JPH0383177A - Dither image enlargement system - Google Patents

Dither image enlargement system

Info

Publication number
JPH0383177A
JPH0383177A JP1220905A JP22090589A JPH0383177A JP H0383177 A JPH0383177 A JP H0383177A JP 1220905 A JP1220905 A JP 1220905A JP 22090589 A JP22090589 A JP 22090589A JP H0383177 A JPH0383177 A JP H0383177A
Authority
JP
Japan
Prior art keywords
converted
density
converted pixel
pixel
dither
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1220905A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Okada
佳之 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1220905A priority Critical patent/JPH0383177A/en
Publication of JPH0383177A publication Critical patent/JPH0383177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

PURPOSE:To realize a dither image of good quality wherein a border generated owing to density variation is inconspicuous by finding the density of an image to be converted from a dither image while the number of gradations and finding final converted image density from the area rate of converted picture elements to be projected to picture elements to be converted. CONSTITUTION:This system is equipped with an input means 1 for the picture elements to be converted, a density calculating means 2 for the picture elements to be converted, a converted picture element density calculating means 3, and a dither binary-coding means 4. The converted picture elements corresponding to conversion magnification are projected on an original image consisting of a 1st dither matrix and the density of the picture elements to be converted is increased to a desired number of gradations and calculated from data on a group of picture elements to be converted which are positioned within the same size; and the converted picture element density is calculated from the density of the picture elements to be converted by weighting at the partial area ratio of the projection of the converted picture elements having the same area with the picture elements to be converted to an image plane to be converted and binary coding is carried out finally with a 2nd dither matrix corresponding to the increased number of gradations. Consequently, the border of a part which varies slightly in density while the gradations are increased when the dither image is enlarged.

Description

【発明の詳細な説明】 [概要] 組織的ディザで構成されるディザ画像の拡大方式に関し
、 ディザ画像の拡大時に階調増加と同時に濃度が微妙に変
化する部分の境界を目立たなくすることを目的とし、 第1のディザマトリクスで構成される原画像上に変換倍
率に応じた変換画素を投影し、この変換画素の第1のデ
ィザマトリクスと同じ大きさ内に位置する被変換画素群
のデータより被変換画素の濃度を所望の階調数に増加算
出し、被変換画素と同じ面積を持つ変換画素が被変換画
像面上に投影される部分面積比率による重み付けで被変
換画素濃度から変換画素濃度を算出し、最終的に増加階
調数に対応した第2のディザマトリクスで二値化するよ
うに構成する。
[Detailed Description of the Invention] [Summary] Regarding an enlargement method for a dithered image composed of systematic dithering, an object of the present invention is to make the boundaries of parts where the density changes slightly at the same time as the gradation increases when enlarging the dithered image less noticeable. Then, a converted pixel according to the conversion magnification is projected onto the original image composed of the first dither matrix, and from the data of a group of converted pixels located within the same size as the first dither matrix of this converted pixel, The density of the converted pixel is increased to the desired number of gradations, and the converted pixel density is calculated from the converted pixel density by weighting based on the partial area ratio of the converted pixel having the same area as the converted pixel projected onto the converted image surface. is calculated and finally binarized using a second dither matrix corresponding to the increased number of gradations.

[産業上の利用分野コ 本発明は、組織的ディザ画像の拡大方式に関し、特に変
換画素近傍の被変換画素群から、まず被変換画素の濃度
を求め、その被変換画素濃度に基づいて変換画素の濃度
を決定し、第二のディザ化を行なうディザ画像の拡大方
式に関する。
[Industrial Field of Application] The present invention relates to an enlargement method for systematic dithered images, and in particular, the density of the converted pixel is first determined from a group of converted pixels near the converted pixel, and the converted pixel is expanded based on the converted pixel density. The present invention relates to a method for enlarging a dithered image that determines the density of a dithered image and performs second dithering.

現在の白黒の2値表現を行なっている画像入出力機器、
例えばファクシミリ、スキャナでは、文字や線画だけで
はなく、黒点密度分布をコントロールして得られるディ
ザ等の擬似中間調画像を対象とする場合が多くなってき
ており、これら画像入出力機器においては、解像度の異
なる機器間での密度変換処理や画像編集における拡大縮
小処理は重要な役割を果たしている。
Image input/output equipment that currently performs black and white binary representation,
For example, facsimiles and scanners are increasingly used not only for characters and line drawings, but also for dithered and other pseudo-halftone images obtained by controlling the black point density distribution. Density conversion processing between different devices and scaling processing in image editing play an important role.

