JPH0513266B2 - - Google Patents

Info

Publication number
JPH0513266B2
JPH0513266B2 JP3499484A JP3499484A JPH0513266B2 JP H0513266 B2 JPH0513266 B2 JP H0513266B2 JP 3499484 A JP3499484 A JP 3499484A JP 3499484 A JP3499484 A JP 3499484A JP H0513266 B2 JPH0513266 B2 JP H0513266B2
Authority
JP
Japan
Prior art keywords
sample water
nitrogen compounds
ozone
sample
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3499484A
Other languages
Japanese (ja)
Other versions
JPS60178353A (en
Inventor
Koji Shimizu
Satoshi Nishikata
Hiroshi Hoshikawa
Tadashi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3499484A priority Critical patent/JPS60178353A/en
Publication of JPS60178353A publication Critical patent/JPS60178353A/en
Publication of JPH0513266B2 publication Critical patent/JPH0513266B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/182Specific anions in water

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は工場排水、下水処理場放流水、河川
水などに含有される微量の窒素化合物の分析方法
および装置に係り、特に懸濁物質などを含有する
水中の微量の窒素化合物量を簡便に、しかも精度
よく測定する分析方法および装置に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention relates to a method and apparatus for analyzing trace amounts of nitrogen compounds contained in factory wastewater, sewage treatment plant discharge water, river water, etc. The present invention relates to an analytical method and apparatus for easily and accurately measuring trace amounts of nitrogen compounds in water containing nitrogen.

〔従来技術とその問題点〕[Prior art and its problems]

近年、湖沼や内海などの閉鎖性水域において窒
素、リンなどによる富栄養化が問題となつてお
り、水道水の異臭味の発生、魚貝類の死滅等の障
害も発生している。このため環境庁では富栄養化
防止対策の一環として湖沼の窒素、リン等に係る
環境基準を告示した。今後はさらに海域の環境基
準、排水規制などの告示も予定されている。
In recent years, eutrophication due to nitrogen, phosphorus, etc. has become a problem in closed water bodies such as lakes and inland seas, and problems such as the occurrence of strange smells and tastes in tap water and the death of fish and shellfish have also occurred. For this reason, the Environment Agency has announced environmental standards for nitrogen, phosphorus, etc. in lakes and marshes as part of measures to prevent eutrophication. In the future, there are plans to issue further announcements regarding marine environmental standards, wastewater regulations, etc.

これらの告示により水中の低濃度の窒素、リン
等を精度よく測定する必要があり、この告示の中
には水中の低濃度の窒素、リン等の分析方法が示
されている。このうち、窒素の分析方法は一定量
の試料にアルカリ性ペルオキソ二硫酸カリウムを
添加し、オートクレーブ中で120℃の温度で30分
間加熱分解して窒素化合物を硝酸イオン(以下
NO3 -と記す)にしたのち、生成したNO3 -量を
測定して水中に含まれる全窒素量を求める方法で
ある。この分析方法において、オートクレーブ中
で加熱分解する操作は反応容器が高温、高圧にさ
らされるため、該容器の劣化が起こり、容器の密
閉性が悪くなつて繁雑な保守を必要とする。また
この方法はオートクレーブを使用するため、自動
化が困難である。
According to these notifications, it is necessary to accurately measure low concentrations of nitrogen, phosphorus, etc. in water, and these notifications specify methods for analyzing low concentrations of nitrogen, phosphorus, etc. in water. Among these, the nitrogen analysis method involves adding alkaline potassium peroxodisulfate to a certain amount of the sample, and heating it in an autoclave at 120°C for 30 minutes to remove nitrogen compounds from nitrate ions (hereinafter referred to as nitrate ions).
This method determines the total amount of nitrogen contained in the water by measuring the amount of NO 3 - produced . In this analysis method, the thermal decomposition operation in an autoclave exposes the reaction vessel to high temperature and high pressure, which causes deterioration of the vessel and deteriorates the sealability of the vessel, requiring complicated maintenance. Additionally, this method uses an autoclave, making it difficult to automate.

