と記す)が第1図
のA、B、C,。
f (X, Y)d Xd Y=1-(1)(b)
At the center of the original pixel, the density is 1.(C) Pixels with density (hereinafter referred to as black pixels) are A, B, C, etc. in FIG.

Dの如く隣接している場合、点(x 、 y )での濃
度g (x、y)は、その隣接した各画素単独の濃度を
加算したものとなり、第1図に示す如(x 、 y軸を
とると、次式で示される。
In the case of adjacent pixels as in D, the density g (x, y) at the point (x, y) is the sum of the individual densities of each adjacent pixel, and as shown in Figure 1, (x, y) Taking the axis, it is expressed by the following formula.

g(x 、 V ) =f  (x −1/2. V−
1/2)+f  (x−1/2.V +1/2)+f 
 (x +1 /2.1−1/2>+f  (x +1
/2.V +1/2>・・・(3) このo(x、y)は、次式を満たさねばならない。
g(x, V) = f(x-1/2.V-
1/2)+f (x-1/2.V +1/2)+f
(x +1 /2.1-1/2>+f (x +1
/2. V +1/2>...(3) This o(x, y) must satisfy the following formula.

0(X、Vl=1・・・(4) 但し、 −1/2≦x、y≦1/2 以上の3条件を満たす関数の一例として、次の3式を挙
げることができる。
0(X, Vl=1...(4) However, -1/2≦x, y≦1/2 As an example of a function that satisfies the above three conditions, the following three equations can be cited.

f s  (X、 Y) =rect(X) rect
(Y) ・(5)f2(X、Y)= ・・・(6) fs(X、Y)= ・・・(7) ところで、変換画像の画素(以下、変換画素と記す)R
と原画素A、B、C,Dが、第2図に示す如き位置関係
にあり、それぞれの中心が、Ro  (x 、y )、
Ao  (−1/2.1/2>、So  (−1/2.
−1/2>、Co  (1/2゜−1/2)、Do  
(1/2.1/2)であるとすると、拡大倍率が十分大
きいとき、変換画素R内の原画素A、B、C,Dの平均
濃度は、次式で示される。
f s (X, Y) = rect(X) rect
(Y) ・(5) f2 (X, Y) = ... (6) fs (X, Y) = ... (7) By the way, the pixel of the converted image (hereinafter referred to as a converted pixel) R
and original pixels A, B, C, and D are in the positional relationship as shown in FIG. 2, and their centers are Ro (x, y),
Ao (-1/2.1/2>, So (-1/2.
-1/2>, Co (1/2°-1/2), Do
(1/2.1/2), when the magnification is sufficiently large, the average density of the original pixels A, B, C, and D within the converted pixel R is expressed by the following equation.

1”(x、y)= IA−f  (x +1/2.V−’I/2>+ rB
−f  (x +1/2.y +1/2)+■C・f 
(x−1/2.V +1/2>+ID−f  (x−1
/2.V −1/2)・・・(8) 但し、IA、IB、IC,IDは、それぞれ原画素A、
B、C,Dのlr!1を示すもので、黒画素の場合1、
その他 の場合Oである。
1” (x, y) = IA-f (x +1/2.V-'I/2>+ rB
-f (x +1/2.y +1/2)+■C・f
(x-1/2.V +1/2>+ID-f (x-1
/2. V-1/2)...(8) However, IA, IB, IC, and ID are the original pixel A, respectively.
B, C, D lr! 1 for black pixels;
In other cases, it is O.

投影法では、F (x 、 y )≧1/2のとき変換
画素の濃度を1とし、F(x、y)<1/2のときOと
する。従って、F (x 、 y )≧12となる条件
を求めることによって、各濃度分布における論理演算式
(変換画素の算出式)が求まる。この論理演算式は、原
画素の中心AOBo、Go、Doを直線で結んだ正方形
領域を更に分割することにより得た分割領域ごとに、定
めることができる。前述のfl(X、Y>。
In the projection method, the density of the converted pixel is set to 1 when F (x, y)≧1/2, and O when F (x, y)<1/2. Therefore, by determining the condition that F (x, y)≧12, a logical operation formula (conversion pixel calculation formula) for each density distribution can be determined. This logical operation formula can be determined for each divided area obtained by further dividing a square area connecting the centers AOBo, Go, and Do of the original pixels with straight lines. The aforementioned fl(X, Y>.

f 2  (X、 Y) 、 f s  (X、、 Y
) ニオ<fル領R分割は、第3図〜第5図で示され、
論理演篩式表中、・は論理積を、+は論理和を示す。
f 2 (X, Y), f s (X,, Y
) Nio<f Ru territory R division is shown in Figures 3 to 5,
In the logical sieve table, * indicates logical product, and + indicates logical sum.