[従来の技術] 従来、文字や線画等に使用される拡大縮小方法としては
、SPC法、論理和法、九分割法、高速投影法、距離反
比例法等が知られている。しかし、これらの方法ではい
ずれもディザ画像に適用した場合にモアレが発生し、画
質が劣化する。
[Prior Art] Conventionally, known scaling methods used for characters, line drawings, etc. include the SPC method, the logical sum method, the nine-part method, the high-speed projection method, and the distance inverse proportional method. However, when these methods are applied to a dithered image, moiré occurs and the image quality deteriorates.

また、ディザ画像に対する従来の拡大方法として、変換
画素の近傍に位置する被変換画素群のデータから変換画
素の濃度を決め、それを再ディザ化する方法がある(特
開昭62−216476号)。
Furthermore, as a conventional enlargement method for a dithered image, there is a method of determining the density of a converted pixel from data of a group of converted pixels located near the converted pixel, and re-dithering it (Japanese Patent Laid-Open No. 62-216476). .

第8図は従来のディザ画像拡大処理方法の原理ブロック
図を示し、非変換画素入力手段1011変換画素濃度決
定手段102及びディザ2値化手段1[13で構成され
る。また第9図は従来方法の処理の流れを示したもので
、Slで非変換画素群の濃度データを入力し、S2で変
換画素の濃度を決定し、S3でデッザ閾値を使用して再
ディザ化する。
FIG. 8 shows a principle block diagram of a conventional dither image enlargement processing method, which is composed of a non-converted pixel input means 1011, a converted pixel density determination means 102, and a dither binarization means 1[13]. FIG. 9 shows the processing flow of the conventional method. In Sl, the density data of the non-converted pixel group is input, in S2, the density of the converted pixel is determined, and in S3, the dithering threshold is used to re-dither. become

更に詳細に説明するならば、第10図に示すように、4
×4ディザマトリクスの場合、変換画素Rの周囲166
画素黒画素の個数をカウントすることによって変換画素
の濃度が決まる。この場合変換画素Rの周囲の16画素
中の6画素が黒画素となっているため、変換画素Rの濃
度を6と定める。
To explain in more detail, as shown in FIG.
In the case of ×4 dither matrix, 166 pixels around the converted pixel R
The density of the converted pixel is determined by counting the number of black pixels. In this case, since 6 pixels out of 16 pixels surrounding the converted pixel R are black pixels, the density of the converted pixel R is determined to be 6.

[発明が解決しようとする課題] しかしながら、このような従来方法によるディザ画像の
拡大にあっては、例えば第11図(a)の4倍拡大例に
示すように、4つの被変換画素を結ぶ枠内に拡大倍率に
応じて新たに作り出される×印で示す12個の変換画素
は、同じ参照画素から濃度が求まるために全て同じ濃度
となり、ディザ画像中に現われる髪の毛等のエツジ部分
(階調パターンで表現されない部分)も平均濃度で表現
されるため、拡大した場合にぼけが生じる。また、第1
1図(b)に取り出して示すように、変換画素群の一様
濃度が変わる部分での境界が目立つという問題があった
[Problems to be Solved by the Invention] However, when enlarging a dithered image using such a conventional method, it is difficult to connect four pixels to be converted, as shown in the 4 times enlarged example in FIG. The 12 converted pixels indicated by the x marks that are newly created within the frame according to the enlargement magnification have the same density because the density is determined from the same reference pixel, and the edge parts (gradation levels) of hair etc. that appear in the dithered image are (portions that are not represented by patterns) are also represented by average density, resulting in blurring when enlarged. Also, the first
As shown in FIG. 1(b), there was a problem in that the boundaries were noticeable in areas where the uniform density of the converted pixel group changed.

本発明は、このような従来の問題点に鑑みてなされたも
ので、ディザ画像の拡大時に階調増加と同時に濃度が微
妙に変化する部分の境界を自立たなくできるディザ画像
の拡大方式を提供することを目的とする。
The present invention has been made in view of these conventional problems, and provides a method for enlarging a dithered image that allows boundaries of areas where the density changes slightly at the same time as the gradation increases to become independent when enlarging the dithered image. The purpose is to

[課題を解決するための手段] 第1図は本発明の構成及び処理の流れを示した原理説明
図である。
[Means for Solving the Problems] FIG. 1 is a principle explanatory diagram showing the configuration and processing flow of the present invention.

まず本発明は、組織的ディザ(NX−Nディザマトリク
ス)で構成される画像の拡大方式を対象とする。
First, the present invention is directed to an image enlarging method composed of systematic dithering (NX-N dither matrix).