さらに、水中の全窒素量を測定する装置として
全窒素分析装置が市販されているが、試料をマイ
クロシリンジで採取するため、懸濁物質を含む水
の分析はできない。また、これらの装置は試料中
の窒素化合物を800℃〜1000℃の温度で加熱分解
する方式を採用しているため、分解後の残査が分
解炉内に残り、閉塞の恐れがある。
Furthermore, although total nitrogen analyzers are commercially available as devices for measuring the total amount of nitrogen in water, since the sample is collected with a microsyringe, it is not possible to analyze water containing suspended solids. Furthermore, since these devices employ a method of thermally decomposing the nitrogen compounds in the sample at a temperature of 800°C to 1000°C, residue after decomposition may remain in the decomposition furnace and cause blockage.

〔発明の目的〕[Purpose of the invention]

この発明は懸濁物質などを含有する水中の微量
の窒素化合物を簡便に、かつ精度よく測定する、
水中の窒素化合物の分析方法および装置を提供す
ることを目的とする。
This invention enables simple and accurate measurement of trace amounts of nitrogen compounds in water containing suspended solids.
The purpose of the present invention is to provide a method and apparatus for analyzing nitrogen compounds in water.

〔発明の要点〕[Key points of the invention]

前述の目的を達成するため、本発明分析方法に
よれば、窒素化合物を含有する試料水をアルカリ
性の条件下でオゾンと接触させて前記窒素化合物
を硝酸イオンに酸化分解し、次いで前記試料水中
に共存する紫外領域に吸収を示す未分解物質を吸
着材で吸着除去したのち、前記硝酸イオンを紫外
線吸収法により測定して試料水中の窒素化合物量
を求めることを特徴とし、さらに本発明装置によ
れば、窒素化合物を含有する試料水の採取系統、
アルカリ剤供給系統およびオゾン供給系統をそれ
ぞれ備えた、前記試料水中の窒素化合物をアルカ
リ性の条件下でオゾンと接触させて硝酸イオンに
酸化分解する反応槽と、前記試料水に共存する紫
外領域に吸収を示す未分解物質を吸着除去する吸
着材の充填された吸着塔と、前記酸化分解により
生成された硝酸イオンを測定する紫外線吸収計と
からなることを特徴とする。
In order to achieve the above-mentioned object, according to the analysis method of the present invention, sample water containing nitrogen compounds is brought into contact with ozone under alkaline conditions to oxidize and decompose the nitrogen compounds into nitrate ions, and then in the sample water The method is characterized in that the amount of nitrogen compounds in the sample water is determined by adsorbing and removing coexisting undecomposed substances that exhibit absorption in the ultraviolet region with an adsorbent, and then measuring the nitrate ions by an ultraviolet absorption method. For example, a system for collecting sample water containing nitrogen compounds,
A reaction tank that is equipped with an alkaline agent supply system and an ozone supply system, in which the nitrogen compounds in the sample water are brought into contact with ozone under alkaline conditions to oxidize and decompose them into nitrate ions, and a reaction tank that is equipped with an alkaline agent supply system and an ozone supply system, and a reaction tank that oxidizes and decomposes nitrogen compounds in the sample water into nitrate ions, which are absorbed in the ultraviolet region that coexists with the sample water. It is characterized by comprising an adsorption tower filled with an adsorbent that adsorbs and removes undecomposed substances exhibiting the above-mentioned oxidative decomposition, and an ultraviolet absorption meter that measures nitrate ions produced by the oxidative decomposition.

〔発明の実施例〕[Embodiments of the invention]

通常、水中の窒素化合物はアンモニウムイオン
(NH4 +)、亜硝酸イオン(NO2 -)などの無機熊
窒素およびタンパク質などの有機熊窒素として存
在している。水中の全窒素量を測定する場合、こ
れらの窒素化合物を酸化分解してNO3 -に変えた
のち、このNO3 -を測定して全窒素量を求めるの
が一般的である。
Generally, nitrogen compounds in water exist as inorganic nitrogen such as ammonium ions (NH 4 + ) and nitrite ions (NO 2 - ) and organic nitrogen such as proteins. When measuring the total amount of nitrogen in water, it is common to oxidize and decompose these nitrogen compounds to convert them into NO 3 - , and then measure this NO 3 - to determine the total nitrogen amount.

