JP4191953B2 - Calibration method of laser scanning dimension measuring machine - Google Patents

Calibration method of laser scanning dimension measuring machine Download PDF

Info

Publication number
JP4191953B2
JP4191953B2 JP2002133738A JP2002133738A JP4191953B2 JP 4191953 B2 JP4191953 B2 JP 4191953B2 JP 2002133738 A JP2002133738 A JP 2002133738A JP 2002133738 A JP2002133738 A JP 2002133738A JP 4191953 B2 JP4191953 B2 JP 4191953B2
Authority
JP
Japan
Prior art keywords
measurement
calibration
dimension
measuring machine
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002133738A
Other languages
Japanese (ja)
Other versions
JP2003329432A (en
Inventor
泰治 高山
一郎 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2002133738A priority Critical patent/JP4191953B2/en
Publication of JP2003329432A publication Critical patent/JP2003329432A/en
Application granted granted Critical
Publication of JP4191953B2 publication Critical patent/JP4191953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ走査型寸法測定機の校正方法に係り、特に、レーザビームを用いたレーザ走査型寸法測定機において、測定機の特性の精密な補正を行なうことが可能なレーザ走査型寸法測定機の校正方法に関する。
【0002】
【従来の技術】
近年、レーザビームを用いて高速で非接触測定を行なうレーザ走査型寸法測定機が実用化されている(特公平6−54214、特開2000−88528)。
【0003】
このようなレーザ走査型寸法測定機において、従来は、図1に示す如く、コリメータレンズ30で形成された平行走査ビーム32の光路中に、移動機構82により移動される移動ピン80を配置して、その端面位置L0〜L(n)を測定し、移動ピン80を移動した時に発生する測定値の変化量が測定機の誤差成分であることを利用して、精密スケール84で該移動ピン80の位置を検出しながら移動ピン80を移動し、各所における測定値から、測定機のレンズ特性等の補正を行うデータを得ていた。
【0004】
即ち、移動ピン80の端面からリセット信号用受光素子44迄の寸法を測定する測定機において、まず移動ピン80の移動量(L1−L0)を、スケール84で測定する。
【0005】
次いで、次式に示す如く、測定機が検出した移動量(L1−L0)と、スケール84が示す値Sの差を測定機の誤差E(L)とする。
【0006】
E(L)=(L1−L0)−S …(1)
【0007】
【発明が解決しようとする課題】
しかしながら、スケール84が示す値Sには、スケール84自体の誤差、及び、スケール84と移動ピン80を結合する構造物の変形による誤差が含まれ、これらの誤差と測定機の誤差の分離が難しいという問題点を有していた。
【0008】
本発明は、前記従来の問題点を解決するべくなされたもので、別体のスケールを用いることなく高精度の校正を可能とすることを課題とする。
【0009】
【課題を解決するための手段】
本発明は、レーザビームを用いたレーザ走査型寸法測定機の校正に際して、校正用測定体を、測定範囲内の所定位置に位置させて、その入側及び出側端面までの寸法LS0、L0を測定し、前記校正用測定体を、その入側端面の位置が前記出側端面の位置と一致するまで移動させて、その出側端面までの寸法L1を測定し、校正用測定体の寸法分の移動と、その出側端面までの寸法の測定を繰り返して、各寸法の測定値LS0、L0〜L(n)を得、各寸法測定値LS0、L0〜L(n)から、次式により各測定位置における校正用測定体の各寸法D(n)を求め、
D0=L0−LS0
D(n)=L(n)−L(n−1)
次式により、各寸法測定値L(n)の誤差E(n)を求め、
E(n)=Σ(D(n)−D0)
各寸法測定値L(n)の校正を行うようにして、前記課題を解決したものである。
【0010】
又、前記校正用測定体の寸法を変えて複数組の校正用測定値を得て、大サイズの校正用測定体の測定結果で全体の誤差を校正し、小サイズの校正用測定体の測定結果で大サイズの校正用測定体の誤差を補間して校正するようにしたものである。
【0011】
【発明の実施の形態】
以下、図面を参照して、本発明の実施形態を詳細に説明する。
【0012】
本発明が適用されるレーザ走査型寸法測定機は、図2に示す如く構成されている。即ち、ビーム発生器20から発生されるレーザビーム22は、ミラー24で反射された後、ポリゴンミラー26に入射され、扇状の走査ビーム28に変えられた後、コリメータレンズ30で平行走査ビーム32に変換される。平行走査ビーム32の光路中に置かれた被測定物10によって一部が遮蔽された平行走査ビーム32は、集光レンズ34で集光され、その明暗を検出する計測用受光素子36に入射される。該計測用受光素子36出力のスキャン信号は、アンプ38で増幅された後、整形回路40により明暗の境界を示すエッジ信号が抽出され、測定対象部分を選択するセグメント選択回路42に入力される。
【0013】
前記扇状走査ビーム28のコリメータレンズ30近傍には、リセット用受光素子44が設けられている。このリセット用受光素子44により得られる走査開始を示す基準信号は、アンプ46を経てセグメント選択回路42に入力され、必要な測定セグメントを選択するのに用いられる。
【0014】
クロックパルス発信器50から出力されるクロックパルスは、分周回路52を介してポリゴンミラー26のモータに入力され、モータの回転との同期を取ると共に、アンドゲート60に入力され、前記セグメント選択回路42の出力により該アンドゲート60が開かれている間だけ、該アンドゲート60を通過する。アンドゲート60を通過したクロックパルスは、計数回路62に入力され、被測定物10の影の長さに対応するクロックパルス数から被測定物10の寸法を得ることができる。
【0015】
図において、70はCPU、72はメインバス、74は測定データや補正データ用のメモリ、76は表示・キー・入出力インターフェースである。
【0016】
このようなレーザ走査型寸法測定機における本発明による補正は、校正用の移動ピン(ここでは円筒ゲージ)80を、図3に示す如く、互いに隣接する位置に順次移動させて、校正用測定値を得ることにより行なわれる。
【0017】
即ち、(1)測定機は、図4に示す如く、移動ピン80の両端面からリセット用受光素子44までの寸法を測定する。
【0018】
次いで、(2)両端面の寸法(L0−LS0、L1−L)から、移動ピンの直径(D0、D1)を計算して求める。ここで、計算の起点とする初項L0の誤差は、零と仮定する。
【0019】
(3)移動ピンの直径の真値をDs、L(n)の誤差をE(n)と定義すると、次式で表わされる。
【0020】
D(n)=L(n)−L(n−1) …(2)
Ds=(L(n)−E(n))−(L(n−1)−E(n−1))…(3)
【0021】
(4)上記の関係から、次式が成立する。
【0022】
D(n)−Ds=E(n)−E(n−1) …(4)
【0023】
従って、次の(5)式と(6)式が得られる。
【0024】
E(n)=D(n)−Ds+E(n−1) …(5)
D(n)=Ds+E(n)−E(n−1) …(6)
【0025】
(5)又、D0=Ds+E(0)−E(−1)であり、C=E(0)−E(−1)とすると、次式が成立する。
【0026】
E(n)=D(n)−D0+E(n−1)+C …(7)
【0027】
(6)従って、
E(n)=Σ(D(n)−D0)+C×n …(8)
【0028】
ここでC×nは、直線成分(測定サイズに比例)なので、傾きに相当し、測定機の校正機能で別に補正が可能であるため、ここで校正すべきレンズ特性の誤差としては、無視することができる。
【0029】
このようにして、校正用の移動ピン80を互いに隣接する位置に順次移動させながら校正用測定値を得ることで、スケールが不要となり、スケールや測定構造物の変形による誤差が含まれず、精密な補正が可能となる。
【0030】
なお、本発明による補正は、補正(誤差)データが、移動ピン80のサイズ(直径)毎にしか得られないため、補正も移動ピン80のサイズ単位になり、中間での細かな補正は困難である。一方、サイズの小さい移動ピンにすると、細かいピッチで誤差が得られるが、誤差の検出感度が下り、計算時に発生する量子化誤差等が蓄積する。このような問題点を解決した本発明の第2実施形態を次に説明する。
【0031】