このようなディザ画像の拡大方式につき本発明にあって
は、第■の組織的ディザ、例えば4×4ディザマトリク
ス構成される原画像上に変換倍率に応じた変換画素を投
影し、該変換画素の近傍に第1の組織的ディザと同じ大
きさ内に位置する被変換画素群のデータを入力する被変
換画素入力手段1(処理ステップSl)と;前記被変換
画素群のデータから所望の階調数に増した形で被変換画
素の濃度を算出する被変換画素濃度算出手段2(処理ス
テップS2)と;被変換画素と同じ面積を持つ変換画素
が被変換画像面上に投影される部分層積比率に応じた重
み付けにより前記被変換画素濃度から変換画素濃度を算
出する変換画素濃度算出手段3(処理ステップS3)と
;変換画素濃度算出手段3で算出された変換画素濃度を
前記増加階調数に対応した第2の組織的ディザ、例えば
8×8ディザマトリクスで二値化するディザ二値化手段
4(処理ステップS4)と;を設けるように構成する。
Regarding such a dithered image enlargement method, in the present invention, converted pixels according to the conversion magnification are projected onto the original image composed of the systematic dithering, for example, a 4×4 dither matrix, and the converted pixels a converted pixel input means 1 (processing step Sl) for inputting data of a converted pixel group located within the same size as the first systematic dither in the vicinity of the first systematic dither; a converted pixel density calculation means 2 (processing step S2) that calculates the density of the converted pixel in a scaled form; a portion where the converted pixel having the same area as the converted pixel is projected onto the converted image surface; a converted pixel density calculation means 3 (processing step S3) that calculates a converted pixel density from the converted pixel density by weighting according to the layer stack ratio; A dither binarization means 4 (processing step S4) for binarizing with a second systematic dither corresponding to the key, for example, an 8×8 dither matrix, is provided.

[作用] 次に本発明の詳細な説明する。[Effect] Next, the present invention will be explained in detail.

本発明によりディザ画像の拡大変換を行なう場合には、
第1図示したように、まずステップS1において、所定
の倍率に変換される変換画素を被変換画素で構成される
平面に投影した位置に基づき、変換画素の近傍に位置す
る被変換画素の各データを順次人力して配置する。例え
ば第4図に示すように、所定倍率の変換画素Rの近傍に
位置する被変換画素として変換画素Rを囲むA、B、C
When enlarging a dithered image according to the present invention,
As shown in Figure 1, first, in step S1, each data of the converted pixel located near the converted pixel is calculated based on the position where the converted pixel to be converted to a predetermined magnification is projected onto a plane composed of the converted pixels. will be placed manually one by one. For example, as shown in FIG. 4, A, B, and C surrounding the converted pixel R are pixels located near the converted pixel R at a predetermined magnification.
.

Dの4個の被変換画素及びその周囲の12個の被変換画
素を入力する。
The four pixels to be converted of D and the 12 pixels to be converted around them are input.

続いてステップS2において、入力した被変換画素群A
−Pから変換画素Rの周囲の最至近被変換画素、例えば
被変換画素Cの濃度(多値)を所望の階調数、例えば1
6階調から4倍の64階調に増やした形で求める。第3
図では、被変換画素Cの濃度を求める際の参照被変換画
素群を示しているが、残りの画素A、  B、 Dにつ
いても、各々の画素が変換画素Rとの相対位置関係から
画素Cの位置にあったときの濃度として変換画素Rに対
する被変換画素A、  B、 Dとしての濃度を求める
続いてステップS3において、被変換画素A。
Subsequently, in step S2, the input pixel group A to be converted is
- from P to the nearest converted pixel around the converted pixel R, for example, the density (multi-value) of the converted pixel C, to a desired number of gradations, for example 1
It is calculated by increasing the number of gradations from 6 to 64, which is four times the number. Third
The figure shows the reference converted pixel group when calculating the density of the converted pixel C, but each of the remaining pixels A, B, and D is also determined by the pixel C from the relative positional relationship with the converted pixel R. Next, in step S3, the density of the converted pixel A, B, and D for the converted pixel R is determined as the density when the converted pixel R is at the position of the converted pixel A.

B、  C,Dにつき求めた濃度に基づいて変換画素R
の濃度を求める。
Conversion pixel R based on the density determined for B, C, and D
Find the concentration of

例えば、第4図に示すように、×印で示す変換画素Rが
被変換画像面上に投影される面積の部分比率と周囲4つ
の被変換画素濃度との積和演算から変換画素の濃度を求
める。ここでは、通常の投影法と異なり、投影する変換
画素Rの面積を被変換画素A、  B、  C,Dの各
々と同じ面積にしている所に特徴があり、変換画像を4
つの被変換画素A、  B、  C,Dに投影した時の
各々と重なり合う面積の相違に応じた重み付けWa、 
Wb、 We。
For example, as shown in FIG. 4, the density of a converted pixel R indicated by an x mark is calculated from the product-sum calculation of the partial ratio of the area projected onto the converted image plane and the density of the four surrounding converted pixels. demand. Unlike the normal projection method, this method is characterized in that the area of the converted pixel R to be projected is the same as each of the converted pixels A, B, C, and D, and the converted image is
Weighting Wa according to the difference in the overlapping area when projected onto the three converted pixels A, B, C, and D,
Wb, We.