以下、本発明にかかる分析方法および装置を添
付図面を用いて詳述する。第1図は本発明装置の
一具体例を示すフローシートであつて、試料水の
採取系統A,アルカリ剤供給系統Bおよびオゾン
供給系統Cをそれぞれ備えた反応槽5を含む前処
理部D、試料水中に共存する未分解物質を吸着除
去する吸着部E、ならびに試料中のNO3 -量を測
定するNO3 -測定部Fから構成される。
Hereinafter, the analysis method and apparatus according to the present invention will be explained in detail using the accompanying drawings. FIG. 1 is a flow sheet showing a specific example of the apparatus of the present invention; It consists of an adsorption section E that adsorbs and removes undecomposed substances coexisting in the sample water, and an NO 3 - measurement section F that measures the amount of NO 3 - in the sample.

前処理部Dにおける試料水の採取系統Aは試料
採取管1、ポンプ2ならびにストツプバルブ7か
ら構成され、また、アルカリ剤供給系統Bはアル
カリ溶液タンク3、ポンプ4ならびにストツプバ
ルブ6から構成され、かつオゾン供給系統Cは酸
素ガスボンベ、オゾン発生機9、切換コツク1
1、ならびに散気管10から構成され、それぞれ
反応槽5に連結される。
The sample water collection system A in the pretreatment section D is composed of a sample collection tube 1, a pump 2, and a stop valve 7, and the alkaline agent supply system B is composed of an alkaline solution tank 3, a pump 4, and a stop valve 6. Supply system C includes an oxygen gas cylinder, an ozone generator 9, and a switching pot 1
1 and an aeration pipe 10, each connected to a reaction tank 5.

試料水は試料採取管1を通してポンプ2によつ
て反応槽5に一定量採取される。次いでアルカリ
溶液タンク3に入れられている水酸化ナトリウム
等のアルカリ水溶液をポンプ4によつて反応槽5
に滴下し、蒸気試料水のPH値をアルカリ性にす
る。その後、ストツプバルブ6,7を閉じて試料
水中にオゾンを通気する。オゾンは酸素ガスボン
ベ8中の酸素ガスをオゾン発生機9に送つて発生
させる。このときの原料ガスは酸素ガス以外に空
気であつてもかまわない。しかし、空気を原料ガ
スとしたときには空気中に含まれる窒素に起因す
る窒素酸化物もオゾンと同時に発生する。この窒
素酸化物は試料水に溶解してNO3 -となり、測定
値に正誤差を与えるため、試料水にオゾンを通気
する前にアルカリ溶液などによつてこの窒素酸化
物を吸収除去する必要がある。オゾンの濃度は酸
素ガスの流量とオゾン発生機9の電圧調整器(図
示せず)により変えられる。オゾン発生機9によ
り発生したオゾンは切換コツク11を通して散気
管10から試料水中に送られて試料水中の窒素化
合物を酸化分解する。反応に使われなかつたオゾ
ンは切換コツク12を通して排オゾン分解器14
により無害な酸素に分解されて大気中に放出され
る。一定時間オゾンを試料水に通気したのち、切
換コツク11,12を切換えてオゾンをバイパス
管13を通して排オゾン分解器14に導入し、前
述と同様、オゾンは無害な酸素に分解され、大気
中に放出される。
A fixed amount of sample water is collected into a reaction tank 5 by a pump 2 through a sample collection tube 1. Next, the alkaline aqueous solution such as sodium hydroxide contained in the alkaline solution tank 3 is pumped into the reaction tank 5 by the pump 4.
to make the PH value of the steam sample water alkaline. Thereafter, the stop valves 6 and 7 are closed to vent ozone into the sample water. Ozone is generated by sending oxygen gas in an oxygen gas cylinder 8 to an ozone generator 9. The raw material gas at this time may be air other than oxygen gas. However, when air is used as the raw material gas, nitrogen oxides caused by nitrogen contained in the air are also generated at the same time as ozone. This nitrogen oxide dissolves in the sample water and becomes NO 3 - , giving an error in the measured value. Therefore, it is necessary to absorb and remove this nitrogen oxide using an alkaline solution or the like before aerating ozone into the sample water. be. The concentration of ozone can be changed by the flow rate of oxygen gas and the voltage regulator (not shown) of the ozone generator 9. Ozone generated by the ozone generator 9 is sent into the sample water from the aeration tube 10 through the switching tank 11 to oxidize and decompose nitrogen compounds in the sample water. Ozone that is not used in the reaction is discharged through the switching tank 12 to the ozone decomposer 14.
It is decomposed into harmless oxygen and released into the atmosphere. After aerating ozone into the sample water for a certain period of time, the switching tips 11 and 12 are switched and the ozone is introduced into the exhaust ozone decomposer 14 through the bypass pipe 13, and as described above, the ozone is decomposed into harmless oxygen and released into the atmosphere. released.

