JPS5814100B2 - Crosstalk attenuation measurement method - Google Patents

Crosstalk attenuation measurement method

Info

Publication number
JPS5814100B2
JPS5814100B2 JP53026145A JP2614578A JPS5814100B2 JP S5814100 B2 JPS5814100 B2 JP S5814100B2 JP 53026145 A JP53026145 A JP 53026145A JP 2614578 A JP2614578 A JP 2614578A JP S5814100 B2 JPS5814100 B2 JP S5814100B2
Authority
JP
Japan
Prior art keywords
crosstalk
measurement
crosstalk attenuation
section
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53026145A
Other languages
Japanese (ja)
Other versions
JPS54118719A (en
Inventor
槙一光
林郁央
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP53026145A priority Critical patent/JPS5814100B2/en
Publication of JPS54118719A publication Critical patent/JPS54118719A/en
Publication of JPS5814100B2 publication Critical patent/JPS5814100B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/487Testing crosstalk effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

【発明の詳細な説明】 この発明はある周波数帯域における漏話規格に対する漏
話減衰量の最悪値を検出する漏話減衰量測定方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crosstalk attenuation measurement method for detecting the worst value of crosstalk attenuation with respect to a crosstalk standard in a certain frequency band.

信号を伝送する際に伝送装置や線路において生ずる漏話
は、中継器に発振を起したり、また信号の漏話は例えば
カラーテレビ信号の場合には色フリツカー雑音となるな
ど多くの問題を生じる。
Crosstalk that occurs in transmission equipment and lines when transmitting signals causes oscillation in repeaters, and signal crosstalk causes many problems, such as color flicker noise in the case of color television signals.

このため漏話減衰量が十分とれないケーブル等による伝
送の場合には漏話減衰量を測定する必要がある。
Therefore, in the case of transmission using a cable or the like in which sufficient crosstalk attenuation cannot be obtained, it is necessary to measure the crosstalk attenuation.

従来の漏話減衰量の測定は発振器とレベル計とを用いて
一方の信号通路に発振器の出力を与えた時の他方向の信
号通路に生じる信号のレベルをレベル計で測定し、それ
等両信号通路間の減衰量を測定することを各周波数毎に
行っていた。
Conventional crosstalk attenuation measurement uses an oscillator and a level meter, and when the output of the oscillator is applied to one signal path, the level of the signal generated in the signal path in the other direction is measured with the level meter, and both signals are measured using the level meter. The amount of attenuation between the paths was measured for each frequency.

しかしながら近端漏話減衰量のように周波数特性が複雑
に変化する場合にはその測定周波数においては所要の漏
話減衰量を満足していても、第1図に示すようにX印で
示す測定点以外の○印で示す周波数では規格を割る場合
がある。
However, when the frequency characteristics change in a complicated manner, such as near-end crosstalk attenuation, even if the required crosstalk attenuation is satisfied at the measurement frequency, the measurement points other than those indicated by the X mark as shown in Figure 1 are Frequencies marked with a circle may break the standard.

第1図において曲線11は漏話特性、曲線12は規格特
性である。
In FIG. 1, curve 11 is the crosstalk characteristic, and curve 12 is the standard characteristic.

このため周波数間隔を十分狭めて多数の周波数で測定を
行わなければならないという欠点があった。
For this reason, there is a drawback that measurement must be performed at a large number of frequencies with sufficiently narrow frequency intervals.

この問題を避けるために周波数掃引によって測定を行う
ことが従来行われている。
In order to avoid this problem, measurement is conventionally performed by frequency sweep.

しかしながらこの測淀法は規格特性が複雑な周波数特性
の場合にはブラウン管上で掃引波形を見て確認するのに
比較的長い時間を要し、かつ高価な測定器を必要とし大
形でありマンホール等狭い場所での測定が困難である等
の欠点があった。
However, in the case of frequency characteristics with complex standard characteristics, this measurement method requires a relatively long time to check the swept waveform on a cathode ray tube, requires expensive measuring equipment, is large, and requires a manhole. However, there were drawbacks such as difficulty in making measurements in confined spaces.

近端漏話による妨害としては、平衡対ケーブルによる両
方向広帯域伝送の場合の中継器の発振がある。
Disturbances due to near-end crosstalk include repeater oscillations in bidirectional broadband transmission over balanced pair cables.