Wdを、既に求められている被変換画素A−Dの濃度に
掛は合わせ、その合計を取ることで変換画素Rの濃度が
決められる。これによって拡大したときの多値レベルで
の階段上の凹凸が少なくなる効果がある。
The density of the converted pixel R is determined by multiplying Wd by the already determined density of the converted pixels A-D and taking the sum. This has the effect of reducing unevenness on the stairs at a multilevel level when enlarged.

さらに最終的なステップS4においては、ステップS2
の被変換画素A−Dの濃度算出で増やした階調数に相当
する大きさの第2の組織的ディザ、例えば8×8ディザ
マトリクスの閾値を使用して二値化を行なって表現でき
る階調数を増加させる。
Furthermore, in the final step S4, step S2
A gradation that can be expressed by binarizing using a second systematic dither of a size corresponding to the number of gradations increased by calculating the density of pixels A-D to be converted, for example, a threshold value of an 8 × 8 dither matrix. Increase key.

[実施例] 第2図は本発明の一実施例を示した実施例構成図である
[Embodiment] FIG. 2 is a block diagram showing an embodiment of the present invention.

第2図において、11は被変換画素入力回路、12は被
変換画素濃度決定回路、13は変換画素濃度算出回路、
14はディザ二値化回路である。
In FIG. 2, 11 is a converted pixel input circuit, 12 is a converted pixel density determination circuit, 13 is a converted pixel density calculation circuit,
14 is a dither binarization circuit.

被変換画素入力回路11は、例えば第1の組織的ディザ
としての4×4ディザマトリクスで構成される原画像を
例にとると、原画像から直接読取るスキャナやコンピュ
ータ等からのディザ画像データが、例えば第3図に示す
変換画素Rの近傍に位置する4つの被変換画素A、 B
、 C,D及びその周囲12個の被変換画素E−Pを各
ライン毎にシフトレジスタ111,112,113,1
14に入力する。
For example, taking an original image composed of a 4×4 dither matrix as the first systematic dither, the converted pixel input circuit 11 inputs dithered image data from a scanner, computer, etc. that is directly read from the original image. For example, four converted pixels A and B located near the converted pixel R shown in FIG.
, C, D and the surrounding 12 pixels to be converted E-P are shifted to shift registers 111, 112, 113, 1 for each line.
14.

被変換画素濃度決定回路12には、ディザパターンから
被変換画素濃度を算出するROMを用いた被変換画素濃
度算出回路121、被変換画素濃度算出回路121で算
出された被変換画素の濃度を所定階調に対応した倍率分
だけ増加させる乗算回路122、′更に乗算回路122
から得られた濃度データを格納するラインメモリ123
が設けられる。
The converted pixel density determination circuit 12 includes a converted pixel density calculation circuit 121 using a ROM that calculates the converted pixel density from a dither pattern, and a converted pixel density calculation circuit 121 that uses a ROM to calculate the converted pixel density from a dither pattern. A multiplication circuit 122 that increases by a magnification corresponding to the gradation;
A line memory 123 that stores density data obtained from
will be provided.

即ち、被変換画素濃度決定回路12は、例えば第3図に
示す所定の変換倍率に基づく変換画素Rが現在処理対象
となっていたとすると、被変換画素入力回路11のシフ
トレジスタ111〜114をシフトさせながら第3図に
示す16個の参照画素A−Pを変換画素決定回路12に
入力する。変換画素決定回路12にあっては、第4の第
1ラインから第4ラインに至る16個の画素を処理する
毎に処理対象画素を注目画素とした周囲の16個の参照
画素の中の黒画素の個数から、その時の被変換画素の濃
度を決定し、乗算器122で増加階調となる増加率、例
えば16階調から64階調へ増加させる倍率4を掛は合
わせ、次段の変換画素濃度算出回路13のレジスタ1.
31−3に格納すると同時にラインメモリ123に格納
している。
That is, if the conversion pixel R based on the predetermined conversion magnification shown in FIG. 3, the 16 reference pixels A to P shown in FIG. 3 are input to the conversion pixel determining circuit 12. In the conversion pixel determination circuit 12, each time the 16 pixels from the first line to the fourth line are processed, the pixel to be processed is selected as the pixel of interest and black among the 16 reference pixels surrounding the target pixel is processed. The density of the pixel to be converted at that time is determined from the number of pixels, and the multiplier 122 multiplies the density by an increasing rate for increasing the gradation, for example, a magnification of 4 to increase the gradation from 16 to 64, and performs the next stage of conversion. Register 1 of the pixel density calculation circuit 13.
31-3 and simultaneously stored in the line memory 123.

