JPS58139044A - Measuring method for focus distance and distance between principal points of lens - Google Patents

Measuring method for focus distance and distance between principal points of lens

Info

Publication number
JPS58139044A
JPS58139044A JP2371482A JP2371482A JPS58139044A JP S58139044 A JPS58139044 A JP S58139044A JP 2371482 A JP2371482 A JP 2371482A JP 2371482 A JP2371482 A JP 2371482A JP S58139044 A JPS58139044 A JP S58139044A
Authority
JP
Japan
Prior art keywords
lens
distance
measured
slit
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2371482A
Other languages
Japanese (ja)
Inventor
Noriyuki Tsukiyama
築山 則之
Nobuo Nakatsuka
中塚 信雄
Taketo Sato
佐藤 武人
Hiroshi Kokoroishi
心石 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP2371482A priority Critical patent/JPS58139044A/en
Publication of JPS58139044A publication Critical patent/JPS58139044A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0228Testing optical properties by measuring refractive power

Abstract

PURPOSE:To simultaneously determine a focus distance and a distance between principal points of a lens to be measured, by a method wherein an uniform light source, a slit, a lens to be measured, and an image sensor are aligned in a row, and from 2 types of position relations, a distance between the slit and the image sensor and an image pickup magnification are determined. CONSTITUTION:On an optical bench 31, an uniform light source 32, a slit 33, a lens part 34 to be measured, and a linear image sensor part 35 are aligned in a row in order named. The lens part 34 consists of a lens 340 to be measured and a moving lens 341, and the sensor part 35 consists of a linear image sensor 350, a sensor moving table 351, and a display circuit part 352. The bench 31 is marked with graduation 310 for measuring a position. The sensor part 35 is secured to a given position, and the lens part 34 is moved so that a slit image is formed on the sensor part 350. The position of the sensor part 35 is measured from the graduation 310, a length of an image is found by multuplying the display value of the circuit part 352 by the element pitch of the sensor 350 to compute an image pickup magnification. The operations are conducted two times by changing the position of the sensor part 35, and this enables to compute a focus distance and a distance between principal points.

Description

【発明の詳細な説明】 この発明は、レンズの焦点距離と主点間隔の測定方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the focal length and distance between principal points of a lens.

一般に、レンズを用いた光学計測器では、撮像倍率を正
確に設定しなければならない場合がしばしばある。撮像
倍率の設定は、所定の撮像倍率に対応する物点と像点と
の距離を算定し、その算定値に応じて物点と像点との距
離を設定することによりとりおこなわれる。撮像倍率に
対応する物点と像点との距離の算定を行う場合、使用す
るレンズの焦点距離fと主点間隔ΔHを知る必要がある
Generally, in optical measuring instruments using lenses, it is often necessary to accurately set the imaging magnification. The imaging magnification is set by calculating the distance between the object point and the image point corresponding to a predetermined imaging magnification, and setting the distance between the object point and the image point according to the calculated value. When calculating the distance between the object point and the image point corresponding to the imaging magnification, it is necessary to know the focal length f of the lens used and the principal point interval ΔH.

従来、この焦点距離fと主点間隔ΔHはおのおの別々の
方法で求められてきた。第1図は、従来おこなわれてき
た焦点距離fを求める方法を説明するだめの図である。
Conventionally, the focal length f and the principal point interval ΔH have been determined using different methods. FIG. 1 is a diagram for explaining the conventional method of determining the focal length f.

点光源1の前方に結像用のコリメータレンズ2が配置さ
れている。このような構成で、まずコリメータレンズ2
の通常の結像位置である第1の1象点8の位置を顕微鏡
を用いて測定する。次にコリメータレンズ2の屈折光線
上に被測定レンズ4を配置し、第2の像点5の位置を顕
微鏡を用いて測定する。このようにして求めた第1の像
点3、第2の像点5の位置から像点移動距離を求め、焦
点距離fを算出するようにしているO この種の方法は正確な測定を期待できるが、装置の精密
な機構と測定者の熟練とを要し、また主点間隔△Hは上
記の方法とは別の方法で求めなければならず手間が掛か
るという問題点があった0この発明は、上記のような従
来の問題点を除去したレンズの焦点距離および主点間隔
測定方法を提供することを目的としたものである。
A collimator lens 2 for imaging is arranged in front of the point light source 1. With this configuration, first collimator lens 2
The position of the first quadrant 8, which is the normal imaging position, is measured using a microscope. Next, the lens to be measured 4 is placed on the refracted beam of the collimator lens 2, and the position of the second image point 5 is measured using a microscope. The image point movement distance is determined from the positions of the first image point 3 and second image point 5 determined in this way, and the focal length f is calculated. This type of method is expected to provide accurate measurement. However, it requires a precise mechanism of the device and skill of the measurer, and the principal point spacing △H has to be determined by a method different from the above method, which is time-consuming. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for measuring the focal length and distance between principal points of a lens, which eliminates the above-mentioned conventional problems.

