JPS58140655A - Iron loss measuring method and stress measuring device utilizing method - Google Patents

Iron loss measuring method and stress measuring device utilizing method

Info

Publication number
JPS58140655A
JPS58140655A JP2288582A JP2288582A JPS58140655A JP S58140655 A JPS58140655 A JP S58140655A JP 2288582 A JP2288582 A JP 2288582A JP 2288582 A JP2288582 A JP 2288582A JP S58140655 A JPS58140655 A JP S58140655A
Authority
JP
Japan
Prior art keywords
voltage
coil
iron loss
magnetic material
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2288582A
Other languages
Japanese (ja)
Other versions
JPH0424670B2 (en
Inventor
Tadamasa Nakamura
中村 忠正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Mechatronics Corp
Original Assignee
Shibaura Engineering Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Engineering Works Co Ltd filed Critical Shibaura Engineering Works Co Ltd
Priority to JP2288582A priority Critical patent/JPS58140655A/en
Publication of JPS58140655A publication Critical patent/JPS58140655A/en
Publication of JPH0424670B2 publication Critical patent/JPH0424670B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/123Measuring loss due to hysteresis

Abstract

PURPOSE:To measure iron loss with high precision regardless of the dimensions of a gap between an inside iron core and a magnetic material, by providing the inside core and an outside iron core so that magnetic flux flows in the magnetic material, and nearly eliminating the magnetic flux flowing to the inside iron core. CONSTITUTION:The inside iron core 13 and outside iron core 16 are so provided that the magnetic flux flows in the magnetic material 19; the inside iron core 13 is provided with a voltage coil 14 and a detecting coil 15 and the outside iron core 16 is provided with an energizing coil 17. Magnetic flux shunt from this outside iron core 16 to the inside iron core 13 cancels magnetic flux which is produced by the voltage coil 14 and flows in the inside iron core 13 to nearly eliminate the magnetic flux at the detection coil 15. Consequently, the voltage of the voltage coil 14 and the current of the energizing coil 17 are inputted to a wattmeter 7, whose production output is the iron loss of the magnetic material 9. Thus, the magnetic flux of the detection part 15 of th inside iron core 13 is nearly eliminated to measure the iron loss of the magnetic material 9 with high precision all the time regardless of the dimensions of the gap between the end surface of the inside iron core and the magnetic material 9.

Description

【発明の詳細な説明】 本発明は、磁性材料の鉄損測定方法及びこの鉄損測定方
法を利用した磁性材料の応力測定装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring iron loss in a magnetic material and a stress measuring device for a magnetic material using this method.

従来から行われている磁性材料の鉄損測定方法の一つに
、第1図に示すような磁気センサlを使用する方法があ
る。この磁気センサlは、断面かはXコの字形の鉄t0
2に、−次コイル(励磁フィル)3Rび二次コイル(出
カニ次電圧コイル)4を轡いて構成され、−次コイル3
は交流電#ls及び増−器・を介して電力計7に接続さ
れ、二次コイル4は増幅器8を介して電力針7に接続さ
れている。いま、磁性材料9の1!!面に磁気センサl
の、鉄心意の開口410 、11tl−接触させて、交
流電#isKより、−次コイル3を励磁すると、磁束は
鉄心2から磁性材料9の中を、矢印で示すよ5に流れ、
再び鉄心2に戻る磁路を形成し、この磁束により二次フ
ィル4には電圧が1起される。この電圧を増l1liI
器$で増幅して、出カニ次電圧として電力針7に出力す
る。電力針7では、二次コイル4からの出カニ次電圧と
、−次コイル3のJl!1Ma電流を入力して、これ等
を乗算して磁性材料9と鉄心2の鉄損を表示する。この
場合、鉄心2の鉄損を、磁性材料うの鉄損に比べて十分
に小さくしておけば、電力針7に表示された鉄損は、d
rm性材料9の鉄損と考え文よい。
One of the conventional methods for measuring iron loss of magnetic materials is a method using a magnetic sensor l as shown in FIG. This magnetic sensor l is made of iron t0 with an X-shaped cross section.
2, a negative-order coil (excitation filter) 3R and a secondary coil (output secondary voltage coil) 4, and a negative-order coil 3
is connected to the wattmeter 7 via an alternating current voltage #ls and an amplifier, and the secondary coil 4 is connected to the power needle 7 via an amplifier 8. Now, 1 of 9 magnetic materials! ! Magnetic sensor on the surface
When the iron core opening 410 and 11tl are brought into contact and the -order coil 3 is excited by the AC current #isK, magnetic flux flows from the iron core 2 through the magnetic material 9 to 5 as shown by the arrow,
A magnetic path returning to the iron core 2 is formed again, and a voltage of 1 is generated in the secondary filter 4 by this magnetic flux. Increase this voltage l1liI
The voltage is amplified by the voltage generator and output to the power needle 7 as an output voltage. In the power needle 7, the output voltage from the secondary coil 4 and the Jl! of the negative secondary coil 3 are measured. Input 1 Ma current and multiply these values to display the iron loss of the magnetic material 9 and the iron core 2. In this case, if the iron loss of the iron core 2 is made sufficiently smaller than that of the magnetic material, the iron loss displayed on the power needle 7 will be d
It is a good idea to consider the iron loss of rm material 9.