水中の窒素化合物とオゾンとの反応は溶液のPH
により変化する。このため溶液のPHと窒素化合物
の分解率の関係を塩化アンモニウム水溶液を標準
試料として調べ、結果を第2図に示した。第2図
は塩化アンモニウム(窒素として10mg/の濃
度)の水溶液1.5に硫酸あるいは水酸化ナトリ
ウム溶液を添加混合してPHを2.5〜12.8に調整し、
オゾン発生機で発生したオゾンを反応槽に散気管
を通して送り込んで試料と60分間気液接触させ、
塩化アンモニウムの分解率と溶液のPHの関係を調
べたものである。この結果によれば、溶液のPHが
4付近から塩化アンモニウムはオゾンにより酸化
分解され、PH11以上では塩化アンモニウムの約90
%(従来法とほぼ同率)以上が分解していること
がわかる。また、この分解により塩化アンモニウ
ムはNO3 -になつている。したがつて、水中の窒
素化合物をオゾンで分解してNO3 -にするために
は溶液のPHを11以上にすればよいことがわかる。
The reaction between nitrogen compounds in water and ozone changes the pH of the solution.
Varies depending on For this reason, the relationship between the pH of the solution and the decomposition rate of nitrogen compounds was investigated using an aqueous ammonium chloride solution as a standard sample, and the results are shown in Figure 2. Figure 2 shows that sulfuric acid or sodium hydroxide solution is added and mixed to 1.5 aqueous solution of ammonium chloride (concentration of 10 mg/nitrogen) to adjust the pH to 2.5 to 12.8.
Ozone generated by an ozone generator is sent into the reaction tank through an aeration tube and brought into gas-liquid contact with the sample for 60 minutes.
This study investigated the relationship between the decomposition rate of ammonium chloride and the pH of the solution. According to this result, ammonium chloride is oxidized and decomposed by ozone when the pH of the solution is around 4, and when the pH of the solution is around 4, ammonium chloride
It can be seen that more than % (almost the same rate as the conventional method) was decomposed. Also, ammonium chloride is converted to NO 3 - by this decomposition. Therefore, it can be seen that in order to decompose nitrogen compounds in water to NO 3 - by using ozone, the pH of the solution should be set to 11 or higher.

オゾンを通気して含有窒素化合物をNO3 -に酸
化分解された試料水はストツパー15を開いて試
料の受器16に入れられ、次いで吸着部Eに送ら
れる。すなわち、受器16に入れられた試料水は
ポンプ17によつてろ過筒18に送られ、ここで
懸濁物質を除去した後、吸着材、例えば活性炭の
充填された吸着塔19を通つて試料水中に共存す
る有機物質等の未分解物質が吸着除去される。し
かし、試料水中にはNa+イオンが存在しているの
でNO3 -は吸着されずに吸着塔19を通過する。
The sample water, which has been oxidized and decomposed to NO 3 - by aerating ozone, opens the stopper 15, enters the sample receiver 16, and is then sent to the adsorption section E. That is, the sample water put in the receiver 16 is sent to the filtration tube 18 by the pump 17, where suspended solids are removed, and then the sample water is passed through the adsorption column 19 filled with an adsorbent such as activated carbon. Undecomposed substances such as organic substances coexisting in water are adsorbed and removed. However, since Na + ions are present in the sample water, NO 3 - passes through the adsorption tower 19 without being adsorbed.