ここで第3図の場合、変換画素Rに対する注目画素は被
変換画素Cであることから、被変換画素Cに関する濃度
が被変換画素濃度決定回路12で決定された時点で、次
段の変換画素濃度算出回路13に設けているレジスタ1
31−1〜131−4に決定された被変換画素A−Dの
各濃度を格納する。
In the case of FIG. 3, since the pixel of interest for the converted pixel R is the converted pixel C, when the density of the converted pixel C is determined by the converted pixel density determination circuit 12, the next converted pixel Register 1 provided in the concentration calculation circuit 13
The respective densities of the determined pixels A to D to be converted are stored in 31-1 to 131-4.

具体的には被変換画素濃度決定回路12で注目画素とな
る被変換画素Cの濃度が決定されてレジスタ131−3
に格納された時点で、1つ前の被変換画素Bの濃度がレ
ジスタ131−4に既に格納されており、一方、工つ前
のラインの処理で既にラインメモリ123に格納されて
いる被変換画素Aの濃度がレジスタ131−2に、また
被変換画素りの濃度がレジスタ131−1に格納される
Specifically, the density of the pixel C to be converted, which is the pixel of interest, is determined by the pixel density determining circuit 12, and the density is stored in the register 131-3.
At the time when the density of the previous converted pixel B has already been stored in the register 131-4, the density of the converted pixel B that has already been stored in the line memory 123 from the previous line processing The density of pixel A is stored in the register 131-2, and the density of the pixel to be converted is stored in the register 131-1.

レジスタ131−1〜131−4に対し被変換画素A−
Dについて算出された濃度の格納を受けた変換画素濃度
算出回路13は、同時に第3図に示す変換画素Rを処理
対象とした時点で第4図に示すように、変換画素Rを被
変換画素A、 −Dの各々と同一面積として投影した時
の4つの被変換画素A−Dの各々に占める変換画素Rの
部分面積比率Wa、Wb、Wc、Wdを算出している。
Converted pixel A- for registers 131-1 to 131-4
The converted pixel density calculation circuit 13 that has received the density calculated for D converts the converted pixel R into a pixel to be converted as shown in FIG. 4 at the same time as the converted pixel R shown in FIG. The partial area ratios Wa, Wb, Wc, and Wd of the converted pixel R occupying each of the four converted pixels A to D when projected as the same area as each of A and -D are calculated.

従って、変換画素濃度算出回路13の4つの乗算回路1
32−1〜132−4は、レジスタ131−1〜131
−4の各々に格納された所定階調に増加された被変換画
素A−Dの各濃度と部分面積比率Wa−Wdを掛は合わ
せる。
Therefore, the four multiplication circuits 1 of the converted pixel density calculation circuit 13
32-1 to 132-4 are registers 131-1 to 131
The respective densities of the converted pixels A to D increased to the predetermined gradation stored in each of -4 and the partial area ratios Wa to Wd are multiplied together.

これら乗算回路132−1〜132−4による乗算結果
は3つの加算回路133−1〜133−3を通じて加算
されて総和が求められ、その結果、加算回路1.33−
3の出力として処理対象としている変換画素Rの変換画
素濃度が算出される。
The multiplication results by these multiplier circuits 132-1 to 132-4 are added through three adder circuits 133-1 to 133-3 to obtain a total sum.
The converted pixel density of the converted pixel R to be processed is calculated as the output of step 3.

変換画素濃度算出回路13で算出された変換画素Rの変
換画素濃度はディザ二値化回路14に与えられ、例えば
第6図に示す8x8Bayer型のディザマトリクス(
第2の組織的ディザ)に基づく閾値により比較回路14
1において再ディザ化され、最終的な変換画素出力とし
て取り出される。
The converted pixel density of the converted pixel R calculated by the converted pixel density calculation circuit 13 is given to the dither binarization circuit 14, and is converted into, for example, an 8x8 Bayer type dither matrix (shown in FIG. 6).
the comparator circuit 14 by a threshold based on the second systematic dither)
1 and taken out as the final converted pixel output.

次に第2図の実施例の動作を第5図を用いて具体的に説
明する。
Next, the operation of the embodiment shown in FIG. 2 will be specifically explained using FIG.

過程■ まず第1の組織的ディザが4×4ディザマトリクスであ
ったとすると、変換画素Rの最至近にある注目画素Cの
濃度は、その周囲の16個の被変換画素から図示のよう
に濃度9となる。
Process■ First, assuming that the first systematic dither is a 4×4 dither matrix, the density of the pixel of interest C closest to the converted pixel R is calculated from the density of the surrounding 16 converted pixels as shown in the figure. It becomes 9.

同様にして被変換画素Aの濃度は9、被変換画素Bの濃
度は101被変換画素りの濃度は8として求まる。
Similarly, the density of the pixel A to be converted is determined to be 9, and the density of the pixel to be converted B is determined as 8 for every 101 pixels to be converted.