従って、変換画素Rの中心(x 、 y )がどの分割
領域にあるかを知ることによって、変換画素の濃[IR
を求めることができる。
Therefore, by knowing in which divided region the center (x, y) of the converted pixel R is located, the density of the converted pixel [IR
can be found.

第3図乃至第5図から明らかなように、画像の濃度分布
を変えることで、種々の領域分割を得ることができる。
As is clear from FIGS. 3 to 5, various area divisions can be obtained by changing the density distribution of the image.

第6図及び第7図には、上述の領域分割によって得られ
る変換画像を示した。これらの図から、fz(X、Y)
、fs(X、Y)を用いた領域分割によると、斜線部分
を滑らかに拡大できるが、直角部分については、fl(
X、Y)による領域分割と異なり、丸みが生じてしまう
ことがわかる。このため、本発明では、直角部分と斜線
部分では領域分割を使い分けている。
FIGS. 6 and 7 show transformed images obtained by the above-described area division. From these figures, fz(X,Y)
, fs (X, Y), the diagonal line part can be enlarged smoothly, but the right angle part can be enlarged smoothly using
It can be seen that, unlike area division using (X, Y), roundness occurs. For this reason, in the present invention, area division is used differently for the right angle portion and the diagonal line portion.

点(X 、 y )がどの分割領域に属するかを求める
回路を簡単に構成するには、領域分割を直線で行うこと
が好ましい。この点を考慮して分割したのが、第8図(
a)、(b)に示す組合せである(第3図乃至第5図と
同一部分には同一符号を付した)。この図の(b)の例
えば分割領域8に変換画素の中心があるときにおける論
理演算式の使い分けの一実施例を第9図を用いて説明す
る。まず、第9図(a )の場合は、原画素へ、B、C
だけでなく、その周辺の原画素り、Iも黒画素であるか
ら、直角部分の拡大と解釈できるので、IR−ID= 
Ioとする。
In order to easily configure a circuit that determines which divided region a point (X, y) belongs to, it is preferable to divide the region using straight lines. Figure 8 (
These are the combinations shown in a) and (b) (the same parts as in FIGS. 3 to 5 are given the same reference numerals). An example of how the logical operation expressions are used when the center of the converted pixel is located in the divided region 8, for example, in FIG. 9(b) will be described with reference to FIG. First, in the case of FIG. 9(a), to the original pixel, B, C
In addition, since the surrounding original pixel I is also a black pixel, it can be interpreted as an enlargement of the right angle part, so IR-ID=
Let it be Io.

しかし、<a )に対して、原画素り、Iの一方又は双
方が黒画素でない場合、即ち(b)。
However, for <a), if one or both of the original pixels I and I are not black pixels, that is, (b).

(0)、(d>の場合は、次式からIRを求める。(0), (d>), calculate IR from the following equation.

IR−ID・(IA+IB+IC) +IA−IB−IC=1 又、(e )のように、原画素りのみが黒画素の場合は
、IR= I O−0とし、更に、原画素り。
IR-ID・(IA+IB+IC) +IA-IB-IC=1 Also, when only the original pixel is a black pixel, as in (e), IR=IO-0, and further, the original pixel is set as IR-ID.

Iの一方又は双方と原画素りが黒画素の場合、即ち、(
f )、  (a )、  (h )の場合は、次式よ
り求める。
If one or both of I and the original pixel are black pixels, that is, (
f ), (a), and (h) are calculated using the following formula.

I R= I D・(IA+IB+ IC)十IA−I
B・rc=。
I R= I D・(IA+IB+ IC) 10 IA-I
B・rc=.

従って、第9図での条件を一つの論理演算式で表現する
と、次のようになる。
Therefore, if the condition in FIG. 9 is expressed by one logical operation expression, it will be as follows.