第2図は近端漏話による中継器の発振を説明するための
図であり、本ケーブル13中の線路対14.15はスタ
ブケーブル16に分岐されて中継器筐体17内に導入さ
れ、これより下り方向中継器18.19の入力側に接続
される。
FIG. 2 is a diagram for explaining oscillation of the repeater due to near-end crosstalk, in which line pairs 14 and 15 in the main cable 13 are branched into a stub cable 16 and introduced into the repeater housing 17. It is connected to the input side of downstream repeaters 18 and 19.

中継器18.19の出力側は線路対21.22に接続さ
れ、これ等線路対21,22はスタブケーブル16を通
り、本ケーブル13内に導入される。
The output side of the repeater 18 , 19 is connected to a line pair 21 , 22 which is introduced into the main cable 13 through the stub cable 16 .

一方本ケーブル13内の線路対23,24はスタブケー
ブル16に分岐されて筐体17内の上り方向中継器25
.26の入力側にそれぞれ接続され、中継器25.26
の出力側に接続された線路対27.28はスタブケーブ
ル16より本ケーブル13内に導入される。
On the other hand, the line pair 23 and 24 in the main cable 13 is branched into a stub cable 16 and connected to an uplink repeater 25 in the housing 17.
.. 26, respectively connected to the input sides of the repeaters 25 and 26.
Line pairs 27 and 28 connected to the output side of the stub cable 16 are introduced into the main cable 13.

中継器18の出力は線路対21及び23間の近端漏話が
中継器25の入力に加わり、増幅された後に線路対27
及び14間の近端漏話で中継器18の入力に加わり、2
段の漏話により帰還ループが形成される。
The output of the repeater 18 is the near-end crosstalk between the line pairs 21 and 23, which is added to the input of the repeater 25, and after being amplified, the output is sent to the line pair 27.
and 14 to the input of repeater 18,
The stage crosstalk forms a feedback loop.

このため近端漏話減衰量が中継器利得より犬でない場合
には発振する。
Therefore, if the near-end crosstalk attenuation is less than the repeater gain, oscillation occurs.

中継器18の出力は線路対21一線路対24一中継器2
6一線路対28一線路対14というルートによっても入
力に帰還するので多段多重漏話について考慮しなければ
ならない。
The output of the repeater 18 is line pair 21, line pair 24, and repeater 2.
Since the signal is also fed back to the input via the route 6, one line pair 28, one line pair 14, consideration must be given to multi-stage crosstalk.

このため漏話減衰量が十分とれないケーブルにより両方
向多中継伝送する場合には線路対の選択を行い、相互の
位置を離して収容している。
For this reason, when bidirectional multi-repeat transmission is performed using a cable that does not have sufficient crosstalk attenuation, line pairs are selected and housed at a distance from each other.

しかし中継器は筐体17に収容され、筐体11は本ケー
ブル13にスタブケーブル16によって接続される。
However, the repeater is housed in a housing 17, and the housing 11 is connected to the main cable 13 by a stub cable 16.

このスタブケーブル16は十分漏話減衰量の犬なるケー
ブルを用いることができるが、その本ケーブル13との
接続点の処理が十分でない場合にはその接続点において
漏話が劣化する場合がある。
A dog cable with sufficient crosstalk attenuation can be used as the stub cable 16, but if the connection point with the main cable 13 is not sufficiently treated, crosstalk may deteriorate at that connection point.

これを避けるためには筐体17をケーブルに接続した時
に漏話を測定することが必要である。
To avoid this, it is necessary to measure crosstalk when the housing 17 is connected to the cable.

しかし従来の測定法では所要時間が犬であり実施が困難
であった。
However, conventional measurement methods require a long time and are difficult to implement.

これは中継器筐体17が通常はマンホール内又は柱上に
設置されており、作業が深夜に限定される場合が多いこ
と、両方向Pシステムの場合にはP2個(P=50の場
合には2500個)の組合せについての近端漏話臓衰量
周波数特性の測定を行うことになり、測定に非常に時間
と手間とがかかること等のためである。
This is because the repeater housing 17 is usually installed inside a manhole or on a pole, and work is often limited to late at night, and in the case of a two-way P system, there are two P repeaters (in the case of P = 50, This is because the measurement of the near-end crosstalk visceral attenuation frequency characteristics for 2,500 combinations is very time-consuming and labor-intensive.