過程■ ここで4×4ディザマトリクスによる16階調から4倍
の64階調に階調数を増やしたい場合、過程ので求めた
、例えば注目画素Cの濃度9を4倍とすることで、注目
画素Cの濃度は64階調レベルでの濃度36に変換され
る。尚、この変換演算で小数点以下は四捨五入とし64
階調レベルでの濃度は全て整数とする。
Process ■ Here, if you want to increase the number of gradations from 16 gradations using the 4x4 dither matrix to 64 gradations, which is 4 times as much, you can The density of pixel C is converted to density 36 at 64 gradation levels. In addition, in this conversion calculation, the decimal point is rounded off to 64
All densities at gradation levels are integers.

この過程の及び■が第2図に示した被変換画素濃度決定
回路12により行なわれる。
Steps (2) and (2) of this process are performed by the converted pixel density determining circuit 12 shown in FIG.

過程■ 過程■で算出された被変換画素A、  B、  C,D
の各濃度と第5図に示した4つの被変換画素A〜Dに対
し被変換画素と同一面積を持つ変換画素Rが投影により
求まる部分面積比率Wa、Wb、Wc、Wdとの積和演
算により変換画素Rの濃度を求める。この場合、第5図
に示すように部分面積比率は、例えばWa=15/64
、Wb = 9/64、Wc=15/64、Wd=25
/64  (但し、Wa+Wb+Wc+Wd=1)であ
ることから、画素A−Dの各濃度との掛算により部分面
積比率Wa−Wdにより重み付けが施された濃度8.4
375.5.625.8.4375.12.5の各々が
算出され、これらの総和として変換画素濃度Rの濃度3
5が求められる。
Process ■ Converted pixels A, B, C, D calculated in process ■
Product-sum calculation of the partial area ratios Wa, Wb, Wc, and Wd for each density and the converted pixel R having the same area as the converted pixel for the four converted pixels A to D shown in FIG. 5 is determined by projection. The density of the converted pixel R is determined by . In this case, as shown in FIG. 5, the partial area ratio is, for example, Wa=15/64
, Wb = 9/64, Wc = 15/64, Wd = 25
/64 (however, Wa+Wb+Wc+Wd=1), the density 8.4 weighted by the partial area ratio Wa-Wd is multiplied by each density of pixels A-D.
375.5.625.8.4375.12.5 are calculated, and the density 3 of the converted pixel density R is calculated as the sum of these.
5 is required.

このような過程■の処理が第2図に示した変換画素濃度
算出回路13による処理となる。
Such process (2) is performed by the converted pixel density calculation circuit 13 shown in FIG.

過程■ 過程■で求めた変換画素Rの濃度35と、例えば第6図
に示すような8X8Baye r型ディザマトリクスか
ら得られた閾値44との比較により、この場合には変換
画素濃度がディザ閾値より小さいことから、二値化ディ
ザ画像の値0が最終的に求まることになる。
Process ■ By comparing the density 35 of the converted pixel R obtained in process ■ with the threshold value 44 obtained from, for example, an 8×8 Bayer type dither matrix as shown in FIG. Since it is small, the value 0 of the binarized dithered image is finally found.

以上の処理は、例えば4倍拡大例を示した第11図(a
)に示すX印で示す全ての変換画素について繰り返し行
なわれる。
The above processing can be carried out, for example, as shown in FIG. 11 (a
) is repeated for all converted pixels indicated by X marks.

第7図は従来方法による変換画素の濃度決定と本発明に
よる変換画素の濃度決定を対比して示す。
FIG. 7 shows a comparison between determining the density of a converted pixel according to the conventional method and determining the density of a converted pixel according to the present invention.

即ち、第7図(a)に示す従来の変換画素濃度決定につ
いては、被変換画素の間の変換画素が一定値であるため
に階調がステップ的に変化している。これに対し第7図
(b)に示す本発明の画素変換濃度決定にあっては、被
変換画素の間に存在する変換画素の濃度は階調数の増加
と右側に位置する被変換画素の平均濃度に対応した位置
による重み付け(2次元にあっては面積による重み付け
)を受け、位置の変化に対し略直線的に階調が増加する
変換画素濃度を決定することができる。
That is, in the conventional conversion pixel density determination shown in FIG. 7(a), since the conversion pixels between the pixels to be converted have a constant value, the gradation changes stepwise. On the other hand, in the pixel conversion density determination of the present invention shown in FIG. It is possible to determine a converted pixel density whose gradation increases substantially linearly with respect to a change in position by weighting by position (weighting by area in two dimensions) corresponding to the average density.