この第2実施形態においては、図5に示す如く、2種又は数種類のサイズの移動ピン(ここでは80A、80Bの2種)によるデータを合成することで、より精密な補正データを得ることができる。
【0032】
即ち、全体の誤差は、大サイズのピン80Aの測定結果から求める。
【0033】
そして、小サイズのピン80Bの測定結果で、大サイズのピン80Aの誤差を補間する。補間する小サイズの誤差は、比例計算することで、大サイズのピンの誤差に一致させる。
【0034】
具体的には、(1)十分に細かいピッチで、ピンを移動して、ピンの上下端面のLを測定する。
【0035】
(2)この測定を、大小サイズのピンについて行なう。
【0036】
(3)図3に示した隣接条件の近傍のデータから、隣接条件の測定値を補間計算で求める。
【0037】
(4)大サイズのピン80Aについて、その直径毎のピッチで誤差を計算する。
【0038】
(5)大サイズの計算ピッチ毎に、小サイズのピン80Bの測定値による誤差で補間する。
【0039】
ここで、小サイズのピン80Bの直径を、大サイズのピン80Aの直径の整数分の1(第2実施形態では1/4)とすることが、計算を単純化する上で、望ましいが、この関係に限定されない。数も2つに限定されないが、実用上2〜3つが好ましい。
【0040】
本発明では、隣接条件を満たすデータが必要とされるが、実際の処理では、隣接する近傍のデータから、隣接条件の値を補完計算で求めることが可能であり、サイズの比率や移動ピッチに精密さは要求されない。
【0041】
又、校正用移動ピンの形状も円筒に限定されない。
【0042】
【発明の効果】
本発明によれば、スケールを用いることなく精密な校正が可能となる。
【図面の簡単な説明】
【図1】従来の校正方法の一例を示す要部光路図
【図2】本発明の適用対象であるレーザ走査型寸法測定機の全体構成を示す、一部光路図を含むブロック図
【図3】本発明の第1実施形態におけるピンの移動位置を示す線図
【図4】第1実施形態における測定値を示す光路図
【図5】本発明の第2実施形態におけるピンの移動位置を示す線図
【符号の説明】
10…被測定物
20…ビーム発生器
26…ポリゴンミラー
30…コリメータレンズ
32…平行走査ビーム
34…集光レンズ
36…計測用受光素子
44…リセット用受光素子
70…CPU
74…メモリ
80、80A、80B…移動ピン(校正用測定体)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for calibrating a laser scanning measuring machine, in particular, Oite laser scanning measuring machine using a laser beam, a precise correction laser scanning capable of performing the characteristic measuring machine The present invention relates to a calibration method for a dimension measuring machine.
[0002]
[Prior art]
In recent years, a laser scanning type size measuring machine that performs non-contact measurement at high speed using a laser beam has been put into practical use (Japanese Patent Publication No. 6-54214, Japanese Patent Laid-Open No. 2000-88528).
[0003]
In such a laser scanning type dimension measuring machine, conventionally, as shown in FIG. 1, a moving pin 80 moved by a moving mechanism 82 is arranged in the optical path of the parallel scanning beam 32 formed by the collimator lens 30. , The end face positions L0 to L (n) are measured, and the moving pin 80 is moved by the precision scale 84 using the fact that the change amount of the measured value generated when the moving pin 80 is moved is an error component of the measuring machine. The moving pin 80 is moved while detecting the position of the lens, and data for correcting the lens characteristics of the measuring machine is obtained from the measured values at various places.
[0004]
That is, in the measuring machine that measures the dimension from the end face of the moving pin 80 to the reset signal light receiving element 44, first, the moving amount (L 1 -L 0) of the moving pin 80 is measured by the scale 84.
[0005]
Next, as shown in the following equation, the difference between the movement amount (L1−L0) detected by the measuring instrument and the value S indicated by the scale 84 is defined as an error E (L) of the measuring instrument.
[0006]
E (L) = (L1-L0) -S (1)
[0007]
[Problems to be solved by the invention]
However, the value S indicated by the scale 84 includes an error of the scale 84 itself and an error due to deformation of a structure that couples the scale 84 and the moving pin 80, and it is difficult to separate these errors from the error of the measuring machine. It had the problem that.
[0008]
The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to enable high-precision calibration without using a separate scale.
[0009]
[Means for Solving the Problems]
According to the present invention, when calibrating a laser scanning type dimension measuring machine using a laser beam, the calibration measuring body is positioned at a predetermined position within the measurement range, and the dimensions LS0 and L0 to the entrance side and exit side end faces are set. Measure, move the calibration measuring body until the position of the entry side end face coincides with the position of the exit end face, measure the dimension L1 to the exit end face, And measurement of the dimensions to the exit end face are repeated to obtain measured values LS0, L0 to L (n) of the respective dimensions. From the measured dimension values LS0, L0 to L (n), the following equation is obtained. Obtain each dimension D (n) of the calibration measuring body at each measurement position,