このため従来は漏話減衰量の測定は行わず、接続後直ち
にケーブル外被の接続を行い防水していた。
For this reason, in the past, crosstalk attenuation was not measured, and the cable jacket was connected immediately after connection to make it waterproof.

その後回線の開通試験を行い、漏話等の問題が生じた場
合に測定を行い、接続点の処理を行っていた。
Afterwards, the line was tested for commissioning, and if problems such as crosstalk occurred, measurements were taken and connection points were dealt with.

ケーブル外被の接続は鉛工等を必要とするので熟練者で
も一夜を要する工事であり、工事期間、工事費用が犬と
なる。
Connecting the cable sheath requires a lead worker and the like, so even an experienced worker will need an overnight job, which increases the construction period and cost.

またこのような工法であったから回線数を増大させる場
合にこれまで用いていなかった心線に中継器が接続され
ることにより使用中の中継器が発振する場合があり建設
、保守上の欠点があった。
In addition, because of this construction method, when increasing the number of circuits, the repeater in use may oscillate due to being connected to a core wire that has not been used before, resulting in drawbacks in terms of construction and maintenance. there were.

この発明はこれらの欠点を解決するため所要の漏話規格
を満足しているか否かを瞬時に検出できるようにした漏
話減衰量測定方法を提供するものである。
In order to solve these drawbacks, the present invention provides a crosstalk attenuation measuring method that can instantly detect whether or not required crosstalk standards are satisfied.

第3図はこの発明による測定方法に使用される測定器の
一例を示し、測定器29内に増幅部31が収容され、そ
の増幅部31の入力側及び出力側は測定器29の漏話測
定接続端子32及び33にそれぞれ接続され、また出力
側にはレベル計34が接続される。
FIG. 3 shows an example of a measuring instrument used in the measuring method according to the present invention, in which an amplifier section 31 is housed in the measuring instrument 29, and the input side and output side of the amplifier section 31 are connected to the crosstalk measurement connection of the measuring instrument 29. They are connected to terminals 32 and 33, respectively, and a level meter 34 is connected to the output side.

増幅部31は利得調整端子35からの信号により或は手
動により利得が調整され得るものである。
The gain of the amplifier section 31 can be adjusted by a signal from a gain adjustment terminal 35 or manually.

漏話減衰量が予め設定した所定の規格値を満足している
かどうかが測定される漏話発生物体即ち被測定体区間例
えば線路の被測定区間に端子32,33を通じて測定器
29の増幅部31を接続して使用する。
The amplifying section 31 of the measuring instrument 29 is connected through terminals 32 and 33 to a crosstalk-generating object, that is, a section of the object to be measured, such as a section of a railway line, where it is measured whether the amount of crosstalk attenuation satisfies a predetermined standard value set in advance. and use it.

このような構成になっているから増幅部31の利得特性
と漏話減衰量との和のナイキスト線図が(i,o)を囲
む場合には発振し、レベル計34に出力が現われ(1.
0)を囲まない場合には発振せずレベル計34には熱雑
音しか表示されない。
With such a configuration, when the Nyquist diagram of the sum of the gain characteristics of the amplifier 31 and the crosstalk attenuation surrounds (i, o), oscillation occurs, and an output appears on the level meter 34 (1.
0), no oscillation occurs and only thermal noise is displayed on the level meter 34.

一般に近端漏話減衰量は位相がランダムであるから絶対
値が1を越す場合には必らず発振する。
Generally, the phase of near-end crosstalk attenuation is random, so if the absolute value exceeds 1, oscillation occurs.

従って増幅部31の利得特性を各規格特性に対応した所
要の漏話減衰量特性と等しくしておけば、測定器29で
検出される発振の有無により被測定体区間の漏話減衰量
が規格を満足するか否かを直ちに知ることができる。
Therefore, if the gain characteristics of the amplifier section 31 are made equal to the required crosstalk attenuation characteristics corresponding to each standard characteristic, the crosstalk attenuation in the section of the measured object will satisfy the standard depending on the presence or absence of oscillation detected by the measuring instrument 29. You can immediately know whether or not to do so.