第3図は活性炭の添加量を変化させてNO3 -
活性炭に吸着されるかどうかを調べたもので、窒
素として1mg/の濃度のNO3 -標準溶液に活性
炭を添加し、そのろ液中のNO3 -濃度を測定して
NO3 -の回収率を求めたものである。それと同時
にNa+イオンとしてNaCl0.8gをNO3 -標準溶液
100mlに添加した試料水にも活性炭を添加して
NO3 -の回収率を求めた結果も記してある。この
ようにNa+イオンを添加すれば試料水中のNO3 -
は活性炭に吸着されないので好都合である。
Figure 3 shows whether or not NO 3 - is adsorbed by activated carbon by varying the amount of activated carbon added. Activated carbon was added to a standard solution of NO 3 - with a concentration of 1 mg/nitrogen, and the filtrate was Measuring the NO 3 -concentration in
The recovery rate of NO 3 - was determined. At the same time, 0.8 g of NaCl is added as Na + ion to NO 3 - standard solution.
Activated carbon was also added to the sample water added to 100ml.
The results of determining the recovery rate of NO 3 - are also listed. By adding Na + ions in this way, NO 3 - in the sample water
is advantageous because it is not adsorbed by activated carbon.

吸着塔19を通つて紫外領域に吸収を示す着色
成分や有機物等が吸着除去された試料水は、次い
で、NO3 -測定部Fに送られる。すなわち、前記
試料水は紫外線吸収計20に送られ、220nmの波
長での吸収量を測定し、あらかじめ作成された検
量線からNO3 -の濃度を求め、試料水中の全窒素
濃度が計算される。測定が終了した試料水は試料
排出管22を通つて排出される。21は記録計で
ある。
The sample water that has passed through the adsorption tower 19 and from which colored components and organic substances that exhibit absorption in the ultraviolet region have been adsorbed and removed is then sent to the NO 3 - measurement section F. That is, the sample water is sent to the ultraviolet absorption meter 20, the amount of absorption at a wavelength of 220 nm is measured, the concentration of NO 3 - is determined from a calibration curve prepared in advance, and the total nitrogen concentration in the sample water is calculated. . The sample water after the measurement is discharged through the sample discharge pipe 22. 21 is a recorder.

NO3 -の吸収は第4図に示すように302nmと
205nmに吸収の極大があることが知られている。
しかしながら302nmでの吸収は205nmでの吸収に
くらべてその感度は低く、50mg/の濃度の標準
液を測定した場合、302nmでの吸光度が0.02であ
るのに対し、205nmでは2.25である。したがつ
て、本発明で対象とするような低濃度(10mg/
以下)の窒素化合物を含む試料水の場合は205nm
で測定すれば試料水を濃縮せずにそのまま測定で
きる。しかし、200nm付近は第4図に示したよう
にNO3 -以外のハロゲン化物イオンの吸収も大き
いので、このハロゲン化物イオンの影響が少な
く、かつ感度のあまり低くない220〜250nm付近
にする必要がある。測定波長を220〜250nmにす
ることにより低濃度のNO3 -を濃縮せず、かつ他
の共存イオンの妨害もなく測定することが可能と
なつた。検量線の一例を第5図に示す。この検量
線は長さ10mmの測定セルを用い、220nmの波長で
作成したもので、定量下限は0.05mg/である。
またセル長さをこれより長くすれば、より低濃度
のNO3 -を測定できる。この紫外線吸収計は
220nmの波長の光を透過する干渉フイルタを備え
た吸収計であるが、220nmの測定波長を設定でき
る分光々度計でもよい。
The absorption of NO 3 - is 302 nm as shown in Figure 4.
It is known that there is a maximum absorption at 205 nm.
However, the sensitivity of absorption at 302 nm is lower than that at 205 nm; when measuring a standard solution with a concentration of 50 mg, the absorbance at 302 nm is 0.02, while at 205 nm it is 2.25. Therefore, at low concentrations (10mg/
205nm for sample water containing nitrogen compounds (below)
If you measure with , you can directly measure the sample water without concentrating it. However, as shown in Figure 4, absorption of halide ions other than NO 3 - is large around 200 nm, so it is necessary to set the wavelength around 220 to 250 nm, where the influence of these halide ions is small and the sensitivity is not too low. be. By setting the measurement wavelength to 220 to 250 nm, it became possible to measure low-concentration NO 3 - without concentrating it and without interference from other coexisting ions. An example of a calibration curve is shown in FIG. This calibration curve was created using a measurement cell with a length of 10 mm at a wavelength of 220 nm, and the lower limit of quantification is 0.05 mg/.
Furthermore, if the cell length is made longer than this, it is possible to measure NO 3 - at a lower concentration. This ultraviolet absorption meter
Although this is an absorption meter equipped with an interference filter that transmits light with a wavelength of 220 nm, a spectrophotometer that can set a measurement wavelength of 220 nm may also be used.