D0 = L0-LS0
D (n) = L (n) -L (n-1)
The error E (n) of each dimension measurement value L (n) is obtained by the following equation,
E (n) = Σ (D (n) −D0)
The above-described problems are solved by calibrating each dimension measurement value L (n) .
[0010]
In addition, a plurality of sets of calibration measurement values are obtained by changing the dimensions of the calibration measurement body , and the overall error is calibrated with the measurement result of the large calibration measurement body , thereby measuring the small calibration measurement body. As a result, the error of the large-sized calibration measuring body is interpolated and calibrated.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0012]
A laser scanning type size measuring machine to which the present invention is applied is configured as shown in FIG. That is, the laser beam 22 generated from the beam generator 20 is reflected by the mirror 24, then enters the polygon mirror 26, is converted into a fan-shaped scanning beam 28, and then is converted into a parallel scanning beam 32 by the collimator lens 30. Converted. The parallel scanning beam 32 partially shielded by the DUT 10 placed in the optical path of the parallel scanning beam 32 is collected by the condenser lens 34 and is incident on the measurement light receiving element 36 for detecting the brightness. The The scan signal output from the measurement light-receiving element 36 is amplified by an amplifier 38, and then an edge signal indicating a light / dark boundary is extracted by a shaping circuit 40 and input to a segment selection circuit 42 for selecting a measurement target portion.
[0013]
A reset light receiving element 44 is provided in the vicinity of the collimator lens 30 of the fan-shaped scanning beam 28. The reference signal indicating the start of scanning obtained by the reset light receiving element 44 is input to the segment selection circuit 42 via the amplifier 46, and is used to select a necessary measurement segment.
[0014]
The clock pulse output from the clock pulse transmitter 50 is input to the motor of the polygon mirror 26 through the frequency dividing circuit 52, synchronized with the rotation of the motor and input to the AND gate 60, and the segment selection circuit. The AND gate 60 passes only while the AND gate 60 is opened by the output of 42. The clock pulse passing through the AND gate 60 is input to the counting circuit 62, and the dimension of the device under test 10 can be obtained from the number of clock pulses corresponding to the shadow length of the device under test 10.
[0015]
In the figure, 70 is a CPU, 72 is a main bus, 74 is a memory for measurement data and correction data, and 76 is a display / key / input / output interface.
[0016]
The correction according to the present invention in such a laser scanning type dimension measuring machine is performed by sequentially moving the calibration moving pins (here, cylindrical gauges) 80 to positions adjacent to each other as shown in FIG. Is done by obtaining
[0017]
That is, (1) the measuring machine measures the dimension from the both end faces of the moving pin 80 to the light receiving element for reset 44 as shown in FIG.
[0018]
Then determined by calculating the (2) from the dimensions of the end surfaces (L0-LS0, L1-L 0), the mobile pin diameter (D0, D1). Here, it is assumed that the error of the first term L0 as the starting point of the calculation is zero.
[0019]
(3) If the true value of the diameter of the moving pin is defined as Ds and the error of L (n) is defined as E (n), it is expressed by the following equation.
[0020]
D (n) = L (n) −L (n−1) (2)
Ds = (L (n) -E (n))-(L (n-1) -E (n-1)) (3)
[0021]
(4) From the above relationship, the following equation is established.
[0022]
D (n) -Ds = E (n) -E (n-1) (4)
[0023]
Therefore, the following equations (5) and (6) are obtained.
[0024]
E (n) = D (n) -Ds + E (n-1) (5)
D (n) = Ds + E (n) −E (n−1) (6)
[0025]
(5) When D0 = Ds + E (0) −E (−1) and C = E (0) −E (−1), the following equation is established.
[0026]
E (n) = D (n) -D0 + E (n-1) + C (7)