例えば第1図に示した場合には増幅部31の利得特性を
例えば曲線12の規格特性にすれば○印の周波数の場合
のように規格を割る周波数幅が非常に狭い場合において
も被測定体区間の漏話減衰量が所定の規格値以下である
ことを確実に検出することができる。
For example, in the case shown in Fig. 1, if the gain characteristic of the amplifier section 31 is set to the standard characteristic of curve 12, even when the frequency width that divides the standard is very narrow as in the case of the frequency marked with ○, the It is possible to reliably detect that the amount of crosstalk attenuation in the section is below a predetermined standard value.

レベル計34は発振を表示できるものであれば良いから
指針型のレベル計の代りに発光素子の点灯又は消灯によ
っても、或はブザなどの音によって規格を満足するか否
か示すようにしてよい。
The level meter 34 may be of any type as long as it can display oscillations, so instead of using a pointer-type level meter, it may be used to indicate whether the standards are met by turning on or off a light emitting element, or by making a sound such as a buzzer. .

又手動又は端子35からの入力信号により増幅部31の
利得を変化して発振表示点を求めるような構成にしてお
けば漏話減衰量の絶対値を知ることができる。
Further, if the configuration is such that the oscillation display point is determined by changing the gain of the amplifying section 31 manually or by an input signal from the terminal 35, the absolute value of the crosstalk attenuation amount can be known.

また規格値との差を得ることもできる。It is also possible to obtain the difference from the standard value.

例えば第4図の曲線36に示すような利得周波数特性を
増幅部31に与える。
For example, a gain frequency characteristic as shown by a curve 36 in FIG. 4 is given to the amplifier section 31.

この特性はカラーテレビ信号のベースバンド伝送時にお
けるケーブル近端漏話規格特性であり、点線37で示し
た中継器利得特性に多中継、多重漏話による累積、発振
余裕、輝度漏話規格、色度漏話規格特性を加えたもので
ある。
This characteristic is the cable near-end crosstalk standard characteristic during baseband transmission of color television signals, and the repeater gain characteristic shown by the dotted line 37 includes multiple relays, accumulation due to multiple crosstalk, oscillation margin, luminance crosstalk standard, and chromaticity crosstalk standard. It has added characteristics.

従ってこの特性とした測定器で漏話を測定した場合に発
振表示がなければ近端漏話による発振だけでなく輝度漏
話妨害、色度漏話妨害も生じない。
Therefore, when crosstalk is measured with a measuring instrument having this characteristic, if no oscillation is displayed, not only oscillation due to near-end crosstalk but also luminance crosstalk interference and chromaticity crosstalk interference will not occur.

この場合増幅部31を多段の可変等化器で構成し、任意
の利得特性を得るようにすれば必要に応じて希望する規
格特性の検出ができる。
In this case, if the amplifying section 31 is configured with a multi-stage variable equalizer to obtain an arbitrary gain characteristic, a desired standard characteristic can be detected as necessary.

次にこの発明を多段、多重漏話の検出に用いる場合につ
いて説明する。
Next, a case will be described in which the present invention is used to detect multistage and multiple crosstalk.

この場合には例えば第2図において中継器18,19,
25.26の替りに、第3図に示した測定器29を中継
器筐体17にそれぞれ挿入する。
In this case, for example, in FIG. 2, the repeaters 18, 19,
25 and 26, the measuring instruments 29 shown in FIG. 3 are inserted into the repeater housing 17, respectively.

この際挿入される測定器29の増幅部31の利得特性を
中継器利得特性に多中継、多重漏話の累積による増大分
及び発振余裕を加えた特性に予め設定しておく。
At this time, the gain characteristic of the amplifying section 31 of the measuring instrument 29 inserted is set in advance to a characteristic obtained by adding an increase due to multiple repeats and the accumulation of multiple crosstalk and an oscillation margin to the repeater gain characteristic.

この場合に中継器18及び19に替わって接続された測
定器29が発振表示したとすると、線路対14及び15
間の漏話、また線路対22及び21間の漏話の一方もし
くは両方が規格を満足していないことが瞬時に検出でき
る。
In this case, if the measuring device 29 connected instead of the repeaters 18 and 19 displays an oscillation, then the line pair 14 and 15
It can be instantly detected that one or both of the crosstalk between the line pairs 22 and 21 does not meet the standards.