IR=ID・(rA+IB+IO+IL−II)+IA
・IB−rc・(IL+rr) 同様に、原画素A、B、C,Dの周辺の原画素E、F、
G、H,r、J、Kをとると、論理演算式は次表のよう
になる。
IR=ID・(rA+IB+IO+IL-II)+IA
・IB-rc・(IL+rr) Similarly, original pixels E, F, around original pixels A, B, C, D,
When G, H, r, J, and K are taken, the logical operation formula becomes as shown in the following table.

これを用いれば、単一の演算式と単一の領域分割でもっ
て、直角部分か斜線部分かという判断まで同時に行うこ
とができる。更に簡単な論理判断のみで変換画素の濃度
IRを求められるので、投影法において問題になってい
る演算処理の複雑さを回避できる。
By using this, it is possible to simultaneously determine whether an area is a right-angled area or an oblique area using a single calculation formula and a single area division. Furthermore, since the density IR of the converted pixel can be determined by only simple logical judgment, the complexity of calculation processing, which is a problem in the projection method, can be avoided.

以上説明したように、本発明によれば、斜線部分及び直
角部分のいずれにおいても良好な変換画像が得られる画
像拡大方法を実現できる。
As described above, according to the present invention, it is possible to realize an image enlarging method that can obtain a good converted image in both the diagonal line portion and the right angle portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原画素濃度の説明図、第2図は原画素と変換画
素の位置関係を示す説明図、第3図乃至第5図は領域分
割の説明図、第6図及び第7図は拡大画像の説明図、第
8図は本発明での領域分割の一実施例を示す説明図、第
9図は本発明での論理演算式の説明図、第10図は本発
明での原画素位置の説明図である。 A〜L・・・原画素 R・・・変換画素 AO〜DO・・・原画素A−Dの中心 特許出願人  小西六写真工業株式会社代  理  人
   弁理士  井  島  藤  冶尾1図 し 第2図 萬3図 篤5図 第6図 (CI)  原−−イ橿k (b)f、じよ本人 (C) f、f3 +二より才広二に (b) 罵9図 (b)      (c) (e)      (f) (CJ)      (h)
Figure 1 is an illustration of original pixel density, Figure 2 is an illustration of the positional relationship between original pixels and converted pixels, Figures 3 to 5 are illustrations of area division, and Figures 6 and 7 are illustrations of area division. An explanatory diagram of an enlarged image, Fig. 8 is an explanatory diagram showing an example of area division in the present invention, Fig. 9 is an explanatory diagram of a logical operation formula in the present invention, and Fig. 10 is an explanatory diagram of an original pixel in the present invention. It is an explanatory diagram of a position. A to L...Original pixel R...Converted pixel AO to DO...Original pixels A to D Main patent applicant Roku Konishi Photo Industry Co., Ltd. Agent Patent attorney Ijima Fuji Yasuo 1 Figure 1 2 Figure 3 Figure Atsushi 5 Figure 6 (CI) Hara--I Kashik (b) f, Jiyo himself (C) f, f3 + 2 to Saikoji (b) Abusive figure 9 (b) (c) (e) (f) (CJ) (h)

Claims (3)