この発明は、要約すると、被測定レンズの物点にスリッ
ト、像点にイメージセンサを配し、物点と像点との相対
位置が異なる2種類の位置関係で、物点と像点との距離
および物体と像との撮像倍率を測定し、距離と撮像倍率
のおのおの二つずつの測定値に基づいて被測定レンズの
焦点距離と主点間隔を1回の操作で同時に求めることを
特徴とする。
To summarize, this invention arranges a slit at the object point and an image sensor at the image point of a lens to be measured, and allows the object point and image point to be connected in two different positional relationships with different relative positions. It is characterized by measuring the distance and the imaging magnification between the object and the image, and simultaneously determining the focal length and principal point distance of the lens to be measured based on two measured values of the distance and the imaging magnification in one operation. do.

以下、この発明の原理と実施例を図面して説明する。Hereinafter, the principle and embodiments of this invention will be explained with reference to drawings.

第2図はこの発明の詳細な説明するための図である。FIG. 2 is a diagram for explaining the invention in detail.

第2図において、長さLの物体11が被測定レンズ12
の第1の主点H1から距離aを隔てて配置されており、
長さlの像13が第2の主点H2から距離上の位置に結
像している。この場合の撮像倍率Mは M = −Q) である。またニュートンの結像公式 を変形して、式(1)を用いると a=f(1+−)   ’    (3a)も=f(1
+M)       (8b)となる。物体11と像1
3との距離AはA=a+t+△H(但し△Hは主点間の
間隔HIH2)であり、コノ式と式(3a)、(8b)
とからa、11>を消去すると ・、、I A=(2+M+−)f+△H(4) となる。
In FIG. 2, an object 11 of length L is attached to a lens to be measured 12.
is arranged at a distance a from the first principal point H1 of
An image 13 having a length l is formed at a position at a distance from the second principal point H2. The imaging magnification M in this case is M = -Q). Also, by modifying Newton's imaging formula and using equation (1), a=f(1+-)' (3a) also becomes = f(1
+M) (8b). Object 11 and image 1
The distance A from 3 is A=a+t+△H (where △H is the distance between principal points HIH2), and the Kono equation and equations (3a) and (8b)
If a, 11> is deleted from , , IA=(2+M+-)f+ΔH(4).

いま、物体11と像18との距離Aを予め2点設定して
A1、A2とし、距離A1、A2に対応する傷長をil
、A2 とすると、おのおのに対応する撮像倍率M、、
M2は、物体長をLとするとである。次に とすれば、式(4)、(5a)、(5b)、(6a)、
(6b)より−、Al 、A2  は AI =に1  f+△H(7a) A2=に2 f+△H(7b) となる。式(7a)、(7b)をfと△Hの2元連立1
次方程式として解くと となる。
Now, two distances A between the object 11 and the image 18 are set in advance as A1 and A2, and the flaw lengths corresponding to the distances A1 and A2 are il.
, A2, the corresponding imaging magnification M, ,
M2 is when the object length is L. Next, equations (4), (5a), (5b), (6a),
From (6b), −, Al, and A2 become 1 f+ΔH(7a) for AI= and 2 f+ΔH(7b) for A2=. Expressions (7a) and (7b) are converted into a binary system of f and △H.
This can be solved as the following equation.

このように、式(8)、式(9)より、物点と像点との
距離AI、A2と、それぞれの距離に対応するに1sK
2 (すなわち撮像倍率Mt 、 M2 )が与えられ
れば、焦点距離fと主点間隔△Hはともに得らnる。
In this way, from equations (8) and (9), the distances AI and A2 between the object point and the image point, and 1 sK corresponding to each distance.
2 (that is, the imaging magnification Mt, M2), both the focal length f and the principal point interval ΔH can be obtained.