従って筐体スタブケーブル16の本ケーブル13への接
続時に測定器29を用いて測定することによりケーブル
外被の接続以前に必要な処理箇所がわかり、工事が二重
になることが避けられる。
Therefore, by measuring using the measuring device 29 when connecting the housing stub cable 16 to the main cable 13, it is possible to find out the necessary processing points before connecting the cable jacket, and avoid duplicating the work.

以土は両方向2システムの場合について説明したがシス
テム数が増大しても同様であることは言うまでもない。
Although the above description has been made regarding the case of two systems in both directions, it goes without saying that the same applies even if the number of systems increases.

なおこの場合に各測定器の利得制御外部端子35を伝送
方向別に接続し、同一伝送方向の各測定器増幅部31の
利得を同時に制御して調べることにより作業性手数を少
なくすることができることは言うまでもない。
In this case, it is possible to reduce the amount of work required by connecting the gain control external terminals 35 of each measuring instrument according to the transmission direction and simultaneously controlling and checking the gains of the measuring instrument amplifiers 31 in the same transmission direction. Needless to say.

またこのように複数増幅部31を同時使用して多重の多
段漏話の最悪値を検出できるように一つの測定器筐体内
に複数の増幅部を収容していてもよい。
Further, a plurality of amplification units 31 may be housed in one measuring instrument housing so that the worst value of multiple multi-stage crosstalk can be detected by simultaneously using a plurality of amplification units 31 in this manner.

更に多システム筐体で回線開通が順次行われる場合でも
、筐体接続時に漏話測定を全体に対して行っても作業時
間が増大しないので、後に回線開通する回線の漏話減衰
量がとれないことによる他回線への妨害は避けることが
できる。
Furthermore, even if lines are opened sequentially in a multi-system case, measuring crosstalk for the entire case when connecting the cases does not increase the work time, so crosstalk attenuation for lines that are opened later cannot be measured. Interference with other lines can be avoided.

この発明により遠端漏話減衰量の測定を行うこともでき
る。
The present invention also allows measurement of far-end crosstalk attenuation.

第3図の漏話測定接続端子32.33間に例えばケーブ
ルドラムの両端を心線を変えて接続すれば遠端漏話減衰
量が発振表示によって示される。
If, for example, both ends of a cable drum are connected between the crosstalk measurement connection terminals 32 and 33 in FIG. 3 with different core wires, the amount of far-end crosstalk attenuation is indicated by an oscillating display.

この場合に増幅部31の入出力間の位相が等しいと発振
表示をしない場合があるが、位相を変化させることによ
り増幅部31の利得特性と等しい絶対値の減衰量特性の
ものが接続されると発振する。
In this case, if the phases between the input and output of the amplifying section 31 are equal, oscillation may not be displayed, but by changing the phase, an attenuation characteristic with an absolute value equal to the gain characteristic of the amplifying section 31 is connected. oscillates.