[0027]
(6) Therefore,
E (n) = Σ (D (n) −D0) + C × n (8)
[0028]
Here, since C × n is a linear component (proportional to the measurement size), it corresponds to the inclination, and can be corrected separately by the calibration function of the measuring instrument, so that the lens characteristic error to be calibrated here is ignored. be able to.
[0029]
In this way, by obtaining the calibration measurement values while sequentially moving the calibration moving pins 80 to positions adjacent to each other, a scale is not required, and errors due to deformation of the scale and the measurement structure are not included. Correction is possible.
[0030]
In the correction according to the present invention, correction (error) data can be obtained only for each size (diameter) of the moving pin 80. Therefore, the correction is also performed in units of the size of the moving pin 80, and fine correction in the middle is difficult. It is. On the other hand, if the moving pin has a small size, an error can be obtained with a fine pitch, but the detection sensitivity of the error decreases, and a quantization error or the like generated during calculation accumulates. A second embodiment of the present invention that solves such problems will now be described.
[0031]
In the second embodiment, as shown in FIG. 5, more accurate correction data can be obtained by synthesizing data using two or several types of moving pins (here, two types of 80A and 80B). it can.
[0032]
That is, the total error is obtained from the measurement result of the large-sized pin 80A.
[0033]
Then, the error of the large-sized pin 80A is interpolated based on the measurement result of the small-sized pin 80B. The small size error to be interpolated is proportionally calculated to match the error of the large size pin.
[0034]
Specifically, (1) The pin is moved at a sufficiently fine pitch, and L on the upper and lower end surfaces of the pin is measured.
[0035]
(2) Perform this measurement for large and small pins.
[0036]
(3) From the data in the vicinity of the adjacent condition shown in FIG. 3, the measurement value of the adjacent condition is obtained by interpolation calculation.
[0037]
(4) The error is calculated at a pitch for each diameter of the large-sized pin 80A.
[0038]
(5) For each large calculation pitch, interpolation is performed using an error due to the measurement value of the small pin 80B.
[0039]
Here, in order to simplify the calculation, it is desirable that the diameter of the small-sized pin 80B is set to 1 / integer (¼ in the second embodiment) of the diameter of the large-sized pin 80A. It is not limited to this relationship. Although the number is not limited to two, two to three are preferable in practice.
[0040]
In the present invention, data satisfying the adjacency condition is required. However, in actual processing, the value of the adjacency condition can be obtained by complementary calculation from adjacent neighboring data, and the size ratio and movement pitch can be calculated. Precision is not required.
[0041]
The shape of the calibration moving pins is not limited to cylindrical.
[0042]
【The invention's effect】
According to the present invention, precise calibration can be performed without using a scale.
[Brief description of the drawings]
FIG. 1 is an essential optical path diagram showing an example of a conventional calibration method. FIG. 2 is a block diagram including a partial optical path diagram showing the overall configuration of a laser scanning dimension measuring machine to which the present invention is applied. FIG. 4 is an optical path diagram showing a measured value in the first embodiment. FIG. 5 shows a pin moving position in the second embodiment of the present invention. Diagram [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... To-be-measured object 20 ... Beam generator 26 ... Polygon mirror 30 ... Collimator lens 32 ... Parallel scanning beam 34 ... Condensing lens 36 ... Measurement light receiving element 44 ... Reset light receiving element 70 ... CPU
74: Memory 80, 80A, 80B ... Moving pin (calibration measuring object)