次にこの発明の実施例である物点と像点との所定の距離
に対応する撮像倍率を求める方法を説明する。
Next, a method of determining an imaging magnification corresponding to a predetermined distance between an object point and an image point, which is an embodiment of the present invention, will be described.

第8図は、この発明の実施例である物点と像点との所定
の距離に対応する撮像倍率を求める方法を説明するため
の図である。
FIG. 8 is a diagram for explaining a method of determining an imaging magnification corresponding to a predetermined distance between an object point and an image point, which is an embodiment of the present invention.

同図において、均一光源21、スリット幅りのスリット
22、被測定レンズ28、リニアイメージセ/す24が
一列に配置されている。スリット22とリニアイメージ
センサ24は所定の距離に固定され、被測定レンズ28
の位置はリニアイメージセンサ24上にスリット像を結
像させるように調整される。リニアイメージセンサ24
はこ゛の傷長に対応するリニアイメージセンサ24のエ
レメント数にみあう検出信号を出力する。この出力はパ
ルス列の信号であって、表示回路部25に入力する。表
示回路部25は増幅回路251、波形整形回路252、
計数回路253、表示装置254で形成さnる。増幅回
路251はパルス列を一定のレベルまで増幅し、その出
力を波形整形回路252に入力する。波形整形回路25
2は、増幅さnた信号を計数しやすいような波形に整形
し、その出力を計数回路258に入力する。計数回路2
53は波形さnたパルス列をカウントし、計数の結果は
表示装置254に表示される。このカウント数にリニア
イメージセンサ24のエレメントピンチを乗することに
よって傷長が与えられ、撮像倍率が求められる。
In the figure, a uniform light source 21, a slit 22 having the same width as the slit, a lens to be measured 28, and a linear image sensor 24 are arranged in a line. The slit 22 and the linear image sensor 24 are fixed at a predetermined distance, and the lens to be measured 28
The position of is adjusted so that a slit image is formed on the linear image sensor 24. Linear image sensor 24
A detection signal corresponding to the number of elements of the linear image sensor 24 corresponding to this flaw length is output. This output is a pulse train signal and is input to the display circuit section 25. The display circuit section 25 includes an amplifier circuit 251, a waveform shaping circuit 252,
It is formed by a counting circuit 253 and a display device 254. The amplifier circuit 251 amplifies the pulse train to a certain level and inputs its output to the waveform shaping circuit 252. Waveform shaping circuit 25
2 shapes the amplified signal into a waveform that is easy to count, and inputs the output to the counting circuit 258. Counting circuit 2
53 counts the pulse train having a waveform, and the counting result is displayed on the display device 254. By multiplying this count by the element pinch of the linear image sensor 24, the flaw length is given, and the imaging magnification is determined.

このようにして、スリン・’) 22とリニアイメージ
センサ24の距離を二つ設定し、上記の方法でそれぞれ
の距離に対応する撮像倍率を求め、式(8)、(9)に
代入すれば焦点距離fと主点間隔△Hを同時に求めるこ
とができる。
In this way, by setting two distances between the Surin・') 22 and the linear image sensor 24, finding the imaging magnification corresponding to each distance using the method described above, and substituting it into equations (8) and (9), The focal length f and the principal point interval ΔH can be determined simultaneously.

第4図はこの発明の実施例の方法の具体的な装置構成を
示す図である。
FIG. 4 is a diagram showing a specific apparatus configuration of the method according to the embodiment of the present invention.