しかし、この場合、磁性材料90表向に凹凸があると、
磁気センサlの敵心2の開口端10 、11を磁性材料
9の表面に接触させた場合、磁気センサlの鉄心意の端
面10 、11と、磁性材料9の接触面の聞に空隙を生
じ、磁気抵抗が増加するので磁束が漏洩し、磁性材料9
内を流れる磁束の磁束密度が減少する。−実験例による
と、0.01關の空隙があると、磁性材!49内の磁束
密度は約IL1%威少する。一般に、鉄損は磁束密度の
はX2乗に比例するから、−れ磁束は鉄損の測定精良に
大きな影響な&ばす、従って、上述の従来の鉄損測定方
法では、磁性材料9と磁気センサ1の鉄心2の端面1G
 、 11 f)@に空隙が生ずると、漏れ磁束のため
に鉄損の調定精度が低下し1Mi性材料9の鉄損測定に
大きな誤差を生ずるという欠点があった。
However, in this case, if there are irregularities on the surface of the magnetic material 90,
When the open ends 10 and 11 of the core 2 of the magnetic sensor l are brought into contact with the surface of the magnetic material 9, a gap is created between the end faces 10 and 11 of the core of the magnetic sensor l and the contact surface of the magnetic material 9. , the magnetic flux leaks as the magnetic resistance increases, and the magnetic material 9
The magnetic flux density of the magnetic flux flowing inside decreases. -According to experimental examples, if there is a gap of 0.01 degrees, the material becomes magnetic! The magnetic flux density within 49 decreases by approximately IL1%. In general, since iron loss is proportional to the X square of the magnetic flux density, negative magnetic flux has a great influence on the accuracy of iron loss measurement. Therefore, in the conventional iron loss measurement method described above, magnetic material 9 and magnetic sensor End face 1G of iron core 2 of 1
, 11 f) If a gap is formed in the @, the iron loss adjustment accuracy will be lowered due to leakage magnetic flux, resulting in a large error in the iron loss measurement of the 1Mi material 9, which is a drawback.

また、一般に、磁性材料に作用する応力と鉄損の関N−
はvI接な関係があり、横@に引張応力及び圧縮応力を
、lR@に鉄損を散り、磁性材料に作用する応力と鉄損
の関係を示すと第2図のようKなる。呻ち、磁性材料に
圧縮応力が作用する時を:、圧一応力と鉄損ははKIN
[線圓係にあるので、この関係を利用し、圧縮応力の作
用している磁性材料の鉄損を画定すれば、高精度でその
圧縮シも力を求めることができる。いま、第2図におい
て、磁性材料に圧縮応力が作用していない時の鉄損をW
o。
In general, the relationship between stress acting on magnetic materials and iron loss is N-
There is a tangential relationship with vI, and the relationship between the stress acting on the magnetic material and the iron loss is expressed by K as shown in Fig. 2, where the tensile stress and compressive stress are expressed as transverse @, and the iron loss is expressed as lR@. When compressive stress acts on a magnetic material: The crushing stress and iron loss are KIN
[Since it is related to a linear circle, if this relationship is used to determine the core loss of a magnetic material on which compressive stress is acting, the compressive force can be determined with high accuracy. Now, in Figure 2, the iron loss when no compressive stress is acting on the magnetic material is W.
o.

圧縮応力−の作用した時の鉄損をWiとすると、圧一応
力−は(Wl −W@) K比例する。従りて。
If the iron loss when compressive stress is applied is Wi, then the crushing stress is proportional to (Wl - W@)K. Therefore.

比g4常数をαとすると、m性材料に作用する圧縮応力
Cは、 g = (1(Wi  −Wo)         ・
・・・−・・・・(りから求めることができる。こ−に
、比例常数αは、磁束量、4a性材料の種類、鉄損測定
に1]2用した磁気センサの種類等により【決まるもの
である。
When the ratio g4 constant is α, the compressive stress C acting on the m-type material is g = (1(Wi − Wo) ・
It can be determined from ... It is decided.

従って、磁性材料に圧縮応力が作用していない時の鉄損
W・と、圧縮応力が作用している時の鉄損wtvii定
すれば、上述の(1)式から、その磁性材料に作用して
いる圧縮応力Iを求めることができる。しかし、81図
に示すような従来の鉄損測定方法では、磁性材料9と磁
気センサ1の鉄心2の端1ji 1G 、 11との闇
に空隙があると、上述のような理由により、鉄損調定精
度が低下し、磁性材料IK作用する圧縮応力の画定に大
きな誤差を生ずるという欠点があった。
Therefore, if we define the iron loss W when no compressive stress is acting on the magnetic material and the iron loss wtvii when compressive stress is acting, then from equation (1) above, The compressive stress I can be determined. However, in the conventional iron loss measuring method as shown in FIG. This has the disadvantage that the adjustment accuracy is reduced and a large error occurs in defining the compressive stress acting on the magnetic material IK.

本発明は、上述の欠点を除去するためになされたもので
、磁気センサと磁性材料の接触面の閣に空隙がありても
、高精度で鉄損を測定することができる鉄損測定方法及
びこの鉄損測定方法を利用した応力測定装置な提供する
ものである。
The present invention has been made to eliminate the above-mentioned drawbacks, and includes an iron loss measuring method and iron loss measuring method that can measure iron loss with high accuracy even if there is a gap between the contact surfaces of a magnetic sensor and a magnetic material. A stress measuring device using this iron loss measuring method is provided.

以下、本発明の一実施例を図面について説明する。An embodiment of the present invention will be described below with reference to the drawings.