上述した本発明装置を用いて某下水処理場の2
次放流水を試料水としてオゾンによる分解を行な
い、NO3 -量の測定を行つた。試料水中の全窒素
量は環境庁告示のペルオキソ二硫酸カリウムを用
いた分解方法で分解し、測定した結果、11.9mg/
であつた。そのときの吸収曲線を第6図に示
す。第6図の吸収曲線はNO3 -濃度が高いため、
試料水を10倍に希釈して測定した。この結果、測
定の妨害となる有機物等は吸着塔により除去され
ており、第5図の検量線よりNO3 -量を求める
と、11.1mg/で全窒素量の94%が分解されてい
ることがわかる。
2 of a certain sewage treatment plant using the above-mentioned device of the present invention.
Next, the discharged water was used as sample water to undergo decomposition using ozone, and the amount of NO 3 - was measured. The total amount of nitrogen in the sample water was decomposed and measured using the decomposition method using potassium peroxodisulfate as notified by the Environment Agency, and was found to be 11.9mg/
It was hot. The absorption curve at that time is shown in FIG. The absorption curve in Figure 6 is due to the high concentration of NO 3 - .
The sample water was diluted 10 times and measured. As a result, the organic matter that would interfere with the measurement was removed by the adsorption tower, and when the amount of NO 3 - was calculated from the calibration curve in Figure 5, it was found that 94% of the total nitrogen amount was decomposed at 11.1 mg/. I understand.

以上述べてきたように、オゾンにより水中の窒
素化合物を分解し、生成したNO3 -を紫外線吸収
計で測定すれば、水中の全窒素量が精度よく求め
られる。このオゾンによる分解方法は従来のオー
トクレーブによる分解方法と異なり、試料水を加
熱する必要がないため、反応槽の劣化がなく、繁
雑な保守をする必要がないばかりか、試料水の量
を少なくとも100ml程度採水できるので懸濁物質
中の窒素分も定量できる。また、220〜250nmの
波長で生成したNO3 -を測定するので、試料水の
濃縮の必要もなく、かつ、フローセルを用いるこ
とができるので自動化した装置が構成できる。
As described above, the total amount of nitrogen in water can be determined with high accuracy by decomposing nitrogen compounds in water with ozone and measuring the generated NO 3 - with an ultraviolet absorption meter. This ozone decomposition method differs from the conventional autoclave decomposition method in that there is no need to heat the sample water, so there is no deterioration of the reaction tank and no need for complicated maintenance. Since it is possible to sample a certain amount of water, it is also possible to quantify the nitrogen content in suspended solids. Furthermore, since the generated NO 3 - is measured at a wavelength of 220 to 250 nm, there is no need to concentrate the sample water, and a flow cell can be used, so an automated device can be constructed.