第4図において、光学ベンチ31上に、均一光源32、
スリット33、被測定レンズ部34、リニアイメージセ
ンサ部35が、この順に一列に配置されている。被測定
レンズ部34は被測定レンズ840とレンズ可動台84
1により構成され、リニアイメージセンサ部35はリニ
アイメージセンサ350、センサ可動台351と表示回
路部352により構成され、いずれも光学ベンチ31上
を摺動可能になっている。光学ベンチ31には位置測定
用の副尺性の目盛り310が形成されている。このよう
な構成において、リニアイメージセンサ部35を所定の
位置に固定し、リニアイメージセンサ850上にスリッ
ト像が結像するように、被測定レンズ部84を移動させ
る。どの状態で、リニアイメージセンサ部35の位置を
目盛り31Oで測定し、表示回路部852の表示装置(
図示せず)の値にリニアイメージセンサ850のエレメ
ントピッチを乗じて傷長を求め撮像倍率を算出する。こ
のような操作を、リニアイメージセンサ部35の位置を
変えて2度おこない、これらの測定より得ら扛たスリッ
ト38とイメージセンサ部85との距離と、各々の距離
に対応する撮像倍率を式(8)、(9)に代入すること
により焦点距離fと主点間隔△Hが求まる。
In FIG. 4, a uniform light source 32,
The slit 33, the lens section to be measured 34, and the linear image sensor section 35 are arranged in a line in this order. The lens to be measured section 34 includes a lens to be measured 840 and a lens movable table 84.
1, and the linear image sensor section 35 is composed of a linear image sensor 350, a sensor movable table 351, and a display circuit section 352, all of which are capable of sliding on the optical bench 31. A vernier scale 310 for position measurement is formed on the optical bench 31. In such a configuration, the linear image sensor section 35 is fixed at a predetermined position, and the lens section 84 to be measured is moved so that a slit image is formed on the linear image sensor 850. In which state, the position of the linear image sensor section 35 is measured with the scale 31O, and the display device of the display circuit section 852 (
(not shown) is multiplied by the element pitch of the linear image sensor 850 to determine the flaw length and calculate the imaging magnification. Perform this operation twice by changing the position of the linear image sensor section 35, and calculate the distance between the slit 38 and the image sensor section 85 obtained from these measurements and the imaging magnification corresponding to each distance using the formula By substituting into (8) and (9), the focal length f and principal point interval ΔH are determined.

以上のように、この発明によれば、簡単な構成で、熟練
を要することなく、−回の操作で同時に被測定レンズの
焦点距離と主点間隔を求めることができるレンズの焦点
距離および主点間隔測定方法を提供できる。
As described above, according to the present invention, the focal length and principal point distance of the lens to be measured can be determined simultaneously with a simple configuration and no skill required, and with -1 operations. A distance measurement method can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来おこなわれてきた焦点距離を求める方法を
説明するだめの図、第2図はこの発明の詳細な説明する
ための図、第3図はこの発明の実施例である物点と像点
との所定の距離に対応する撮像倍率を求める方法を説明
するための図であり、第4図はこの発明の実施例の方法
の具体的な装置構成を示す図である。 21・・・均一光源、  22・・・スリット、23・
・・被測定レンズ、 24・・・リニアイメージセンサ。 出 願 人  立石電機株式会社 代 理 人  弁理士 小森久夫 第1図 8 w!4図
Fig. 1 is a diagram for explaining the conventional method of determining focal length, Fig. 2 is a diagram for explaining the present invention in detail, and Fig. 3 is a diagram for explaining the method of determining the focal length that has been used in the past. FIG. 4 is a diagram for explaining a method of determining an imaging magnification corresponding to a predetermined distance from an image point, and FIG. 4 is a diagram showing a specific device configuration of the method according to an embodiment of the present invention. 21... Uniform light source, 22... Slit, 23...
... Lens to be measured, 24... Linear image sensor. Applicant Tateishi Electric Co., Ltd. Agent Patent Attorney Hisao Komori Figure 1 8 w! Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)均一な光源、スリット、被測定レンズ、イメージ
センサをこの順に一列に配置し、前記スリットと前記イ
メージセンサとの相対位置が異なる、且つイメージセン
サ上にスリット像が結像する2種類の位置関係で、各々
の場合に、前記スリットと前記イメージセンサの距離を
測定し、且つ前記スリット幅に対応する前記イメージセ
ンサの出力値から撮像倍率を求め、これらの距離と撮像
倍率おのおの二つずつの測定値から被測定レンズの焦点
距離と主点間隔とを同時に算出するようにしたレンズの
焦点距離および主点間隔測定方法。
(1) A uniform light source, a slit, a lens to be measured, and an image sensor are arranged in a line in this order, and the relative positions of the slit and the image sensor are different, and the slit image is formed on the image sensor. In each case, the distance between the slit and the image sensor is measured in terms of positional relationship, and the imaging magnification is determined from the output value of the image sensor corresponding to the slit width, and each of these distances and the imaging magnification is set by two. A method for measuring focal length and principal point spacing of a lens, in which the focal length and principal point spacing of a lens to be measured are simultaneously calculated from measured values.
JP2371482A 1982-02-15 1982-02-15 Measuring method for focus distance and distance between principal points of lens Pending JPS58139044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2371482A JPS58139044A (en) 1982-02-15 1982-02-15 Measuring method for focus distance and distance between principal points of lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2371482A JPS58139044A (en) 1982-02-15 1982-02-15 Measuring method for focus distance and distance between principal points of lens