【特許請求の範囲】[Claims] (1) 原画像を変換画像面に投影したときに該変換画
像面の一画素内に位置する前記原画像の平均濃度から、
前記変換画像面の前記−画素の濃度を求め、変換画像を
得る画像拡大方法において、前記原画像の画素の濃度分
布として複数種類のものを用意し、前記変換画像面の前
記一画素近傍における前記原画像のパターンに応じて前
記画素の濃度分布のいずれかを選択し、該画素の濃度分
布を用いて前記変換画像面の前記−画素内に位置する前
記原画像の平均濃度を求め、画像の拡大を行うようにし
たことを特徴とする画像拡大方法。
(1) From the average density of the original image located within one pixel of the converted image plane when the original image is projected onto the converted image plane,
In an image enlarging method for obtaining a converted image by determining the density of the pixel on the converted image plane, a plurality of types of density distributions of the pixels of the original image are prepared, and the density distribution of the pixel in the vicinity of the one pixel on the converted image plane is Select one of the density distributions of the pixels according to the pattern of the original image, use the density distribution of the pixels to find the average density of the original image located within the -pixel of the converted image surface, and calculate the density distribution of the image. An image enlargement method characterized by performing enlargement.
(2) 前記原画像の各画素の中心を結ぶことにより、
前記変換画像面上に複数の正方形領域を設定すると共に
、該領域を4つの正方形領域に等分割した第1の領域分
割と、前記領域の各辺の中点を結ぶ分割線により8つの
三角形領域に分割した第2の領域分割とを行い、前記分
割WA域に、前記分割領域内に中心を有する前記変換画
像の前記一画素の濃度を求めるための論理演算式を用意
し、直角部分の拡大においては前記第1の領域分割に基
づく論理演算式から前記変換画像の画素濃度を求め、斜
線部分の拡大においては前記第2の領域分割に基づく論
理演算式から前、記変換画像の画素濃度を求めるように
したことを特徴とする特許請求の範囲第1項記載の画像
拡大方法。
(2) By connecting the centers of each pixel of the original image,
A plurality of square areas are set on the converted image plane, and the area is equally divided into four square areas, and eight triangular areas are formed by dividing lines connecting the midpoints of each side of the area. A logical operation formula for determining the density of the one pixel of the converted image whose center is within the divided area is prepared in the divided WA area, and the right-angled portion is expanded. In the above, the pixel density of the converted image is calculated from the logical calculation formula based on the first area division, and in the enlargement of the diagonal area, the pixel density of the converted image is calculated from the logical calculation formula based on the second area division. 2. The image enlarging method according to claim 1, wherein
(3) 前記第1の領域分割を前記第2の領域分割に兼
ねさせ、且つ前記第1の領域分割に基づく論理演算式を
前記第2の領域分割に基づく論理演算式に兼ねさせるよ
うにしたことを特徴とする特許請求の範囲第2項記載の
画像拡大方法。
(3) The first area division is made to serve as the second area division, and the logical operation expression based on the first area division is made to also serve as the logical operation expression based on the second area division. An image enlarging method according to claim 2, characterized in that:
JP57023199A 1982-02-15 1982-02-15 Picture expanding method Pending JPS58141076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57023199A JPS58141076A (en) 1982-02-15 1982-02-15 Picture expanding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57023199A JPS58141076A (en) 1982-02-15 1982-02-15 Picture expanding method

Publications (1)

Publication Number Publication Date
JPS58141076A true JPS58141076A (en) 1983-08-22

Family

ID=12103995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57023199A Pending JPS58141076A (en) 1982-02-15 1982-02-15 Picture expanding method

Country Status (1)

Country Link
JP (1) JPS58141076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511137A (en) * 1988-04-07 1996-04-23 Fujitsu Limited Process and apparatus for image magnification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511137A (en) * 1988-04-07 1996-04-23 Fujitsu Limited Process and apparatus for image magnification

Similar Documents

Publication Publication Date Title
EP1111905B1 (en) Halftone dot forming method and apparatus
US6625325B2 (en) Noise cleaning and interpolating sparsely populated color digital image using a variable noise cleaning kernel
US4953227A (en) Image mosaic-processing method and apparatus
JP3366655B2 (en) Halftone image generating method and its screen device
US7327904B2 (en) Pattern classification and filter design for increasing image resolution
EP0612182B1 (en) Pixel and data format conversion processor for gravure
JPS58141076A (en) Picture expanding method
US5745260A (en) Coarse/fine fonts
JPH03276966A (en) Dot area separator
JPH10294948A (en) Picture processing method and picture processing program recording medium
JPH05166706A (en) Method for preparing data for charged particle beam lithography
JP2772220B2 (en) Image data conversion apparatus and image data conversion method
JPH0365068B2 (en)
JPS61154268A (en) Picture magnifying and reducing method
JPH0383177A (en) Dither image enlargement system
JP2007074664A (en) Image processing method, image processing program and image processing apparatus
JP4087010B2 (en) Image processing device
JPH1032712A (en) Picture processor
JPH08139915A (en) Multi-color image magnification and reduction device
JPH0955847A (en) Picture element density conversion method and picture element density converter
JP2641392B2 (en) Digital halftone screen generation method and apparatus
JPS6118388B2 (en)
JPS61154270A (en) Picture processing method
JP2004192164A (en) Image processor, image forming device having the same, image processing method, image processing program and computer-readable recording medium
JPH07123246A (en) Binary picture reduction device