その結果、本発明によれば表現する階調数が増えると同
時に、濃度変化が微妙に変わる部分でも隣接する変換画
素の濃度が全て異なることとなり、拡大後に再ディザ化
を行なっても同じディザパターンは現われず、結果とし
て濃度が変わる部分で生ずる境界を目立たなくした品質
の高いディザ画像を得ることができる。
As a result, according to the present invention, the number of gradations to be expressed increases, and at the same time, even in areas where the density changes slightly, the densities of adjacent converted pixels are all different, so even if re-dithering is performed after enlargement, the dither pattern remains the same. As a result, it is possible to obtain a high-quality dithered image in which boundaries that occur in areas where the density changes are less noticeable.

[発明の効果] 以上説明してきたように本発明によれば、ディザ画像か
ら階調数を増やした形で被変換画素濃度を求め、被変換
画素に対し投影される変換画素の面積比率に基づいて最
終的な変換画素濃度を求めて増加階調数に相当する第2
のディザにより二値化したため、表現する階調数を増加
させることでディザ画像の品質を高め、同時に濃度変化
が微妙に変わる部分であっても必ず隣接する変換画素の
濃度が全て異なることでディザ化をしても同じディザパ
ターンが現われず、濃度変化で生ずる境界を目立たせな
い良質なディザ画像を得ることができる。
[Effects of the Invention] As described above, according to the present invention, the density of the converted pixel is determined from the dithered image by increasing the number of gradations, and the density of the converted pixel is calculated based on the area ratio of the converted pixel projected to the converted pixel. to find the final converted pixel density and calculate the second value corresponding to the number of increased gradations.
The quality of the dithered image is improved by increasing the number of gradations expressed, and at the same time, even in areas where the density changes slightly, the density of adjacent converted pixels is always different. The same dither pattern does not appear even if the dither pattern is changed, and it is possible to obtain a high-quality dither image in which boundaries caused by density changes are not noticeable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、; 第2図は本発明の実施例構成図; 第3図は本発明で注目画素と注目画素の濃度を決める周
囲の参照画素説明図; 第4図は被変換画素と変換画素の位置関係および投影さ
れる面積の重み付けを示す図; 第5図は変換画素濃度を決める本発明の過程を示す図; 第6図はSx g Bayer型ディザマトリクス説明
図;第7A、7B図は従来と本発明の変換画素濃度設定
を対比して示した説明図; 第8図は従来方法の原理ブロック図: 第9図は従来方法の原理流れ図; 第10図は従来方法の参照画素と変換画素濃度の決定を
示す図; 第11図は従来方法による4倍拡大例説明図である。 図中、 1:被変換画素入力手段 2:被変換画素濃度算出手段 3:変換画素濃度算出手段 4;ディザ二値化手段 11:被変換画素入力回路 12:被変換画素濃度決定回路 13:変換画素濃度算出回路 14:ティザ二値化回路 11〜114 シフトレジスタ 21:被変換画素濃度算出回路 22、132−1〜132−4:乗算回路23、ライン
メモリ 31−1〜13+−イ:レジスタ 33−1〜133−3:加算回路 41・比較回路 (ROM)
FIG. 1 is an explanatory diagram of the principle of the present invention; FIG. 2 is a configuration diagram of an embodiment of the present invention; FIG. 3 is an explanatory diagram of a pixel of interest and surrounding reference pixels that determine the density of the pixel of interest in the present invention; FIG. 4 is a diagram showing the positional relationship between the converted pixel and the converted pixel and the weighting of the projected area; FIG. 5 is a diagram showing the process of the present invention for determining the converted pixel density; FIG. 6 is an explanatory diagram of the Sx g Bayer type dither matrix ; Figures 7A and 7B are explanatory diagrams comparing the conversion pixel density settings of the conventional method and the present invention; Figure 8 is a principle block diagram of the conventional method; Figure 9 is a principle flow diagram of the conventional method; Figure 10 is a diagram showing the principle of the conventional method; A diagram showing determination of reference pixel and converted pixel densities in the conventional method; FIG. 11 is an explanatory diagram of an example of 4 times enlargement in the conventional method. In the figure, 1: Converted pixel input means 2: Converted pixel concentration calculation means 3: Converted pixel concentration calculation means 4; Dither binarization means 11: Converted pixel input circuit 12: Converted pixel concentration determination circuit 13: Conversion Pixel density calculation circuit 14: Teaser binarization circuits 11 to 114 Shift register 21: Converted pixel density calculation circuits 22, 132-1 to 132-4: Multiplication circuit 23, Line memories 31-1 to 13+-i: Register 33 -1 to 133-3: Addition circuit 41/comparison circuit (ROM)

Claims (1)