Publications (1)

Publication Number Publication Date
JPS58139044A true JPS58139044A (en) 1983-08-18

Family

ID=12117999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2371482A Pending JPS58139044A (en) 1982-02-15 1982-02-15 Measuring method for focus distance and distance between principal points of lens

Country Status (1)

Country Link
JP (1) JPS58139044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523149A (en) * 2015-05-10 2018-08-16 6 オーバー 6 ビジョン リミテッド Apparatus, system, and method for determining one or more optical parameters of a lens
US10670494B2 (en) 2015-05-10 2020-06-02 6 Over 6 Vision Ltd. Apparatus, system and method of determining one or more optical parameters of a lens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523149A (en) * 2015-05-10 2018-08-16 6 オーバー 6 ビジョン リミテッド Apparatus, system, and method for determining one or more optical parameters of a lens
US10670494B2 (en) 2015-05-10 2020-06-02 6 Over 6 Vision Ltd. Apparatus, system and method of determining one or more optical parameters of a lens
US10684191B2 (en) 2015-05-10 2020-06-16 6 Over 6 Vision Ltd. Apparatus, system and method of determining one or more optical parameters of a lens
US10712233B2 (en) 2015-05-10 2020-07-14 6 Over 6 Vision Ltd. Apparatus, system and method of determining one or more optical parameters of a lens
US10876921B2 (en) 2015-05-10 2020-12-29 6 Over 6 Vision Ltd. Apparatus, system and method of determining one or more optical parameters of a lens
US10876923B2 (en) 2015-05-10 2020-12-29 6 Over6 Vision Ltd. Apparatus, system and method of determining one or more optical parameters of a lens
US11054336B2 (en) 2015-05-10 2021-07-06 6OVER6 Vision Ltd. Apparatus, system and method of determining one or more optical parameters of a lens
JP2021157179A (en) * 2015-05-10 2021-10-07 6 オーバー 6 ビジョン リミテッド Apparatuses, systems and methods for determining one or more optical parameters of lens

Similar Documents

Publication Publication Date Title
US4074131A (en) Apparatus for measuring or setting two-dimensional position coordinates
JPS58113805A (en) Method and device for detecting and compensating error of guide
JPH03167419A (en) Apparatus for measuring amount of relative movement
JPH10311779A (en) Equipment for measuring characteristics of lens
JP4396796B2 (en) Calibration method of imaging magnification in X-ray imaging apparatus
JPS58139044A (en) Measuring method for focus distance and distance between principal points of lens
JP2878769B2 (en) Method for determining the position of a reference point of a scanning device relative to an incremental scale, and a reference point shaper
JPS6239907B2 (en)
JPH0311665B2 (en)
US5448361A (en) Electro-optical micrometer
US4814624A (en) Method and apparatus for measuring the position of an object boundary
CN115597839B (en) Method and system for measuring focal length by using relative displacement
JP4191953B2 (en) Calibration method of laser scanning dimension measuring machine
US3251134A (en) Apparatus for inspecting the interior of a tubular member
JPH0481125B2 (en)
JPS5861436A (en) Photodetector of projection type mtf measuring instrument
JPS623609A (en) Range finder
JPH067047B2 (en) Non-contact diameter measuring device
JPH0145861B2 (en)
JP2686770B2 (en) Micro dimension measurement X-ray equipment
RU2256875C2 (en) Device for automatic measuring preset interval of length by means of vernier
RU2082087C1 (en) Optical-electronic device which measures position of angle meter dial
JP2583363Y2 (en) Speckle length meter
JP2901747B2 (en) Distance measuring device
JPS61265506A (en) Apparatus for detecting position