以上説明したようにこの発明によれば単に測定器を接続
しただけで所要の帯域全体の任意の規格特性に対する漏
話減衰量の最悪値が容易に検出できるので、作業時間の
短縮化、工事費用の低減化、回線の品質向上等を可能と
することができる。
As explained above, according to the present invention, the worst value of crosstalk attenuation for any standard characteristic over the entire required band can be easily detected by simply connecting a measuring instrument, thereby reducing work time and construction costs. It is possible to reduce the amount of noise and improve the quality of the line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は漏話減衰量周波数特性曲線図、第2図は本ケー
ブルと中継器との接続状態を示す図、第3図はこの発明
の測定方法に使用される測定器を示すブロック図、第4
図は増幅部31の利得周波数特性の一例を示す曲線図で
ある。 31:増幅部、32,33:漏話測定端子、34:レベ
ル計、35:増幅部利得可変制御信号入力端子。
Fig. 1 is a crosstalk attenuation frequency characteristic curve diagram, Fig. 2 is a diagram showing the connection state between the cable and the repeater, Fig. 3 is a block diagram showing the measuring instrument used in the measuring method of the present invention, 4
The figure is a curve diagram showing an example of the gain frequency characteristic of the amplifier section 31. 31: Amplification section, 32, 33: Crosstalk measurement terminal, 34: Level meter, 35: Amplification section gain variable control signal input terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 測定器の増幅部に対してその利得・周波数特性を測
定周波数帯域において予め所定の漏話減衰量・周波数特
性に等しく設定し、上記測定器の漏話測定接続端子を上
記測定周波数帯域における漏話減衰量が測定される被測
定体の測定区間に挿入接続し、上記被測定体の測定区間
に挿入接続された上記測定器の増幅部における発振を検
出することにより、上記測定器が接続された上記被測定
体の測定区間における漏話減衰量・周波数特性が上記増
幅部に予め設定された利得・周波数特性に対応する上記
所定の漏話減衰量・周波数特性より悪いことを検出する
ことを特徴とする漏話減衰量測定法。
1. Set the gain and frequency characteristics of the amplifier section of the measuring device equal to the predetermined crosstalk attenuation and frequency characteristics in the measurement frequency band, and connect the crosstalk measurement connection terminal of the measuring device to the crosstalk attenuation amount and frequency characteristics in the measurement frequency band. is inserted into the measurement section of the object to be measured, and by detecting oscillation in the amplifying section of the measuring device, which is inserted into the measurement section of the object to be measured. Crosstalk attenuation characterized by detecting that the crosstalk attenuation and frequency characteristics in the measurement section of the measuring object are worse than the predetermined crosstalk attenuation and frequency characteristics corresponding to the gain and frequency characteristics preset in the amplification section. Quantity measurement method.
JP53026145A 1978-03-08 1978-03-08 Crosstalk attenuation measurement method Expired JPS5814100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53026145A JPS5814100B2 (en) 1978-03-08 1978-03-08 Crosstalk attenuation measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53026145A JPS5814100B2 (en) 1978-03-08 1978-03-08 Crosstalk attenuation measurement method

Publications (2)

Publication Number Publication Date
JPS54118719A JPS54118719A (en) 1979-09-14
JPS5814100B2 true JPS5814100B2 (en) 1983-03-17

Family

ID=12185368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53026145A Expired JPS5814100B2 (en) 1978-03-08 1978-03-08 Crosstalk attenuation measurement method

Country Status (1)

Country Link
JP (1) JPS5814100B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251294A (en) * 1986-04-16 1987-11-02 ウイルヘルム ライブ Yacht

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251294A (en) * 1986-04-16 1987-11-02 ウイルヘルム ライブ Yacht

Also Published As

Publication number Publication date
JPS54118719A (en) 1979-09-14

Similar Documents

Publication Publication Date Title
US6285653B1 (en) Method and apparatus to measure far end crosstalk for the determination of equal level far end crosstalk
US4025737A (en) Repeater monitoring and fault location
US5510925A (en) Relay transmission system including optical amplification
JPS5814100B2 (en) Crosstalk attenuation measurement method
US2337541A (en) Electric circuit
US7769291B2 (en) Optical communication network and component therefore
EP0847620B1 (en) Circuit arrangement comprising a feedback loop
US2812492A (en) Differential loss measuring system
US3311714A (en) Method and apparatus for testing a repeatered transmission path
JPH09116502A (en) High output optical amplifier repeater with monitoring loopback circuit
JP2602901B2 (en) Coaxial cable loss measuring device and coaxial cable loss compensating device using the same
US1459770A (en) System for testing line balance
KR100523995B1 (en) Apparatus for measuring performance of high frequence signal relay using high frequence switch matrix
JPH08271374A (en) Optical loss measuring method and device for optical transmission line
JPH0818944A (en) Monitor signal measurement method for catv amplifier and catv amplifier capable of measuring the signal
JP2944514B2 (en) CATV transmission line level measurement method
GB667331A (en) Improvements in or relating to a system of testing a telecommunication system
KR100995957B1 (en) Method and Apparatus for Measurement Isolation at ICS Repeater
JPS59215130A (en) Two-way transmission repeater
SU951182A1 (en) Reflectometer
JP2531131Y2 (en) CATV repeater
JPS5535552A (en) Distortion noise suppression unit of comminication line
JPS6014546B2 (en) Fault monitoring method for cable relay communication system
JPS63236431A (en) Transmission output monitoring device
JPH0630389A (en) Catv system with frequency characteristic deviation automatic correction function