Claims (2)

レーザビームを用いたレーザ走査型寸法測定機の校正に際して、
校正用測定体を、測定範囲内の所定位置に位置させて、その入側及び出側端面までの寸法LS0、L0を測定し、
前記校正用測定体を、その入側端面の位置が前記出側端面の位置と一致するまで移動させて、その出側端面までの寸法L1を測定し、
校正用測定体の寸法分の移動と、その出側端面までの寸法の測定を繰り返して、各寸法の測定値LS0、L0〜L(n)を得、
各寸法測定値LS0、L0〜L(n)から、次式により各測定位置における校正用測定体の各寸法D(n)を求め、
D0=L0−LS0
D(n)=L(n)−L(n−1)
次式により、各寸法測定値L(n)の誤差E(n)を求め、
E(n)=Σ(D(n)−D0)
各寸法測定値L(n)の校正を行うことを特徴とするレーザ走査型寸法測定機の校正方法。
When calibrating a laser scanning dimension measuring machine using a laser beam,
The calibration measurement body is positioned at a predetermined position within the measurement range, and the dimensions LS0 and L0 to the entrance and exit end faces thereof are measured.
The calibration measuring body is moved until the position of the input side end surface coincides with the position of the output side end surface, and the dimension L1 to the output side end surface is measured,
By repeating the movement of the measurement body for calibration and the measurement of the dimensions to the exit end face, the measurement values LS0, L0 to L (n) of the respective dimensions are obtained,
From each dimension measurement value LS0, L0-L (n), obtain each dimension D (n) of the calibration measuring body at each measurement position by the following equation:
D0 = L0-LS0
D (n) = L (n) -L (n-1)
The error E (n) of each dimension measurement value L (n) is obtained by the following equation,
E (n) = Σ (D (n) −D0)
A calibration method of a laser scanning type dimension measuring machine, wherein each dimension measurement value L (n) is calibrated .
前記校正用測定体の寸法を変えて複数組の校正用測定値を得て、大サイズの校正用測定体の測定結果で全体の誤差を校正し、小サイズの校正用測定体の測定結果で大サイズの校正用測定体の誤差を補間して校正することを特徴とする請求項1に記載のレーザ走査型寸法測定機の校正方法。Change the dimensions of the calibration measurement object to obtain multiple sets of calibration measurement values , calibrate the overall error with the measurement result of the large calibration measurement object , and use the measurement result of the small calibration measurement object. 2. The method of calibrating a laser scanning dimension measuring machine according to claim 1, wherein the calibration is performed by interpolating an error of a large-sized calibration measuring body .
JP2002133738A 2002-05-09 2002-05-09 Calibration method of laser scanning dimension measuring machine Expired - Fee Related JP4191953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133738A JP4191953B2 (en) 2002-05-09 2002-05-09 Calibration method of laser scanning dimension measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133738A JP4191953B2 (en) 2002-05-09 2002-05-09 Calibration method of laser scanning dimension measuring machine