【特許請求の範囲】[Claims] (1)組織的ディザで構成されるディザ画像の拡大方式
に於いて、 第1の組織的ディザで構成される原画像上に変換倍率に
応じた変換画素を投影し、該変換画素の近傍に前記第1
の組織的ディザと同じ大きさ内に位置する被変換画素群
のデータを入力する被変換画素入力手段(1)と; 前記被変換画素群のデータから所望の階調数に増した形
で被変換画素の濃度を算出する被変換画素濃度算出手段
(2)と; 被変換画素と同じ面積を持つ変換画素が被変換画像面上
に投影される部分面積比率に応じた重み付けより前記被
変換画素濃度から変換画素濃度を算出する変換画素濃度
算出手段(3)と; 該変換画素濃度算出手段(3)で算出された変換画素濃
度を前記増加階調数に対応した第2の組織的ディザで二
値化するディザ二値化手段(4)と; を備えたことを特徴とするディザ画像の拡大方式。
(1) In a method of enlarging a dithered image made up of systematic dithering, a converted pixel according to the conversion magnification is projected onto the original image made up of the first systematic dithering, and the area near the converted pixel is Said first
a converted pixel input means (1) for inputting data of a group of converted pixels located within the same size as the systematic dither of; a converted pixel density calculating means (2) for calculating the density of the converted pixel; a converted pixel density calculating means (3) for calculating a converted pixel density from the density; converting the converted pixel density calculated by the converted pixel density calculating means (3) by a second systematic dither corresponding to the number of increased gradations; A method for enlarging a dithered image, comprising: a dither binarization means (4) for binarizing;
JP1220905A 1989-08-28 1989-08-28 Dither image enlargement system Pending JPH0383177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1220905A JPH0383177A (en) 1989-08-28 1989-08-28 Dither image enlargement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1220905A JPH0383177A (en) 1989-08-28 1989-08-28 Dither image enlargement system

Publications (1)

Publication Number Publication Date
JPH0383177A true JPH0383177A (en) 1991-04-09

Family

ID=16758372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1220905A Pending JPH0383177A (en) 1989-08-28 1989-08-28 Dither image enlargement system

Country Status (1)

Country Link
JP (1) JPH0383177A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006911A1 (en) * 1993-09-01 1995-03-09 Canon Information Systems Research Australia Pty. Ltd. Method for the creation of dither matrices
WO1995006910A1 (en) * 1993-09-01 1995-03-09 Canon Information Systems Research Australia Pty. Ltd. Alteration of dither matrix size for full colour dithering
US8141671B2 (en) 2008-02-01 2012-03-27 Toyoda Gosei Co., Ltd. Hood lift-up apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006911A1 (en) * 1993-09-01 1995-03-09 Canon Information Systems Research Australia Pty. Ltd. Method for the creation of dither matrices
WO1995006910A1 (en) * 1993-09-01 1995-03-09 Canon Information Systems Research Australia Pty. Ltd. Alteration of dither matrix size for full colour dithering
AU687871B2 (en) * 1993-09-01 1998-03-05 Canon Information Systems Research Australia Pty Ltd Alteration of dither matrix size for full colour dithering
US5832185A (en) * 1993-09-01 1998-11-03 Canon Information System Research Australia Pty Ltd. Alteration of dither matrix size for full color dithering
US8141671B2 (en) 2008-02-01 2012-03-27 Toyoda Gosei Co., Ltd. Hood lift-up apparatus

Similar Documents

Publication Publication Date Title
JP2622429B2 (en) Method and apparatus for halftoning grayscale images using blue noise mask
US4259694A (en) Electronic rescreen technique for halftone pictures
US5335086A (en) Method of and apparatus for eliminating pin holes
US8040558B2 (en) Apparatus and method for shift invariant differential (SID) image data interpolation in fully populated shift invariant matrix
JPH05236260A (en) Picture processor
JP3429300B2 (en) Screen device for use in generating halftone images
JP3810835B2 (en) Image processing method using error diffusion and halftone processing
US8213710B2 (en) Apparatus and method for shift invariant differential (SID) image data interpolation in non-fully populated shift invariant matrix
JPH06105129A (en) Apparatus and method for electronic hi-fi screenless conversion using separable filter
US6301395B1 (en) Image processing apparatus that can appropriately enhance contour of an image
US7224843B2 (en) Apparatus for binary-coding image and method using the same
JPH0383177A (en) Dither image enlargement system
EP0612182B1 (en) Pixel and data format conversion processor for gravure
US6961480B2 (en) Off-grid interpolation in image processing
JP2002118737A (en) Image converter and image conversion method
JPS60136478A (en) Picture processor
JP2777380B2 (en) Halftone area detection method
JP2006087072A (en) Image processing method, image processing apparatus, image forming apparatus, computer program and recording medium
JP2641392B2 (en) Digital halftone screen generation method and apparatus
JPH10271340A (en) Image-processing method and device therefor
JPH05160996A (en) Image processing method
JPH05227413A (en) Binary picture variable magnification device
JP2772220B2 (en) Image data conversion apparatus and image data conversion method
JP2001230929A (en) Reduction processing method and device for binary image
JP2836992B2 (en) Image scaling processor