〔発明の効果〕〔Effect of the invention〕

上述のとおり、この発明によれば、試料水のPH
をアルカリ性にしてオゾンを該試料水中に通気す
るようにしたので、従来方法のように加熱の必要
がないため、反応槽の密閉性が悪くならず、保守
を繁雑に行なう必要がなく、かつ試料水をマイク
ロシリンジで採水する必要がないため、懸濁物質
を含む試料水でも正確な全窒素含有量を求めるこ
とができる。また分解により生成したNO3 -を波
長を220〜250nmに設定した紫外線吸収計で測定
し、試料水中の全窒素量を求めるようにしたの
で、懸濁物質を含む水中の微量の窒素化合物量を
簡便に、しかも精度よく測定する分析方法ならび
に装置が得られる。
As mentioned above, according to the present invention, the pH of the sample water
Since the water is made alkaline and ozone is aerated into the sample water, there is no need for heating as in the conventional method, so the sealing of the reaction tank does not deteriorate, there is no need for complicated maintenance, and the ozone is passed through the sample water. Since there is no need to sample water with a microsyringe, accurate total nitrogen content can be determined even in sample water containing suspended solids. In addition, NO 3 - produced by decomposition was measured with an ultraviolet absorption meter set at a wavelength of 220 to 250 nm, and the total amount of nitrogen in the sample water was determined. An analysis method and device that can be easily and accurately measured can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの本発明装置の一具体例のフローシ
ート、第2図は塩化アンモニウムの分解率と溶液
のPH値の関係を示すグラフ、第3図は活性炭の添
加量とNO3 -の回収率の関係を示すグラフ、第4
図はNO3 -の吸収曲線を示すグラフ、第5図は
NO3 -の吸光度と濃度の関係を示す検量線図、第
6図は吸着塔に有機物が吸着除去されることを示
すグラフである。 A……試料水の採取系統、B……アルカリ剤供
給系統、C……オゾン供給系統、1……試料水の
採取管、3……アルカリ溶液タンク、5……反応
槽、9……オゾン発生機、10……散気管、14
……排オゾン分解器、16……受器、18……ろ
過筒、19……吸着塔、20……紫外線吸収計。
Figure 1 is a flow sheet of a specific example of the device of the present invention, Figure 2 is a graph showing the relationship between the decomposition rate of ammonium chloride and the pH value of the solution, and Figure 3 is the graph showing the relationship between the amount of activated carbon added and the recovery of NO 3 - . Graph showing the relationship between rates, 4th
The figure is a graph showing the absorption curve of NO 3 - , and Figure 5 is
A calibration curve diagram showing the relationship between NO 3 - absorbance and concentration, and FIG. 6 is a graph showing that organic matter is adsorbed and removed by the adsorption tower. A... Sample water collection system, B... Alkaline agent supply system, C... Ozone supply system, 1... Sample water collection tube, 3... Alkaline solution tank, 5... Reaction tank, 9... Ozone Generator, 10... Diffusion pipe, 14
... Exhaust ozone decomposer, 16 ... Receiver, 18 ... Filtration cylinder, 19 ... Adsorption tower, 20 ... Ultraviolet absorption meter.

Claims (1)

【特許請求の範囲】 1 窒素化合物を含有する試料水をアルカリ性の
条件下でオゾンと接触させて前記窒素化合物を硝
酸イオンに酸化分解し、次いで記試料水中に共存
する紫外領域に吸収を示す未分解物質を吸着材で
吸着除去したのち、前記硝酸イオンを紫外線吸収
法により測定して試料水中の窒素化合物量を求め
ることを特徴とする水中の窒素化合物の分析方
法。 2 特許請求の範囲第1項に記載の方法におい
て、前記試料水がPH11以上のアルカリ性条件下で
オゾンと接触されることを特徴とする分析方法。 3 特許請求の範囲第1項に記載の方法におい
て、前記硝酸イオンが波長220〜250nmの吸光度
で紫外線吸収法により測定されることを特徴とす
る分析方法。 4 窒素化合物を含有する試料水の採取系統、ア
ルカリ剤供給系統およびオゾン供給系統をそれぞ
れ備えた、前記試料水の窒素化合物をアルカリ性
の条件下でオゾンと接触させて硝酸イオンに酸化
分解する反応槽と、前記試料水に共存する紫外領
域に吸収を示す未分解物質を吸着除去する吸着材
の充填された吸着塔と、前記酸化分解により生成
された硝酸イオンを測定する紫外線吸収計とから
なる水中の窒素化合物の分析装置。
[Scope of Claims] 1. A sample water containing nitrogen compounds is brought into contact with ozone under alkaline conditions to oxidize and decompose the nitrogen compounds into nitrate ions, and then a sample water containing nitrogen compounds that exhibits absorption in the ultraviolet region is removed. A method for analyzing nitrogen compounds in water, which comprises removing decomposed substances by adsorption with an adsorbent, and then measuring the nitrate ions using an ultraviolet absorption method to determine the amount of nitrogen compounds in the sample water. 2. The method according to claim 1, wherein the sample water is brought into contact with ozone under alkaline conditions with a pH of 11 or higher. 3. The analytical method according to claim 1, wherein the nitrate ion is measured by ultraviolet absorption method at absorbance at a wavelength of 220 to 250 nm. 4. A reaction tank that oxidizes and decomposes the nitrogen compounds in the sample water into nitrate ions by contacting them with ozone under alkaline conditions, each of which is equipped with a collection system for sample water containing nitrogen compounds, an alkaline agent supply system, and an ozone supply system. , an adsorption column filled with an adsorbent that adsorbs and removes undecomposed substances that coexist in the sample water and exhibit absorption in the ultraviolet region, and an ultraviolet absorption meter that measures nitrate ions generated by the oxidative decomposition. nitrogen compound analyzer.
JP3499484A 1984-02-25 1984-02-25 Analytical method and apparatus of nitrogen compound in water Granted JPS60178353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3499484A JPS60178353A (en) 1984-02-25 1984-02-25 Analytical method and apparatus of nitrogen compound in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3499484A JPS60178353A (en) 1984-02-25 1984-02-25 Analytical method and apparatus of nitrogen compound in water