Publications (2)

Publication Number Publication Date
JP2003329432A JP2003329432A (en) 2003-11-19
JP4191953B2 true JP4191953B2 (en) 2008-12-03

Family

ID=29696609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133738A Expired - Fee Related JP4191953B2 (en) 2002-05-09 2002-05-09 Calibration method of laser scanning dimension measuring machine

Country Status (1)

Country Link
JP (1) JP4191953B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241855A1 (en) 2009-04-14 2010-10-20 Mitutoyo Corporation Optical measuring apparatus and method
DE102017207027A1 (en) 2016-04-26 2017-10-26 Mitutoyo Corporation Method and device for detecting a defect in a transparent body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870682B2 (en) * 2016-08-18 2021-05-12 ダイキン工業株式会社 Magnetic bearing equipment and fluid mechanical systems
JP7271066B2 (en) * 2019-07-17 2023-05-11 株式会社ミツトヨ Optical measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2241855A1 (en) 2009-04-14 2010-10-20 Mitutoyo Corporation Optical measuring apparatus and method
DE102017207027A1 (en) 2016-04-26 2017-10-26 Mitutoyo Corporation Method and device for detecting a defect in a transparent body
US9885673B2 (en) 2016-04-26 2018-02-06 Mitutoyo Corporation Method and apparatus for detecting defect in transparent body

Also Published As

Publication number Publication date
JP2003329432A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
CN104040288B (en) Contour shape surface roughness measurement device and contour shape surface roughness measurement method
EP0790484B1 (en) Horizontal position error correction mechanism for electronic level
CN105627921A (en) Absolute encoder subdivision acquisition system and measurement method thereof
EP0039082A2 (en) Method and apparatus for measuring the displacement between a code plate and a sensor array
US20120248300A2 (en) Angular correction method for rotary encoder
JP3683350B2 (en) Electronic level gauge and electronic level
EP2420796B1 (en) Shape measuring method and shape measuring apparatus using white light interferometry
JP4191953B2 (en) Calibration method of laser scanning dimension measuring machine
JP4698692B2 (en) MTF measuring method and MTF measuring apparatus
US4627733A (en) Flatness measuring apparatus
KR100937477B1 (en) A Coordinate Measuring Machine Using A Reference Plate
JP2635913B2 (en) Length measuring or angle measuring method
JP2732488B2 (en) Length measuring or angle measuring device
JP7319083B2 (en) optical displacement meter
JPH049465B2 (en)
JP4162426B2 (en) Pass / fail judgment output method and apparatus for measuring machine
JPH1123231A (en) Non-contacting thickness measuring instrument
JPS6324110A (en) Optical position detecting device
JP3085341B2 (en) Outline measuring device and method of arranging object to be measured
JP3127784B2 (en) Data processing method for spectrometer
JPS623609A (en) Range finder
JP2568879Y2 (en) Monitor device for speckle length meter
JP2779275B2 (en) Measuring device for long objects
JP5950760B2 (en) Calibration method of interference shape measuring mechanism
JPH0460526B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4191953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140926

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees