JPS581380B2 - Analysis method for nitrate nitrogen in water - Google Patents

Analysis method for nitrate nitrogen in water

Info

Publication number
JPS581380B2
JPS581380B2 JP53139070A JP13907078A JPS581380B2 JP S581380 B2 JPS581380 B2 JP S581380B2 JP 53139070 A JP53139070 A JP 53139070A JP 13907078 A JP13907078 A JP 13907078A JP S581380 B2 JPS581380 B2 JP S581380B2
Authority
JP
Japan
Prior art keywords
gas
reaction
nitrogen
solution
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53139070A
Other languages
Japanese (ja)
Other versions
JPS5565157A (en
Inventor
伊藤匡正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP53139070A priority Critical patent/JPS581380B2/en
Priority to FR7901944A priority patent/FR2422953A1/en
Priority to DE19792902876 priority patent/DE2902876A1/en
Priority to GB7902786A priority patent/GB2013339B/en
Priority to BE0/193095A priority patent/BE873732A/en
Priority to CA320,395A priority patent/CA1115630A/en
Priority to NL7900699A priority patent/NL7900699A/en
Publication of JPS5565157A publication Critical patent/JPS5565157A/en
Publication of JPS581380B2 publication Critical patent/JPS581380B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 本発明は河川、湖沼、海水などの環境水あるいは排水な
どの水中の硝酸体窒素を分析する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for analyzing nitrate nitrogen in environmental water such as rivers, lakes, seawater, etc., or water such as wastewater.

近年、公害防止に関連し、水域の富栄養化対策として工
場排水、衛生排水中の窒素量および窒素成分が注目され
ており、その処理方法などの検討が各所で行なわれてい
る。
In recent years, in connection with pollution prevention, the amount of nitrogen and nitrogen components in industrial wastewater and sanitary wastewater have attracted attention as a countermeasure against eutrophication of water bodies, and various studies are being conducted on methods of treating them.

また、水質の衛生学上、昔から今日にいたるまで、飲料
水の安全度を調べる指標として窒素化合物の形態が重要
視されており、微量の硝酸体窒素の簡単、迅速、正確な
分析方法の提供が望まれている。
In addition, from the perspective of water quality hygiene, the form of nitrogen compounds has been considered important as an indicator for determining the safety of drinking water from ancient times to today. It is hoped that it will be provided.

水中の硝酸イオンを分析する方法としてはフェノール系
化合物のニトロ化法として、上水試験方法に採用されて
いるフェノールジスルホン酸法とサリチル酸ナトリウム
法がある。
Methods for analyzing nitrate ions in water include the phenol disulfonic acid method and the sodium salicylate method, which are used in clean water testing methods to nitrate phenolic compounds.

両法ともフェノール誘導体を二トロ化して生成する呈色
物質の濃度により定量する方法である。
Both methods are methods for quantifying by the concentration of a coloring substance produced by nitration of a phenol derivative.

両方とも塩素イオンおよび亜硝酸イオンによる妨害があ
り、ニトロ化のために検水を水浴上で蒸発乾固する必要
があるなど操作は必ずしも容易ではないが、妨害物質の
少ない水道水程度の検水には0.01ppm程度の硝酸
体窒素を定量できる。
Both methods are interfered with by chlorine ions and nitrite ions, and the operation is not necessarily easy, as the sample water needs to be evaporated to dryness on a water bath for nitration, but it is possible to test water as low as tap water with few interfering substances. Nitrate nitrogen of about 0.01 ppm can be determined.

また、有機化合物の酸化法として上水試験方法あるいは
JISKO102などに採用されているブルシン法があ
る。
Further, as a method for oxidizing organic compounds, there is a drinking water test method or a brucine method adopted in JISKO102 and the like.

この方法は濃硫酸の存在でブルシンが硝酸イオンにより
酸化されて赤色を呈し、やがて黄色に変わるのでこの生
成した呈色物質の濃度により定量する方法である。
In this method, in the presence of concentrated sulfuric acid, brucine is oxidized by nitrate ions and takes on a red color, which eventually turns yellow, and is determined by the concentration of the colored substance produced.

しかし、この方法はフェノールジスルホン酸法、サリチ
ル酸ナトリウム法と同様に塩素イオンおよび亜硝酸イオ
ンが妨害する。
However, this method, like the phenol disulfonic acid method and the sodium salicylate method, is interfered with by chloride ions and nitrite ions.

酸化性および還元性の物質が存在する場合には、あらか
じめ還元剤および酸化剤により前処理を行なう必要があ
る。
If oxidizing and reducing substances are present, it is necessary to perform pretreatment with a reducing agent and an oxidizing agent.

さらには、濁りや着色に対しては水酸化アルミニウム懸
濁液および活性炭による前処理が必要である。
Furthermore, pretreatment with aluminum hydroxide suspension and activated carbon is necessary to prevent turbidity and discoloration.

このように硝酸イオンの分析法に関する研究は各所で盛
んで行なわれでいるがこれぞという良い方法がみつから
ないのが現状である。
As described above, research on analytical methods for nitrate ions has been actively conducted in various places, but at present no good method has been found.

硝酸イオンを亜硝酸イオンに還元する方法としで、上水
試験法や海洋観測指針などに採用されているカドミウム
・銅カラム法がある。
A method for reducing nitrate ions to nitrite ions is the cadmium/copper column method, which is used in clean water testing methods and marine observation guidelines.

しかし、この方法はカラムの活性化処理や試料の前処理
など極めて煩雑な操作と熟練度を必要とし、かつ有害廃
液が多量に発生する。
However, this method requires extremely complicated operations such as column activation treatment and sample pretreatment, and requires a high level of skill, and also generates a large amount of hazardous waste liquid.

また、この測定法で適用される硝酸体窒素量は2ないし
20μg程度であり範囲が極めで狭い。
Further, the amount of nitrate nitrogen applied in this measurement method is about 2 to 20 μg, which is an extremely narrow range.

他の還元方法として、硝酸イオン含有試料水を塩酸水溶
液等でpH2ないし4の酸性としたのち、亜鉛粉末を加
え発生期の水素によつて硝酸イオン亜硝酸イオンに還元
する方法がある。
Another reduction method is to acidify the nitrate ion-containing sample water with an aqueous hydrochloric acid solution or the like to pH 2 to 4, then add zinc powder and reduce the sample water to nitrate and nitrite ions using nascent hydrogen.

しかし、この還元方法では還元率が一定せず定量法とし
て使用できない。
However, this reduction method cannot be used as a quantitative method because the reduction rate is not constant.

本発明はかかる点に鑑みでなされたものであり、窒素ガ
ス検出器のキャリアーガス流路系中に設置した反応管内
にキャリャガスの気泡発生板を設け、その上にスルファ
ミン酸水溶液または塩類含有スルフアミノ酸水溶液から
なる反応液を保持し、その中に硝酸イオン含有試料水に
アンモニウムイオン濃度が0.1ないし0.5W/W%
となるようアンモニウム化合物を添加し、中性ないし弱
アルカリ性で亜鉛粉末を加えて振り混ぜ、アンミン錯体
形成反応で生成する活性水素により硝酸イオンを亜硝酸
イオンに還元した還元液を導入すると共に、キャリャガ
スとして実質的に窒素ガスを含まないガスを用い、これ
を該気抱発生板を通過させてキャリャガスの微細な気泡
を発生させ、これによる動的混合接触で瞬時に該反応を
行わせると共に瞬時にして反応生成ガスを反応液より追
い出し、窒素ガス検出器に導入することを特徴とする水
中の硝酸態窒素の分析法である。
The present invention has been made in view of this point, and a carrier gas bubble generating plate is provided in the reaction tube installed in the carrier gas flow path system of a nitrogen gas detector, and a sulfamic acid aqueous solution or a salt-containing sulfur A reaction solution consisting of an amino acid aqueous solution is held, and the ammonium ion concentration is 0.1 to 0.5 W/W% in sample water containing nitrate ions.
Add ammonium compound so that Using a gas that does not substantially contain nitrogen gas, this is passed through the air entrapment generating plate to generate fine bubbles of carrier gas, and the dynamic mixing contact caused by this causes the reaction to occur instantaneously. This method of analyzing nitrate nitrogen in water is characterized by expelling the reaction product gas from the reaction solution and introducing it into a nitrogen gas detector.

本発明において、硝酸イオンを亜硝酸イオンに還元する
機構は硝酸イオン含有試料水にアンモニウム化合物と亜
鉛粉末を加えて振り混ぜることにより、亜鉛のアンミン
錯体形成反応で生成する活性水素によるものである。
In the present invention, the mechanism for reducing nitrate ions to nitrite ions is based on active hydrogen generated by an ammine complex formation reaction of zinc by adding an ammonium compound and zinc powder to a nitrate ion-containing sample water and shaking the mixture.

この還元法に用いるアンモニウム化合物としては炭酸ア
ンモニウム、酢酸アンモニウム、塩化アンモニウム、硫
酸アンモニウム、クエン酸アンモニウムなどのアンモニ
ウム化合物を用いることができる。
As the ammonium compound used in this reduction method, ammonium compounds such as ammonium carbonate, ammonium acetate, ammonium chloride, ammonium sulfate, and ammonium citrate can be used.

このアンモニウム化合物の試料に対する添加濃度は0.
1ないし0.5W/W%のアンモニウムイオン濃度とな
るよう添加するのが好ましい。
The concentration of this ammonium compound added to the sample was 0.
It is preferable to add ammonium ion so that the ammonium ion concentration is 1 to 0.5 W/W%.

亜鉛粉末量は試料に対して0.2ないしIOW/W%と
なるよう添加して振り混ぜる。
Zinc powder is added to the sample in an amount of 0.2 to IOW/W% and shaken.

この振り混ぜ時間は20秒ないし180秒が好ましい。The shaking and mixing time is preferably 20 seconds to 180 seconds.

窒素ガスの検出方法としては、熱伝導検出法、質量分析
法あるいは放電スペクトク検出法を用いいることができ
る。
As a method for detecting nitrogen gas, a thermal conduction detection method, a mass spectrometry method, or a discharge spectrum detection method can be used.

熱伝導度型検出器付ガスクロマトグラフを用いる場合は
、キャリアーガスにヘリウム、アルゴンあるいは水素ガ
Zなどを用いることかでき、分離力ラムには通常の無機
ガスのガスクロマトグラフ分析に用いる充てん剤、例え
ばシリカゲル、活性炭、多孔性ポリマービーズあるいは
モレキュラーシーブなどを充てんして、反応部から発生
した窒素ガスを検出する。
When using a gas chromatograph with a thermal conductivity type detector, helium, argon, or hydrogen gas can be used as the carrier gas, and the separation force ram can be filled with a packing material used for ordinary gas chromatographic analysis of inorganic gases, such as It is filled with silica gel, activated carbon, porous polymer beads, or molecular sieves, and the nitrogen gas generated from the reaction area is detected.

質量分析法の場合はキャリアーガスにヘリウム、アルゴ
ンあるいは水素ガスなどを用いることができ、反応部か
ら発生した窒素ガスを質量分析装置のm/e=28のマ
スフラグメントグラフイーで測定するのが好ましい。
In the case of mass spectrometry, helium, argon, or hydrogen gas can be used as a carrier gas, and it is preferable to measure the nitrogen gas generated from the reaction part using mass fragmentography with m/e = 28 of a mass spectrometer. .

放電スペクトル検出法の場合はキャリアーガスにアルゴ
ンガスを用いて反応部から発生した窒素ガスを検出セル
中に流し、検出セル両側の電極に高電圧を印加しで放電
させ、その発光スペクトルを光学フィルターにより33
71Åの波長のみを取り出し、光電子増倍管により電気
的に検出することができ、極めて高感度の測定ができる
In the case of the discharge spectrum detection method, argon gas is used as a carrier gas, nitrogen gas generated from the reaction part is flowed into the detection cell, a high voltage is applied to the electrodes on both sides of the detection cell to cause a discharge, and the emission spectrum is detected using an optical filter. by 33
Only the wavelength of 71 Å can be extracted and electrically detected using a photomultiplier tube, making it possible to perform measurements with extremely high sensitivity.

反応液としてはスルファミン酸水浴液または塩類含有ス
ルファミン酸水溶液か用いられ、スルファミン酸濃度は
0.1ないし15W/W%が好ましい。
As the reaction solution, a sulfamic acid water bath solution or a salt-containing sulfamic acid aqueous solution is used, and the sulfamic acid concentration is preferably 0.1 to 15% W/W.

塩類としてはナトリウム、カリウムなどのアルカリ金属
のハロゲン化物あるいは硫酸塩などを用いることができ
る。
As the salts, halides or sulfates of alkali metals such as sodium and potassium can be used.

塩類濃度は0.1ないし30W/W%が適当である。A suitable salt concentration is 0.1 to 30 W/W%.

反応液は塩化ナトリウムなど塩類を含まなくとも良好な
結果が得られるが、塩化ナトリウムなど塩類を加えるこ
とによって、反応管内のガラスフィルターより通過する
キャリアーガスの気泡は極めて小さな気泡となり、かつ
発生した窒素ガスは反応液あるいは試料液中で溶存しえ
がたくなり、瞬時に追い出され測定の再現性が向上する
効果がある。
Good results can be obtained even if the reaction solution does not contain salts such as sodium chloride, but by adding salts such as sodium chloride, the carrier gas bubbles passing through the glass filter in the reaction tube become extremely small bubbles, and the generated nitrogen The gas becomes difficult to dissolve in the reaction solution or sample solution and is instantly expelled, which has the effect of improving the reproducibility of measurements.

次に本発明方法を熱伝導度型検出器付ガスクロマトクラ
フを用いた場合について図面に基づいてさらに詳しく説
明する。
Next, the method of the present invention will be explained in more detail with reference to the drawings, using a gas chromatograph equipped with a thermal conductivity type detector.

第1図が本発明方法に用いた装置の概要図の一例で、1
はキャリアーガスボンベでヘリウムあるいはアルゴンな
どのガスを用いることができる。
Figure 1 is an example of a schematic diagram of the apparatus used in the method of the present invention.
can use a gas such as helium or argon in a carrier gas cylinder.

キャリアーガスは二方に分れ、一方は調圧器4をへてガ
スクロマトグラフの参照側lこ入り、他方は調圧器3と
切換コツク7をへて反応管9に入る。
The carrier gas is divided into two parts: one passes through the pressure regulator 4 and enters the reference side of the gas chromatograph, and the other passes through the pressure regulator 3 and the switching cock 7 and enters the reaction tube 9.

キャリアーガスの流速は20ないし100ml/分が適
当である。
The flow rate of the carrier gas is suitably 20 to 100 ml/min.

反応管は硬質ガラス製で、ガラスフィルター10より上
部は内径8ないし15mm,内容積5ないし20cmの
ものが好ましい。
The reaction tube is preferably made of hard glass and has an inner diameter of 8 to 15 mm above the glass filter 10 and an internal volume of 5 to 20 cm.

ガラスフィルターの上部には反応液、試料液、反応終了
液あるいは洗浄液を抜き出すための毛細管12およびコ
ツク13が設けてある。
At the top of the glass filter, a capillary tube 12 and a cap 13 are provided for drawing out the reaction solution, sample solution, reaction-completed solution, or washing solution.

ガラスフィルターは反応液が通過しない2Gあるいは3
G,厚み2ないし5mmのものが適当である。
The glass filter is 2G or 3, which does not allow the reaction solution to pass through.
G, a thickness of 2 to 5 mm is suitable.

また、反応管の上部には試料液あるいは反応液導入口1
4が設けてある。
In addition, there is a sample liquid or reaction liquid inlet 1 at the top of the reaction tube.
4 is provided.

試料液あるいは反応液の導入はマイクロシリンジを用い
ても、また自動注入装置15を用いてもよい。
The sample solution or reaction solution may be introduced using a microsyringe or the automatic injection device 15.

反応液中あるいは試料液中11で生成したガスは液中か
ら追い出され反応液飛沫除去管17をへて酸化還元管1
9に導入される。
The gas generated in the reaction solution or sample solution 11 is expelled from the solution and passes through the reaction solution droplet removal tube 17 to the oxidation-reduction tube 1.
introduced in 9.

反応液飛沫除去管には指示薬を含浸させたガーゼ等を充
てんし、反応液の飛沫がキャリアーガスとともに同伴さ
れれば変色するようになっている。
The reaction liquid droplet removal tube is filled with gauze or the like impregnated with an indicator, so that if the reaction liquid droplets are entrained with the carrier gas, the tube will change color.

試料水中に揮発性の有機物などが存在すると、反応管か
ら気化するので、酸化還元管によって二酸化炭素に酸化
し、脱酸性ガス管25で除去する。
If volatile organic substances are present in the sample water, they will vaporize from the reaction tube, so they will be oxidized to carbon dioxide by the redox tube and removed by the deoxidizing gas tube 25.

酸化還元管は酸化銅あるいは酸化コバルトなどの酸化剤
および還元銅あるいは還元ニッケルなどの還元剤を充て
んした内径8ないし15mm、長さl5ないし30Cm
の石英管を用い、電気炉20によって300ないし70
0℃に加熱するのが適当である。
The redox tube is filled with an oxidizing agent such as copper oxide or cobalt oxide and a reducing agent such as reduced copper or nickel, and has an inner diameter of 8 to 15 mm and a length of 15 to 30 cm.
using a quartz tube of 300 to 70
Heating to 0°C is suitable.

酸化還元管から出たガスは除湿管22、切換コック、脱
酸性ガス管を通って熱伝導度検出器30を備えたガスク
ロマトグラフに導入される。
The gas discharged from the redox tube is introduced into a gas chromatograph equipped with a thermal conductivity detector 30 through a dehumidifying tube 22, a switching cock, and a deoxidizing gas tube.

除湿管は反応液あるいは試料液から気化した水分を除去
するもので、過塩素酸マグネシウム、乾燥用イオン交換
樹脂、塩化カルシウムあるいはシリカゲルのような脱水
剤を充てんしたガラス製管などを用いる。
The dehumidifying tube removes vaporized water from the reaction solution or sample solution, and is a glass tube filled with a dehydrating agent such as magnesium perchlorate, ion exchange resin for drying, calcium chloride, or silica gel.

脱酸性ガス管はソーダアスベスト、ソーダ石灰などを充
てんしたガラス製管などを用いる。
The deacidifying gas pipe is a glass pipe filled with soda asbestos, soda lime, etc.

ガスクロマトグラフはダブルカラム流路あるいはシング
ル力ラム流路いずれの方式でもよい。
The gas chromatograph may have either a double column flow path or a single force ram flow path.

分離力ラム28.29は充てん剤として通常の無機ガス
のガスクロマトグラフに用いる充てん剤、例えばシリカ
ゲル、活性炭、多孔性ポリマービーズあるいはモレキュ
ラーシーブなどを用いることができる。
The separation force rams 28 and 29 can use packing materials commonly used in inorganic gas gas chromatographs, such as silica gel, activated carbon, porous polymer beads, or molecular sieves.

熱伝導度型検出器から得られた信号は信号線31を通じ
て記録計32で記録される。
The signal obtained from the thermal conductivity type detector is recorded by a recorder 32 through a signal line 31.

一方、導管2より分岐されたキャリアーガスは二一ドル
バルブ34と毛細管35をへで溶存空気除去管37に導
入されている。
On the other hand, the carrier gas branched from the conduit 2 is introduced into the dissolved air removal tube 37 through the 21 dollar valve 34 and the capillary tube 35.

通常、水中には15pptn前後の窒素ガスが溶存して
いるので、溶存空気除去管に試料液あるいは反応液を入
れ、キャリアーガスでパブリングすることによって溶存
空気を除去することができる。
Usually, about 15 pptn of nitrogen gas is dissolved in water, so dissolved air can be removed by putting the sample solution or reaction solution into a dissolved air removal tube and bubbling with a carrier gas.

また、空気の溶解を防止するため溶存空気除去管の十部
には試料液あるいは反応液を採取するための細孔を有す
るセプタム36が設けてある。
Further, in order to prevent dissolution of air, a septum 36 having a pore for collecting a sample solution or a reaction solution is provided at the top of the dissolved air removal tube.

以上の各部は導管2,5,6,8,16,18,21,
23,24,26,27,33によって連結されている
Each of the above parts is the conduit 2, 5, 6, 8, 16, 18, 21,
23, 24, 26, 27, and 33.

以下、本発明を実施例に基づいて説明するが本発明はこ
れに限定されるものではない。
The present invention will be described below based on Examples, but the present invention is not limited thereto.

実施例l 第1図に示した装置を用いて以下の測定を行なった。Example l The following measurements were carried out using the apparatus shown in FIG.

厚み2mの2Gガラスフィルターを有する内径13mm
、内容積12cm2の硬質ガラス製反応管を用い、3W
/W%塩化ナトリウム含有スルファミン酸10W/W%
水溶液の反応液3dを反応管に充てんして用いた。
13mm inner diameter with 2m thick 2G glass filter
, using a hard glass reaction tube with an internal volume of 12 cm2, 3W
/W% Sodium chloride containing sulfamic acid 10W/W%
The aqueous reaction solution 3d was filled into a reaction tube and used.

内径9mm,長さ150mmの除湿管に20ないし40
メッシュの過塩素酸マグネシウムと20ないし40メッ
シュの乾燥用スルホン酸型イオン交換樹脂の等量混合物
を充てんし、内径10m、長さ200mmの酸化還元管
に0,6mmφ、長さ2ないし4mmの線状酸化銅を8
0mm、Q,5mmφ、長さ2ないし4mmの線状還元
銅を80mm、酸化銅、還元銅の順に充てんし、酸化還
元管の両端に石英綿を20mm充てんし電気炉を500
℃に加熱して用いた。
20 to 40 for a dehumidifying pipe with an inner diameter of 9 mm and a length of 150 mm.
A oxidation-reduction tube with an inner diameter of 10 m and a length of 200 mm was filled with a mixture of equal amounts of mesh magnesium perchlorate and 20 to 40 mesh drying sulfonic acid type ion exchange resin, and a wire with a diameter of 0.6 mm and a length of 2 to 4 mm was filled. Copper oxide in the form of 8
0 mm, Q, 5 mm φ, 80 mm of linear reduced copper with a length of 2 to 4 mm, filled with copper oxide and reduced copper in that order, filled with 20 mm of quartz wool at both ends of the oxidation-reduction tube, and heated in an electric furnace for 500 mm.
It was heated to ℃ before use.

内径9mm,長さ70mmのガラス製反応液飛沫除去管
にフンゴーレツドを含浸させたガーゼを充てんし、内径
9mm、長さ70mmの脱酸性ガス管に20ないし40
メッシュのソーダアスベストを充てんした。
A glass reaction liquid droplet removal tube with an inner diameter of 9 mm and a length of 70 mm was filled with gauze impregnated with Fungo Red, and a deacidifying gas tube with an inner diameter of 9 mm and a length of 70 mm was filled with 20 to 40 gauze.
Filled with mesh soda asbestos.

ガスクロマトグラフの分離カラムに内径3mm,長さ1
mのステンレス製カラムを用い、60ないし80メッシ
ュの活性炭を充てんした。
A gas chromatograph separation column with an inner diameter of 3 mm and a length of 1
A 60-80 mesh stainless steel column was used and packed with 60 to 80 mesh activated carbon.

キャリアーガスにヘリウムを用い60ml/分で流し、
カラム温度60℃、熱伝導度検出器温度60℃、ブリッ
ジ電流160mAの条件で使用した。
Using helium as a carrier gas and flowing at 60 ml/min,
It was used under the following conditions: column temperature 60°C, thermal conductivity detector temperature 60°C, and bridge current 160mA.

特級試薬硝酸ナトリウムを用いて硝酸体窒素20ppm
、lOppmおよび5ppmの水溶液を調整し、50m
l共栓試験管に25ml採取しアンモニウム化合物水溶
液(炭酸アンモニウムの場合は30W/W%0.65、
l、塩化アンモニウムの場合は26W/W%1.0ml
、酢酸アンモニウ云の場合は50W/W%0.6ml、
硫酸アンモニウムの場合は30W/W% 1.Oml,
クエン酸アンモニウムの場合は30W/W% 2.0m
l)を加えた後、亜鉛粉末0.2ないし0.3gを加え
で密栓し1分間振り混ぜた。
Nitrate nitrogen 20ppm using special grade reagent sodium nitrate
, lOppm and 5ppm aqueous solutions were prepared and 50m
Collect 25 ml in a stoppered test tube and add an ammonium compound aqueous solution (30 W/W% 0.65 for ammonium carbonate,
l, 26W/W% 1.0ml for ammonium chloride
, in the case of ammonium acetate, 50W/W% 0.6ml,
In case of ammonium sulfate, 30W/W% 1. Oml,
For ammonium citrate, 30W/W% 2.0m
After adding 1), 0.2 to 0.3 g of zinc powder was added, the container was tightly capped, and the mixture was shaken for 1 minute.

直ちに、No.5Cろ紙を用いで、長さ7cm、内径1
5mmの溶存空気除去管に約6mlろ過し、ヘリウムガ
スで溶存空気を除去したのち、マイクロシリンジで10
0μl導入して検量線を作成した。
Immediately, No. Use 5C filter paper, length 7cm, inner diameter 1
After filtering approximately 6 ml into a 5 mm dissolved air removal tube and removing dissolved air with helium gas,
A calibration curve was created by introducing 0 μl.