Publications (2)

Publication Number Publication Date
JPS60178353A JPS60178353A (en) 1985-09-12
JPH0513266B2 true JPH0513266B2 (en) 1993-02-22

Family

ID=12429690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3499484A Granted JPS60178353A (en) 1984-02-25 1984-02-25 Analytical method and apparatus of nitrogen compound in water

Country Status (1)

Country Link
JP (1) JPS60178353A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106555A (en) * 1986-10-23 1988-05-11 Fuji Electric Co Ltd Apparatus for analyzing nitrogen compound in water
JPS64461A (en) * 1987-03-09 1989-01-05 Minoru Tada Instrument for measuring nitrogen compound in water
US5567621A (en) * 1993-07-14 1996-10-22 Shimadzu Corporation Method of and apparatus for analyzing nitrogen compound and phosphorus compound contained in water
DE102011007392A1 (en) * 2011-04-14 2012-10-18 Helmholtz-Zentrum Für Umweltforschung Gmbh - Ufz Method and apparatus for solid phase extraction from a liquid
CN117672048B (en) * 2024-01-31 2024-04-19 山东大学 Nitrogen source analysis virtual simulation experiment system and method based on nitrogen isotope test

Also Published As

Publication number Publication date
JPS60178353A (en) 1985-09-12

Similar Documents

Publication Publication Date Title
US3877875A (en) Nitrogen constituent analysis
US5902751A (en) Method and apparatus for the measurement of dissolved carbon
El-Awady et al. Automated method for the determination of total and inorganic mercury in water and wastewater samples
Katz Analysis of inorganic gaseous pollutants
Dorten et al. A new photodigestion device to decompose organic matter in water
JPH0513266B2 (en)
JP2882516B2 (en) Analysis of compounds in water
CA1115630A (en) Analytical method and apparatus for the determination of nitrogen derived from nitrites or nitrates in aqueous systems
Febo et al. Measurement of atmospheric nitrous and nitric acid by means of annular denuders
Hulanicki et al. Application of ion-selective electrodes in water analysis
EP0466303B1 (en) Method and system for continuously monitoring and controlling a process stream for dechlorination residual
Janssen et al. The determination of ammonia in flue gas from the selective catalytic reduction of nitric oxide with ammonia
JP2010194479A (en) Pure-water production apparatus
EP0603751A2 (en) Method for detecting compounds which are present in a liquid phase
Brinkhoff Analysis of the nitrate content of surface water and effluent water. Application of a plastic-membrane nitrate-selective electrode in water quality monitors
JP3924618B2 (en) Highly sensitive measurement method of weakly basic ions by ion exclusion separation-UV absorbance enhancement system
Young et al. Biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total oxygen demand (TOD)
JPH0430546B2 (en)
JP3549951B2 (en) Ultra-trace nitrogen component measurement device
JPS61246665A (en) Analysis of nitrogen compound in water
JPS6244662A (en) Analyzing instrument for nitrogen compound in water
Roy et al. Continuous on-line monitoring of total organic carbon in water and wastewater
Brezonik et al. Continuous Monitoring, Automated Analysis, and Sampling Procedures
JPH07333153A (en) Measuring method for peroxodisulfuric acid in waste water
SU389456A1 (en)