43−は本発明の磁性材料の鉄損測定方法の一実施例の
説明−1第4図は本発明の磁性材料の鉄損1定方法の他
の実施真のa明図、第5図は前記鉄損測定方法を利用し
た、磁性材料の応力測定装置の一実JlliNのブロッ
ク線図である。
43- is an explanation of one embodiment of the method for measuring iron loss of magnetic materials of the present invention-1. Fig. 4 is a diagram of another embodiment of the method of determining iron loss 1 of magnetic materials of the present invention, and Fig. FIG. 2 is a block diagram of JlliN, which is a stress measuring device for magnetic materials that utilizes the iron loss measuring method.

なお、#!1図、第3#A乃至第5図において、同一番
号は同一部材を示す。
In addition,#! 1 and 3#A to 5, the same numbers indicate the same members.

@ 311i1 において、−気セ7す12は、内側鉄
心13と、との内側鉄心13の背部に巻かれた電圧コイ
ル14及びそのJ11mlIK41かれた検出コイル1
5と、内側鉄心13を覆うように、その外@に設けられ
た断面がはgコの字形の外側鉄心16と、この外側鉄心
16に豐かれた励磁コイル17とから構成されている。
In @311i1, the voltage coil 14 wound around the inner core 13 and the detection coil 1 wound around the inner core 13 and its J11mlIK41
5, an outer core 16 provided outside the inner core 13 and having a U-shaped cross section, and an excitation coil 17 mounted on the outer core 16.

内側鉄心13は、断面がはXコの字形の形状を有し、電
圧コイル14と検出コイル150間に各脚部からそれぞ
れ内11に同けて突起taj、、 、 13”が設けら
れ、こ〜 の突起13’ 、 13”の闇には、−気抵抗をllI
4整するための空隙が設けられている。そして電圧コイ
ル14を交流電源iと電力針7に接続し、検出コイル1
5を増−1i)1@を介して、また励磁フィル17を電
流針20を介してそれぞれ電力針yecH7Ic続する
。電圧コイル14には、電圧コイル14の電圧を測定す
る酸圧針111が並列にWk続されている。
The inner core 13 has an X-shaped cross section, and protrusions taj, , , 13'' are provided between the voltage coil 14 and the detection coil 150 from each leg to the inside 11, respectively. The darkness of the protrusion 13', 13" of ~ has a -ki resistance of llI
4. A gap is provided for alignment. Then, the voltage coil 14 is connected to the AC power supply i and the power needle 7, and the detection coil 1
5 is increased -1i) 1@ and the excitation filter 17 is connected to the power needle yecH7Ic via the current needle 20, respectively. A number of acid pressure needles 111 for measuring the voltage of the voltage coil 14 are connected in parallel to the voltage coil 14 .

今、磁気センサ12を磁性材料90表ImK配置して、
電圧コイル14を交漁電11sKより、一定電圧で励磁
すると、磁束は内側鉄心13内を矢印の方向Kr1Lれ
、一部分は突起13’から空隙を介して突起13’を通
り元に戻る第1内側磁路ムを形成し、他部分は内#l鉄
心13の一方の脚部から磁性材料9の中を、矢印の方向
に流れ、内側鉄心13の他方の脚部に戻る#E2内舖磁
路Bを形成する。この第2内側磁路Bを流れる磁束によ
り、検出フィル15に電圧が1起される。この検出コイ
ル15に超超大れた電圧を、増幅器18で増−して、電
力針7及び電流針20を介して、この検出コイル1s−
1car起された電圧を打消す方向に励磁コイル17に
印加すると、励磁フィル17Kllfiが流れ、磁束は
外部鉄心16から磁性材料9の中を流れ、その磁束の一
部分は、矢印で示すよ5に、内I11鉄心13の一方の
脚部から入り、内側鉄心13の中を流れ、内@鉄心13
の他方の脚部から出て1合び磁性材料9の中を流れて、
外側鉄心16に戻る外@磁路Cを形成する。この場合、
増−器1$の増−率を極め【太き(しておき、外側鉄心
16から、内側鉄心13に分流した磁束で、電圧コイル
14の励46により発生し、内側鉄心13内を流れる磁
束を打消させ、検出フィル15sの磁束が殆んど零にな
るようにすると、内偵鉄心13の各脚部の起磁力は殆ん
ど零となり、内側鉄心13の各脚部の突起13“、13
1の近傍の雪点X−Y間の起磁力と、内側鉄心13の各
i11部の端面と対向する磁性材料9内の2J:LU−
V間の起磁力が等しくなる。従って、この時の電圧コイ
ル14の電圧と、励磁フィル17の電流を電力針7に入
力して乗算すれは、その乗算結果は、磁性材料9のU−
V間の鉄道となる。この・ようK、内側鉄心13の各脚
部の磁束な殆んど零にすれば、内側鉄心13の端面と、
磁性材料9の間の空隙の大小に関係なく、tVc高精度
で磁性材料9の鉄損を画定することができる。
Now, the magnetic sensor 12 is placed on the magnetic material 90 ImK,
When the voltage coil 14 is excited with a constant voltage from the alternating current 11sK, the magnetic flux moves inside the inner core 13 in the direction of the arrow Kr1L, and a portion of the magnetic flux flows from the protrusion 13' through the gap and returns to the first inner side through the protrusion 13'. The other part forms a #E2 inner magnetic path that flows from one leg of the inner #1 iron core 13 through the magnetic material 9 in the direction of the arrow and returns to the other leg of the inner core 13. Form B. The magnetic flux flowing through the second inner magnetic path B causes a voltage of 1 to be generated in the detection filter 15 . The extremely large voltage applied to this detection coil 15 is increased by an amplifier 18, and then passed through the power needle 7 and current needle 20 to this detection coil 1s.
When a voltage of 1 car is applied to the excitation coil 17 in a direction that cancels it out, the excitation filter 17Kllfi flows, magnetic flux flows from the outer core 16 through the magnetic material 9, and a portion of the magnetic flux is shown at 5 as shown by the arrow. Inner I11 Enters from one leg of the iron core 13, flows inside the inner iron core 13, and enters the inner @ iron core 13.
comes out from the other leg of , flows through the magnetic material 9,
An outer magnetic path C returning to the outer core 16 is formed. in this case,
Maximize the increase rate of 1 dollar of the intensifier. When the magnetic flux of the detection filter 15s becomes almost zero, the magnetomotive force of each leg of the inner core 13 becomes almost zero, and the protrusions 13", 13 of each leg of the inner core 13
1 and the magnetomotive force between snow points X and Y in the vicinity of 2J:LU-
The magnetomotive force between V becomes equal. Therefore, if the voltage of the voltage coil 14 at this time and the current of the excitation filter 17 are input to the power needle 7 and multiplied, the multiplication result is
It becomes a railway between V. In this case, if the magnetic flux of each leg of the inner core 13 is made almost zero, the end face of the inner core 13 and
Regardless of the size of the air gap between the magnetic materials 9, the iron loss of the magnetic materials 9 can be determined with high tVc accuracy.

また、第41i!lは、本発明の鉄損測定方法の他の実
施例を示したもので、第3図の磁気センサ12の代りK
、磁気センサ21を用いた外は第3図と全く同じである
。磁気センサ21は、断面かはyコの字形の内側鉄心2
2と、この内側鉄心22の背sに巻かれた電圧コイル1
4及びその脚sK善かれた検出コイル1sと、内偵鉄心
22を覆うようK、その外@に設けられた断面かはyコ
の字形の外側鉄心16と、この外側鉄心16に巻かれた
励磁コイル17とから構成されている。従りて、磁気セ
ンサ21を磁性材料90表面に配置し、電圧コイル14
を交流電fi5により、一定電圧で励磁すると、磁束は
内−j鉄心22から磁性材料うの中を矢印の方向に流れ
、^び内側鉄心22に戻る内側磁路りを形成し、検出コ
イルISK電圧が1起される。この検出コイル15に1
起された電圧を、増−器18で増輪して、電力針7&び
電流計20を介して、この検出コイル1sKa起された
電圧を打消す方向Kkk4imコイル17に印加すると
、励磁コイルlTK電流が流れ、磁束は外側鉄心16か
ら磁性材料9の中を流れ、その磁束の一部分は矢印で示
すように、内側鉄心22の一方の811部から入り、内
側鉄心22の中を流れ、内側鉄心22の他方の脚部から
出て、p%び磁性材料9の中を流れて外側鉄心16に戻
る外側磁路Eを形成する。この場合、増幅@IIIの増
−串を極めて大きくしておき、内情鉄心22に分流した
磁束で、電圧コイル14の励41iiKより発生し、内
側鉄心22内を流れる磁束を打消させ、検出フィル15
部の磁束が殆んど零になるようKすると、内情鉄心22
の各脚部の検出コイルISと電圧コイル14闇の2点X
’  Y’閣の起磁力と、内情鉄心82の各脚部の端面
と対向する磁性材lI49内の冨点U−V闇の起電力が
等しくなる。従って、この時の電圧コイル14の電圧と
、励磁コイル17の電流を電力針7に入力して乗算すれ
ば、その乗算結果は、磁性材料9のU−V闇の鉄f−と
なり、第3図の場合と同様に、磁性材料9の鉄損を、内
側鉄心宜2の端面と、磁性材料90闇の空隙の大小に関
係なく、tK高精度で測定することができる。
Also, the 41st i! 1 shows another embodiment of the iron loss measuring method of the present invention, in which K is used instead of the magnetic sensor 12 in FIG.
, is exactly the same as FIG. 3 except that the magnetic sensor 21 is used. The magnetic sensor 21 has an inner core 2 with a Y-shaped cross section.
2, and a voltage coil 1 wound around the back s of this inner core 22.
4 and its legs sK, a detection coil 1s, an outer core 16 with a Y-shaped cross section provided outside K so as to cover the inner core 22, and an excitation coil wound around this outer core 16. It consists of 17. Therefore, the magnetic sensor 21 is placed on the surface of the magnetic material 90, and the voltage coil 14
When excited with a constant voltage by an AC electric fi5, the magnetic flux flows from the inner core 22 through the magnetic material in the direction of the arrow, forming an inner magnetic path that returns to the inner core 22, and the detection coil ISK voltage 1 will be raised. 1 for this detection coil 15
When the generated voltage is increased by the intensifier 18 and applied to the Kkk4im coil 17 in a direction that cancels the voltage generated in the detection coil 1sKa through the power needle 7 and the ammeter 20, the exciting coil 1TK current flows, magnetic flux flows from the outer core 16 through the magnetic material 9, and a portion of the magnetic flux enters from one 811 section of the inner core 22, flows through the inner core 22, as shown by the arrow, and flows through the inner core 22. forming an outer magnetic path E which exits from the other leg of the magnetic material 9 and flows through the magnetic material 9 and returns to the outer core 16. In this case, the amplification @III is made extremely large, and the magnetic flux shunted into the inner core 22 cancels out the magnetic flux generated by the excitation 41iiK of the voltage coil 14 and flowing inside the inner core 22, and the detection filter 15
When K is applied so that the magnetic flux at
Detection coil IS and voltage coil 14 dark 2 points on each leg of
The magnetomotive force of the 'Y' cabinet and the electromotive force of the peak U-V in the magnetic material II49 facing the end face of each leg of the internal iron core 82 become equal. Therefore, if the voltage of the voltage coil 14 at this time and the current of the excitation coil 17 are input to the power needle 7 and multiplied, the multiplication result becomes the UV dark iron f- of the magnetic material 9, and the third As in the case shown in the figure, the iron loss of the magnetic material 9 can be measured with high accuracy in tK, regardless of the size of the gap between the end face of the inner core 2 and the magnetic material 90.