クロマトグラムは約2分で得られ、窒素ピーク高さと硝
酸体窒素濃度との関係を、加えたアンモニウム化合物ご
とにプロットすると第2図のごとく良好な直線が得られ
た。
A chromatogram was obtained in about 2 minutes, and when the relationship between nitrogen peak height and nitrate nitrogen concentration was plotted for each ammonium compound added, a good straight line was obtained as shown in FIG.

硝酸ナトリウムを標準として、各種の既知成分試料中の
硝酸イオンを炭酸アンモニウムと亜鉛粉末で亜硝酸イオ
ンに還元して、スルファミン酸10W/W%水溶液ある
いは各種の塩類含有スルファミン酸3ないし10W/W
%水溶液と反応させで、硝酸体窒素濃度をピーク高さ検
量線法で測定した結果を第1表に示す。
Using sodium nitrate as a standard, nitrate ions in various known component samples are reduced to nitrite ions with ammonium carbonate and zinc powder to prepare a 10 W/W% aqueous solution of sulfamic acid or 3 to 10 W/W of sulfamic acid containing various salts.
% aqueous solution, and the nitrate nitrogen concentration was measured by the peak height calibration curve method. Table 1 shows the results.

実施例2 第1図に示した装置を用いて、微量硝酸イオンを含有す
る試料液25mlを共栓試験管に採取し、塩化アンモニ
ウム26W/W%水溶液1.Omlおよび亜鉛粉末0.
25gを加えて1分間振り混ぜた後、A5Cろ紙で約1
0mlろ過し、直ちに、このろ液3mlを5mlシリン
ジで反応管に導入し、約4分放置し溶存空気を追い出し
たのち、ヘリウムガスで溶存空気を除去した3W/W%
塩化ナトリウム含有スルファミン酸10W/W%水溶液
の反応液をマイクロシリンジで100μl導入し、生成
した窒素ガスのクロマトグラムを記録した。
Example 2 Using the apparatus shown in FIG. 1, 25 ml of a sample solution containing trace amounts of nitrate ions was collected into a stoppered test tube, and a 1. Oml and zinc powder 0.
Add 25g and shake for 1 minute, then filter with A5C filter paper for about 1 minute.
Immediately introduce 3 ml of this filtrate into the reaction tube with a 5 ml syringe, leave it for about 4 minutes to drive out the dissolved air, and then remove the dissolved air with helium gas.
100 μl of a reaction solution of a 10 W/W % aqueous solution of sulfamic acid containing sodium chloride was introduced using a microsyringe, and a chromatogram of the generated nitrogen gas was recorded.

なお、他の測定条件は実施例1と同一条件で測定した。Note that the other measurement conditions were the same as in Example 1.

反応後の試料はコックの開閉により系外に抜き出し、蒸
留水またはイオン交換水4mlを導入し反応管内を洗浄
し、コックの開閉により糸外に抜き出した後、次の試料
液を導入して順次測定を行なった。
After the reaction, the sample is taken out of the system by opening and closing the cock, and 4 ml of distilled water or ion-exchanged water is introduced to clean the inside of the reaction tube, and after being pulled out to the outside by opening and closing the cock, the next sample solution is introduced one after another. Measurements were made.

反応液導入後のクロマトグラムは約2分で得られ、窒素
ピーク高さと硝酸体窒素濃度との関係をシ口ソトすると
第3図のごとくの良好な直線が得られた。
A chromatogram was obtained in about 2 minutes after the introduction of the reaction solution, and when the relationship between the nitrogen peak height and the nitrate nitrogen concentration was plotted, a good straight line as shown in FIG. 3 was obtained.

硝酸ナトリウムを標準として、各種の既知成分試料中の
硝酸体窒素濃度をピーク高さ検量線法で測定した結果を
第2表に示す。
Table 2 shows the results of measuring the nitrate nitrogen concentration in various known component samples using the peak height calibration curve method using sodium nitrate as a standard.

このように本発明の分析法によれば、河川、
湖沼、海水などの環境水および水道水あるいは工場排水
、衛生排水などの硝酸体窒素を簡単にかつ迅速、正確に
測定することができる。
As described above, according to the analysis method of the present invention, rivers,
Nitrate nitrogen in environmental water such as lakes and seawater, tap water, industrial wastewater, sanitary wastewater, etc. can be easily, quickly, and accurately measured.

なお、試料水中には硝酸イオンと亜硝酸イオンが共存す
ることが多いが、この場合、本発明の分析法では硝酸体
窒素と亜硝酸体窒素の含量が直接定量される。
Note that nitrate ions and nitrite ions often coexist in sample water, and in this case, the content of nitrate nitrogen and nitrite nitrogen is directly quantified in the analysis method of the present invention.

しかし、試料水を未還元で直接スルファミン酸水溶液の
反応液と反応させると亜硝酸体窒素のみが定量されるの
で、両者の差より硝酸体窒素濃度を求めることができる
However, if the sample water is directly reacted with the reaction solution of sulfamic acid aqueous solution without being reduced, only nitrite nitrogen is quantified, so the nitrate nitrogen concentration can be determined from the difference between the two.

【図面の簡単な説明】[Brief explanation of the drawing]

第j図は本発明の方法を実施するための装置の一例の概
要図である。 図中、キャリアーガスボンべ1、調圧器3,4、反応部
と検出部との切換コツク7,反応管9、ガラスフィルタ
ー10、反応液または試料液11、毛細管12、コック
13、試料液または反応液注入口14、自動注入装置1
5、反応液飛沫除去管17、酸化還元管19、電気炉2
0、除湿管22、脱酸性ガス管25、分離カラム28,
29、熱伝導度型検出器30、信号線31、記録計32
、ニードルバルブ34、毛細管35、溶存空気除去管用
セブタム36、溶存空気除去管37、導管2,5,6,
8,16,18,21,23,24,26,27,33
を各各示している。 第2図は反応管に反応液を充てんして、硝酸体窒素既知
試料を各種のアンモニウム化合物共存下、亜鉛粉末で還
元した試料液を溶存空気除去後100μl導入して得ら
れた検量線を示している。 第3図は微量硝酸体窒素既知試料を塩化アンモニウム共
存下、亜鉛粉末で還元した試料液3mlを反応管に充て
んして、酔存空気除去後の反応液100μgを導入して
得られた検量線を示している。
FIG. j is a schematic diagram of an example of an apparatus for carrying out the method of the invention. In the figure, a carrier gas cylinder 1, pressure regulators 3 and 4, a switching cock between the reaction section and the detection section 7, a reaction tube 9, a glass filter 10, a reaction liquid or sample liquid 11, a capillary tube 12, a cock 13, a sample liquid or reaction Liquid injection port 14, automatic injection device 1
5. Reaction liquid droplet removal tube 17, redox tube 19, electric furnace 2
0, dehumidification pipe 22, deoxidizing gas pipe 25, separation column 28,
29, thermal conductivity type detector 30, signal line 31, recorder 32
, needle valve 34, capillary tube 35, septum 36 for dissolved air removal tube, dissolved air removal tube 37, conduits 2, 5, 6,
8, 16, 18, 21, 23, 24, 26, 27, 33
Each is shown separately. Figure 2 shows a calibration curve obtained by filling a reaction tube with a reaction solution and introducing 100 μl of a sample solution obtained by reducing a known sample of nitrate nitrogen with zinc powder in the coexistence of various ammonium compounds after removing dissolved air. ing. Figure 3 shows the calibration curve obtained by filling a reaction tube with 3 ml of a sample solution of a known trace amount of nitrate nitrogen reduced with zinc powder in the presence of ammonium chloride, and introducing 100 μg of the reaction solution after removing intoxicating air. It shows.

Claims (1)

【特許請求の範囲】[Claims] 1 硝酸イオン含有試料水中の硝酸イオンを一旦、亜硝
酸イオン還元した還元液を窒素ガス検出器のキャリアー
ガス流路系中で反応させて窒素ガスにし、窒素ガス検出
器で定量する方法においで窒素ガス検出器の流路系中に
設置した反応管内にキャリャガスの気泡発生板を設け、
その上にスルファミン酸水溶液または塩類含有スルファ
ミン酸水溶液からなる反応液を保持し、その中に硝酸イ
オン含有試料水にアンモニウムイオン濃度が0.1ない
し0.5W/W%となるようアンモニウム化合物を添加
し、中性ないし弱アルカリ性で亜鉛粉末を加えて振り混
ぜ、アンミン錯体形成反応で生成する活性水素により硝
酸イオンを亜硝酸イオンに還元した還元液を導入すると
共に、キャリャガスとして実質的に窒素ガスを含まない
ガスを用い、これを該気泡発生板を通過させてキャリャ
ガスの微細な気泡を発生させ、これによる動的混合接触
で瞬時に該反応を行なわせると共に瞬時にして反応生成
ガスを反応液より追い出し、窒素ガス検出器に導入する
ことを特徴とする水中の硝酸態窒素の分析法。
1 In this method, the nitrate ions in the sample water containing nitrate ions are reduced to nitrite ions, the reduced solution is reacted in the carrier gas flow path system of the nitrogen gas detector, and the nitrogen gas is quantified with the nitrogen gas detector. A carrier gas bubble generating plate is installed in the reaction tube installed in the flow path system of the gas detector.
A reaction solution consisting of a sulfamic acid aqueous solution or a salt-containing sulfamic acid aqueous solution is held thereon, and an ammonium compound is added to the sample water containing nitrate ions so that the ammonium ion concentration becomes 0.1 to 0.5 W/W%. Then, add zinc powder in a neutral or weakly alkaline environment, shake it, and introduce a reducing solution in which nitrate ions are reduced to nitrite ions using active hydrogen generated by the ammine complex formation reaction, and substantially nitrogen gas is added as a carrier gas. Using a non-containing gas, the gas is passed through the bubble generating plate to generate fine carrier gas bubbles, which causes the reaction to occur instantaneously through dynamic mixing contact, and instantly removes the reaction product gas from the reaction liquid. A method for analyzing nitrate nitrogen in water, which is characterized by expelling it and introducing it into a nitrogen gas detector.
JP53139070A 1978-01-27 1978-11-10 Analysis method for nitrate nitrogen in water Expired JPS581380B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP53139070A JPS581380B2 (en) 1978-11-10 1978-11-10 Analysis method for nitrate nitrogen in water
FR7901944A FR2422953A1 (en) 1978-01-27 1979-01-25 ANALYSIS METHOD AND DEVICE FOR DETERMINATION OF NITROGEN OBTAINED FROM NITRITES OR NITRATES IN AQUEOUS SYSTEMS
DE19792902876 DE2902876A1 (en) 1978-01-27 1979-01-25 METHOD AND DEVICE FOR DETERMINING NITRITE NITROGEN IN Aqueous SOLUTIONS
GB7902786A GB2013339B (en) 1978-01-27 1979-01-26 Method and apparatus for the determination of nitrites or nitrates in aqueous solutions
BE0/193095A BE873732A (en) 1978-01-27 1979-01-26 ANALYTICAL APPARATUS AND METHOD FOR DETERMINING NITROGEN DERIVED FROM NITRITES OR NITRATES IN AQUEOUS SYSTEMS
CA320,395A CA1115630A (en) 1978-01-27 1979-01-29 Analytical method and apparatus for the determination of nitrogen derived from nitrites or nitrates in aqueous systems
NL7900699A NL7900699A (en) 1978-01-27 1979-01-29 METHOD AND DEVICE FOR THE DETERMINATION OF NITROGEN.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53139070A JPS581380B2 (en) 1978-11-10 1978-11-10 Analysis method for nitrate nitrogen in water

Publications (2)

Publication Number Publication Date
JPS5565157A JPS5565157A (en) 1980-05-16
JPS581380B2 true JPS581380B2 (en) 1983-01-11

Family

ID=15236783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53139070A Expired JPS581380B2 (en) 1978-01-27 1978-11-10 Analysis method for nitrate nitrogen in water

Country Status (1)

Country Link
JP (1) JPS581380B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647500A (en) * 1979-09-15 1981-04-30 Dow Corning Soap composition and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647500A (en) * 1979-09-15 1981-04-30 Dow Corning Soap composition and manufacture thereof

Also Published As

Publication number Publication date
JPS5565157A (en) 1980-05-16

Similar Documents

Publication Publication Date Title
Losev et al. Silica sequentially modified with polyhexamethylene guanidine and Arsenazo I for preconcentration and ICP–OES determination of metals in natural waters
Kazantzi et al. Fabric fiber sorbent extraction for on-line toxic metal determination by atomic absorption spectrometry: Determination of lead and cadmium in energy and soft drinks
Papantoni et al. Trace enrichment of metals using a supported liquid membrane technique
Yoshimura Application of ion-exchanger phase absorptiometry to flow analysis. Determination of trace amounts of chromium (VI) in water
JP4883577B2 (en) Chemical sensor material
Ohzeki et al. Enrichment of trace amounts of copper as chelate compounds using a finely divided ion-exchange resin
do Nascimento Electrothermal atomic absorption spectrometric determination of lead, cadmium, copper and zinc in high-salt content samples after simultaneous separation on polyethylene powder impregnated with 1-(2-pyridylazo)-2-naphthol: application to the analysis of hemodialysis fluids
JPS581380B2 (en) Analysis method for nitrate nitrogen in water
Alizadeh et al. Liquid-liquid extraction of Palladium (ii) from hydrobromic acid media by hexadecylpyridinium bromide
Russo et al. Sequential solid-phase extraction with cyanopropyl bonded-phase cartridges for trace enrichment of PCBs and chlorinated pesticides from water samples
CA1115630A (en) Analytical method and apparatus for the determination of nitrogen derived from nitrites or nitrates in aqueous systems
Huiliang et al. Computerized flow potentiometric stripping analysis with nafion-modified carbon fibre electrodes
Zaporozhets et al. Lucigenin immobilized on silicon oxides as a solid-phase chemiluminescent reagent
RU2395804C2 (en) METHOD FOR SIMULTANEOUS DETERMINATION OF TOTAL CONTENT OF F-, Cl-, Br-, I- S- AND P-ORGANIC COMPOUNDS IN WATER AND AQUEOUS SOLUTIONS
Uchiyama et al. Photoacoustic determination of cobalt after solid-phase concentration on an Empore silica-gel thin-layer plate
JP3924618B2 (en) Highly sensitive measurement method of weakly basic ions by ion exclusion separation-UV absorbance enhancement system
Ensafi et al. Determination of trace amount of carbon disulfide in water by the spectrophotometric reaction-rate method
Minamisawa et al. Determination of trace amounts of palladium (II) in water by metal-furnace atomic absorption spectrometry after preconcentration on chitin
Dogan et al. Some applications of rapid separation of mercury on metallic copper to environmental samples with determination by flameless atomic absorption spectrometry
JPH0513266B2 (en)
Amin et al. Determination of chromium in river waters by electrothermal atomic absorption spectrometry with preconcentration on a tantalum wire
RU2056634C1 (en) Method of determination of arsine microcontent in gases
Viswanadham et al. Comparison of ion chromatography and titrimetry for determination of sulfur in fuel oils
Hu et al. Ion chromatography of alkali metal ions using micellar bile salt coated stationary phase
e Silva et al. Separation and determination of metallocyanide complexes of Fe (II), Ni (II) and Co (III) by ion-interaction chromatography with membrane suppressed conductivity detection applied to analysis of oil refinery streams (sour water)