また、上述の鉄損測定方法を利用することにより、磁性
材料−の表面と、磁気センサの内側鉄心の端面の閣[?
!illがあっても、その空4の大小に関係なく、常に
^精度で磁性材料9に作用する圧一応力を測定すること
ができる。
In addition, by using the above-mentioned iron loss measurement method, it is possible to measure the difference between the surface of the magnetic material and the end face of the inner core of the magnetic sensor.
! Even if there is ill, the crushing stress acting on the magnetic material 9 can always be measured with accuracy regardless of the size of the void 4.

@SwAは、この磁性材料の応力を測定する応力測定装
置の一実施例をプpIlり騙図で示したものである。即
ち、応力測定装置23は鉄損測定s24と、応力測定s
25と、指示部26とから構成されている。
@SwA is a diagram showing an example of a stress measuring device for measuring the stress of this magnetic material. That is, the stress measuring device 23 performs iron loss measurement s24 and stress measurement s24.
25 and an instruction section 26.

鉄損測定部24は、磁性材料の鉄損を、上述の鉄損調定
方法を利用して一定するもので、磁気センサ12又は2
1、交流電源器、増幅##18、電力針7、電圧針19
及び電流計20から成りている。以下、磁気センサ12
を雨いた場合について説明する。
The iron loss measurement unit 24 is configured to keep the iron loss of the magnetic material constant using the above-mentioned iron loss adjustment method, and is configured to keep the iron loss of the magnetic material constant using the above-mentioned iron loss adjustment method.
1, AC power supply, amplifier ##18, power needle 7, voltage needle 19
and an ammeter 20. Below, magnetic sensor 12
Explain what happens when it rains.

磁気セン+12は内情鉄心13と、この内−鉄心13の
背11に巻かれた電圧コイル14及びその脚sK曹かれ
た検出コイルIBと、内情鉄心!3を覆うようにその外
側に設けられた外側鉄心16と、この外側鉄心t@に@
かれた励磁コイル17とを有し、通常これ勢の各コイル
の日出線は外部の装置、器具等と接続可fliiK構成
されている。そして、電圧コイル14は交流電源Sと電
力計1に#c続され、検出コイル15は増−器18を介
して、励磁コイル17は電流計2゜な介してそれぞれ電
力計7に接続されている。また、電圧コイル14には電
圧コイル14の電圧を一定する電圧針19が並列に接続
されている。
The magnetic sensor +12 includes an internal iron core 13, a voltage coil 14 wound around the back 11 of this inner iron core 13, a detection coil IB wrapped around its legs, and an internal iron core! 3, and an outer core 16 provided on the outside so as to cover the outer core t@.
The excitation coil 17 has an excitation coil 17, and the sun wire of each of these coils is normally configured to be connectable to external devices, instruments, etc. The voltage coil 14 is connected to the AC power supply S and the wattmeter 1, the detection coil 15 is connected to the wattmeter 7 via the amplifier 18, and the exciting coil 17 is connected to the wattmeter 7 via the ammeter 2. There is. Further, a voltage needle 19 is connected in parallel to the voltage coil 14 to keep the voltage of the voltage coil 14 constant.

応力演算s2sは、鉄損測定524により一定された鉄
損Wlを電力針7より人力して、前記磁性材料に作用し
【いる圧縮応力を演算するもので、初期値設定器27.
比例常数設定器28及び応力演算器29より構成されて
いる。
The stress calculation s2s is to calculate the compressive stress acting on the magnetic material by manually inputting the iron loss Wl, which has been fixed by the iron loss measurement 524, from the power needle 7, and calculates the compressive stress acting on the magnetic material.
It is composed of a proportional constant setter 28 and a stress calculator 29.

初期値設定@2’lKは、前記磁性材料に応力が作用し
ていない時の鉄損WOが設定され、比例常数設定器28
には、鉄損を応力に換算する比例定数αが設定される(
上述の(1)弐参M)、応力演算!!29は、電力針7
より鉄損Wlを、普期値設定tS冨フ及び比例常数設定
!!28よりそれぞれWO反びαを入力して、上述の(
り式より、前記磁性材料に作用する圧一応力−を演算し
、その演算結果を指示$26に対して出力する。
In the initial value setting @2'lK, the iron loss WO when no stress is acting on the magnetic material is set, and the proportional constant setter 28
A proportionality constant α is set for converting iron loss into stress (
Above (1) 2nd M), stress calculation! ! 29 is the power needle 7
Iron loss Wl is set to normal value tS wealth and proportional constant! ! Input the WO warp α from 28 and calculate the above (
The crushing stress acting on the magnetic material is calculated using the formula, and the calculation result is outputted to the instruction $26.

一示SZSは、指示切換器30及び指示針31を有し、
指示切側IOを切換えることにより、電力針1の出力の
鉄fi4Wt又は応力演算器2i1の出力の圧縮応力C
を指示針に指示させる。
The indicator SZS has an indicator switch 30 and an indicator needle 31,
By switching the indication off side IO, the iron fi4Wt of the output of the power needle 1 or the compressive stress C of the output of the stress calculator 2i1 can be changed.
to be indicated by the indicator needle.

次に、以上の構成を有する応力測定装置230作用につ
いて説明する。
Next, the operation of the stress measuring device 230 having the above configuration will be explained.

まず、指示切換器30を電力針)傭(F側)K接続し、
比例常数設定92mK比例當数aを設定し、磁気センサ
12を、応力が作用していない磁性材料のIN間の調定
sK配置させて、電圧コイル!4を交流電#SKより一
定電圧で励磁すると、上述の鉄損調定方法の場合と同様
和して、前記感性材料に応力が作用していない時の鉄損
W・が指示計31に指示される。この鉄損W・を初期値
設定器27に設定する。次いで、前記磁性材料に圧縮応
力を作用させて、前記一定11に磁気センサ12を配置
し、電圧コイル14を交流電@icより一定電圧で励磁
すると、jlls図について説明した鉄損測定方法によ
り前記磁性材料に圧縮応力が作用した時の鉄損Wiが、
電力計7を介して指示計31に指示される。また、この
鉄−Wiは、応力演算◆211[入力され、応力演算器
=9において、との鉄損踏と、初期値設定器27より人
力されたW、及び比例常数設定528より人力された比
例電歇αとから前記磁性材料に作用する圧縮応力−= 
a (Wi −Wa )を演算する。
First, connect the indicator switch 30 to the power needle (F side),
Set the proportional constant 92 mK and the proportional constant a, place the magnetic sensor 12 between IN and IN of the magnetic material on which no stress is applied, and set the voltage coil! 4 is excited by an AC voltage #SK at a constant voltage, the indicator 31 indicates the iron loss W when no stress is acting on the sensitive material by adding it up as in the case of the iron loss adjustment method described above. Ru. This iron loss W. is set in the initial value setting device 27. Next, compressive stress is applied to the magnetic material, a magnetic sensor 12 is placed at the constant 11, and the voltage coil 14 is excited with a constant voltage from an AC voltage. The iron loss Wi when compressive stress is applied to the material is
An instruction is given to the indicator 31 via the wattmeter 7. In addition, this iron-Wi is inputted into the stress calculation ◆ 211 [, and in the stress calculator = 9, the iron loss step, W manually entered from the initial value setter 27, and manually entered from the proportional constant setting 528. The compressive stress acting on the magnetic material from the proportional electric current α −=
Calculate a (Wi − Wa ).

この場合、m気センサ12を、前記磁性材料の測定部の
1つに@―させて、指示針31に指示される鉄fllW
iが最大1IIIiKなOL時に、m示tZllIi1
30&fi力演算器29側(G匈)にI!統すると、指
示針31には、前記磁性材料に作用する最大圧縮応力が
指示される。
In this case, the m-air sensor 12 is placed in one of the measuring parts of the magnetic material, and the iron fllW indicated by the indicator needle 31 is
When i is OL at maximum 1IIIiK, m shows tZllIi1
I on the 30&fi force calculator 29 side (G 匈)! When controlled, the maximum compressive stress acting on the magnetic material is indicated on the indicator needle 31.

もし、111起磁性材料に応力が作用していない時の鉄
損W@が既知の場合には、上述の鉄損Weの1定は省略
して、その既知の鉄損Woを初期値設定@2’lK設定
し、上述のようにして、前記磁性材料に作用している圧
縮応力を創建する。
If the iron loss W @ when no stress is acting on the 111 magnetomotive material is known, omit the constant iron loss We mentioned above and set the known iron loss Wo as the initial value @ 2'lK, and create a compressive stress acting on the magnetic material as described above.

また、本発明の応力測定装置は1本発明の鉄損測定方法
を利用するものであるから、磁性材料の表面と磁気セン
ナの内側鉄心のjtiiiiの闇に空隙があっても、そ
の空隙の大小に関係なく、高精度で磁性材料の鉄損な測
定することができるので、空111により画定誤差を生
ずることなく、常に為精度で磁性材料の圧縮応力を測定
することができる。
Furthermore, since the stress measuring device of the present invention utilizes the iron loss measuring method of the present invention, even if there is a gap between the surface of the magnetic material and the inner core of the magnetic sensor, the size of the gap can be determined. Since the iron loss of the magnetic material can be measured with high accuracy regardless of the current, the compressive stress of the magnetic material can always be measured with high accuracy without causing a definition error due to the void 111.

従って、締結時又は締結像のボルト、時にボルト順sK
浮出文字を有するボルトに作用する軸応力又は軸力の測
定、鋼棒、鋼板、−1,レール等の焼入れ深さ、応力、
内部欠陥等の測定に、本発明の応力測定装置を使用すれ
ば、磁性材料のlN向と磁気センナの内側鉄心の端面間
に空隙があっても、その空隙の大小に関係なく、高精度
で上述の測定を続行することかできるので、欄冗馳率は
向上し、ボルトの軸応力又は軸力管理、鋼材等の品質管
理等に大なる効果を発揮することができる。
Therefore, the bolts at the time of fastening or the fastening image, sometimes the bolt order sK
Measurement of axial stress or axial force acting on bolts with raised letters, hardening depth and stress of steel bars, steel plates, -1, rails, etc.
If the stress measurement device of the present invention is used to measure internal defects, etc., even if there is a gap between the lN direction of the magnetic material and the end face of the inner core of the magnetic sensor, it will be possible to measure internal defects with high accuracy regardless of the size of the gap. Since the above-mentioned measurement can be continued, the error rate is improved, and a great effect can be exerted on bolt axial stress or axial force management, quality control of steel materials, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の鉄損測定方法の説明図、第2図は磁性材
料に作用する応力と鉄損の14Igkを示す特性−線輪
、第3図は本発明の鉄損測定方法の一実施例のaf!A
図、第4図は本発明の鉄損測定方法の他の実施例の説明
図、第S図は本発明の応力測定装置の一実施例のブロッ
ク線図である。 5・・・交流電源、7・・・電力針、9−・・磁性材料
、12.21・−・磁気センナ、18.22−・・内@
鉄心、13’、 13”−・・突起、 14・−電圧コ
イル、15・−検出コイル、16・・・外伺鉄心、17
・・・励磁コイル、18・・・m幅器、1s−・・電圧
針、20・・−電流計、23・−・応力測定装置、24
・・・鉄損測定部、25・・・応力演算部、26・・・
指示部、27・・・初期値設定器、28・・・比例常数
設定器、29・・・応力演算−器。 30・・・指示切換器、31・・−指示針。 特許出願人 株式会社 芝浦製作所
Fig. 1 is an explanatory diagram of the conventional iron loss measuring method, Fig. 2 is a characteristic showing 14Igk of stress acting on a magnetic material and iron loss, and Fig. 3 is an implementation of the iron loss measuring method of the present invention. Example af! A
FIG. 4 is an explanatory diagram of another embodiment of the iron loss measuring method of the present invention, and FIG. S is a block diagram of an embodiment of the stress measuring device of the present invention. 5... AC power supply, 7... Power needle, 9-... Magnetic material, 12.21... Magnetic sensor, 18.22-... Inside@
Iron core, 13', 13''--Protrusion, 14--Voltage coil, 15--Detection coil, 16... External iron core, 17
...Exciting coil, 18...m width meter, 1s...voltage needle, 20...-ammeter, 23...-stress measuring device, 24
... Iron loss measurement section, 25 ... Stress calculation section, 26 ...
Indicator section, 27... Initial value setter, 28... Proportional constant setter, 29... Stress calculator. 30...Indicator switch, 31...-Indicator needle. Patent applicant Shibaura Seisakusho Co., Ltd.

Claims (1)

【特許請求の範囲】 (リ 磁性材料内に磁束が流れるように内側鉄心及び外
翻鉄心を設け、前記内側鉄心には電圧コイルと検出コイ
ルを、創記外偶鉄心には励磁フィルを設け、前記電圧フ
ィルに交流電圧を印加し、前記励磁コイルに電流を流し
、前記外@鉄心より#1itEi性材料内を通り、前記
内偵鉄心[dLれる磁束で、前記電圧コイルに交流電圧
を印加したときに発生した前記内側鉄心を流れる嫁末を
打消させ、前記検出コイル部の磁束かはS:零になるよ
うにして、その時の前記電圧コイルの1圧と、前記励磁
コイルの電流の積から、前配値性材料の鉄損を求めるこ
とV特徴とする鉄損mj/ぜ方法。 は検出コイルを、81F紀外側鉄心にはkJJ−コイル
を設けた磁気センサと、11i+ W m気センサを磁
性材料の表面に配置tL、前記電圧フィルに交流電圧を
印加し、前記内側鉄心と前記−性材料内を流れる6a束
により、繭記恨出コイルに超超された電圧を増幅′f#
により増−して。 この検出コイルに誘起された電圧を打消す方向に前記励
磁コイルに−]加し、前記外94!l妖心と前記磁性材
料と前記内@鉄心部をルつて流れる磁束で、前記電圧フ
ィルに交流電圧を印加したときに発生し、前記内譬1鉄
心部′It流れる磁束を打消させ、紡記検出コイル都の
一宋がはy零になるようKして、その時の前記電圧コイ
ルの電圧と前記励磁フィルの装置の横から鉄損W*′t
t演算する電力針と、応力が作用しない時の前記磁性材
料の鉄損WO′4を設定する初期電設定器と、前記磁性
材料の測定された鉄損を応力に換算する比fIJ常数a
を設定する比例tm設定器と、前起電力針、初期11設
ボ器反び比例電数設定器から、それぞれWi 、W@及
び−を入力して、前記磁性材料に作用する応力を演算す
る応力演算器と、前記電力針の出力又は前記応力演算器
の出力を指示する指示部とから成ることを特徴とする応
力測定装置。
[Claims] (Re) An inner core and an outer core are provided so that magnetic flux flows within the magnetic material, a voltage coil and a detection coil are provided in the inner core, and an excitation filter is provided in the outer core, When an AC voltage is applied to the voltage fill, a current is applied to the excitation coil, and the magnetic flux passes through the #1itEi material from the outer core to the inner core [dL], and an AC voltage is applied to the voltage coil. The flux flowing through the inner iron core generated in the above is canceled out, and the magnetic flux of the detection coil section becomes S: zero, and from the product of the 1 voltage of the voltage coil and the current of the excitation coil at that time, The iron loss mj/ze method is characterized by determining the iron loss of materials with predistribution characteristics. Place tL on the surface of the material, apply an alternating voltage to the voltage fill, and amplify the voltage exceeded by the coil by the bundle 6a flowing within the inner core and the negative material.
Increase by. −] is applied to the excitation coil in a direction to cancel the voltage induced in the detection coil, and the outside 94! The magnetic flux flowing through the magnetic material and the inner iron core, which occurs when an alternating current voltage is applied to the voltage fill, cancels out the magnetic flux flowing through the iron core, causing the spinning The voltage of the voltage coil at that time and the iron loss W*'t from the side of the excitation filter device are adjusted so that the voltage of the detection coil becomes zero.
A power needle for calculating t, an initial power setting device for setting the iron loss WO'4 of the magnetic material when no stress is applied, and a ratio fIJ constant a for converting the measured iron loss of the magnetic material into stress.
The stress acting on the magnetic material is calculated by inputting Wi, W@, and - respectively from the proportional tm setting device for setting, the front electromotive force needle, and the initial 11 set value proportional voltage setting device. A stress measuring device comprising: a stress calculator; and an instruction section that instructs the output of the power needle or the output of the stress calculator.
JP2288582A 1982-02-17 1982-02-17 Iron loss measuring method and stress measuring device utilizing method Granted JPS58140655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288582A JPS58140655A (en) 1982-02-17 1982-02-17 Iron loss measuring method and stress measuring device utilizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288582A JPS58140655A (en) 1982-02-17 1982-02-17 Iron loss measuring method and stress measuring device utilizing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10892790A Division JPH03115876A (en) 1990-04-26 1990-04-26 Measuring device of core loss

Publications (2)

Publication Number Publication Date
JPS58140655A true JPS58140655A (en) 1983-08-20
JPH0424670B2 JPH0424670B2 (en) 1992-04-27

Family

ID=12095127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288582A Granted JPS58140655A (en) 1982-02-17 1982-02-17 Iron loss measuring method and stress measuring device utilizing method

Country Status (1)

Country Link
JP (1) JPS58140655A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439571A (en) * 1987-08-06 1989-02-09 Rikagaku Kenkyusho Method and device for measuring magnetic permeability
JPH03229121A (en) * 1990-02-05 1991-10-11 Toyota Autom Loom Works Ltd Magnetostrictive torque sensor
US6094995A (en) * 1997-08-29 2000-08-01 Kabushiki Kaisha Toyoda Torque sensor using power measurement
CN104865541A (en) * 2015-05-27 2015-08-26 江苏晨朗电子集团有限公司 Equipment for detecting magnetic flux of magnetic element
CN105738842A (en) * 2016-04-19 2016-07-06 河北工业大学 Apparatus and method for measuring transformer iron core BH curve and partial loss

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439571A (en) * 1987-08-06 1989-02-09 Rikagaku Kenkyusho Method and device for measuring magnetic permeability
JPH03229121A (en) * 1990-02-05 1991-10-11 Toyota Autom Loom Works Ltd Magnetostrictive torque sensor
US6094995A (en) * 1997-08-29 2000-08-01 Kabushiki Kaisha Toyoda Torque sensor using power measurement
CN104865541A (en) * 2015-05-27 2015-08-26 江苏晨朗电子集团有限公司 Equipment for detecting magnetic flux of magnetic element
CN105738842A (en) * 2016-04-19 2016-07-06 河北工业大学 Apparatus and method for measuring transformer iron core BH curve and partial loss

Also Published As

Publication number Publication date
JPH0424670B2 (en) 1992-04-27

Similar Documents

Publication Publication Date Title
RU2108587C1 (en) Current intensity measuring transducer
Temnykh Vibrating wire field-measuring technique
JP2007192803A (en) Device and method for evaluating corrosion
JPS58140655A (en) Iron loss measuring method and stress measuring device utilizing method
JP6352321B2 (en) Non-contact stress measuring method and measuring apparatus by composite resonance method
JPH0474677B2 (en)
JP4083618B2 (en) Strain measurement system
JP5889114B2 (en) Current detector and current detection method
Dobler et al. Studies of measurement uncertainties in the characterization of soft magnetic materials and their impact on the electric machine performance prediction
JPH085422A (en) Electromagnetic flow meter
JP2606043Y2 (en) Eddy current flaw detector
Mandl et al. Electron beam deposition studies of the rare gases
JPS6341033B2 (en)
JPS6222406B2 (en)
JPH07191104A (en) Iron core deterioration diagnostic method for ac generator and motor
JP3204073B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
US3711766A (en) Method and apparatus for use in measuring resultant tension forces in steel strip by sequentially establishing flux paths across said strip
KR100490983B1 (en) Apparatus for measuring magnetostriction of electrical steel
JP3173365B2 (en) Stress measurement method using magnetostriction effect
KR200421820Y1 (en) Steel reinforcement tester
SU896386A1 (en) Mechanical stress pickup
SU868544A1 (en) Device for checking surface curvature
JPH03262957A (en) Transformation ratio measuring instrument for steel material
JP2945476B2 (en) Electromagnetic flow meter for non-full water
SU885909A1 (en) Uhf power flow density measuring method