JPS58137424A - Filter apparatus for exhaust gas - Google Patents

Filter apparatus for exhaust gas

Info

Publication number
JPS58137424A
JPS58137424A JP57019418A JP1941882A JPS58137424A JP S58137424 A JPS58137424 A JP S58137424A JP 57019418 A JP57019418 A JP 57019418A JP 1941882 A JP1941882 A JP 1941882A JP S58137424 A JPS58137424 A JP S58137424A
Authority
JP
Japan
Prior art keywords
filter
exhaust gas
heater
self
metallized layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57019418A
Other languages
Japanese (ja)
Other versions
JPH0247248B2 (en
Inventor
Mitsuyoshi Kawamura
川村 光義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP57019418A priority Critical patent/JPS58137424A/en
Publication of JPS58137424A publication Critical patent/JPS58137424A/en
Publication of JPH0247248B2 publication Critical patent/JPH0247248B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To remove combustible fine particles efficiently, by arranging a self- current passing abd heat generating type heater to the upstream side of a filter. CONSTITUTION:A self-current passing and heat generating type heater 1 comprising a ceramic sponge like structure and a filter 2 are bonded under baking at each one end surfaces by a ceramic paste to form the interface 7 therebetween and form integral consitutiton. In addition, to the other end surface of the heater 1, a metallic electrode is formed as a metallized layer 3 and, to the other end surface of the filter 2, a metallic electrode is further formed as a metallized layer 4. With the metallized layers 3, 4, circular corrugated metal nets 5, 6 made of stainless steel are contacted in an electrically connected state. In addition, a lead wire 13 is electrically connected to the metal net 6 at a soldering part 13a and guided to the external part of an outer cylinder 9 through an insulator 11 to be connected to a power source E.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガス中に含まれる可燃性微粒子、特に自動車の
排ガス中に含まれるカーボン等の可燃性微粒子を除去で
るだめのフィルタ装置に関Jるbのであり、更に訂しく
はフィルタ自体に通電して発熱ざぜることに、J、す、
にチ議過性を保持したまま、濾別した可燃性微粒子を効
率的に燃焼するフィルタ装置に関りるものである。 従来、例えば公害対策として自動車エンジンの排ガス中
に含;トれるツノ−ボン微粒子を除去Jるための排気系
または排気)!流系の浄化装置の1つとして、フィルタ
が用いられてきたが、長期の使用−2− ではカーボンが111槓し−([t i−+りを起(−
11、rr 、/、J損失を生ずるとい・)欠点が(め
った。この欠l:へをKllするものとしτフィルタの
微粒子 1ili 42)部イfIに一2クロム線ヒー
タあるいは発熱金属層を組み合4つ(!(通電加熱した
り、1110り1部(台に燃料をIF511 シー(燃
料の燃焼熱で加熱したり、高圧電極を設(」て火花メ1
(電により加熱したり、又、フィルタをカーボン繊維と
し、そのカーボン繊維に通電することに、1、り加熱し
て、カーボン微粒子を焼I41シ、目詰まりを防ぐ方法
がとられていた。1 しかし、ニク[1ム線を使用づる場合(よ光熱面W1が
少ムくてTネルギ効率が悪く、又、〕CルCヘタ取り(
=I tJ b手間のかかるものひあり、光熱金属層を
8す(Jる場合4.L H過の障害にイ1らイヱい、■
−うに細く小面積に設(Jなく(はならず、やはり1ネ
ルギ効率が悪く、取り付(フら手間がかかるしのであり
、1」1ガスににりを氾がうまくゆかイrい場合はエン
ジンを1ヒめCがら、フィルタにたまつlこカーボン(
敗粒子を燃焼させな
The present invention relates to a filter device capable of removing combustible particulates contained in gas, particularly combustible particulates such as carbon contained in exhaust gas from automobiles, and more particularly to a filter device capable of removing combustible particulates such as carbon contained in exhaust gas from automobiles. J, I'm getting feverish.
The present invention relates to a filter device that efficiently burns filtered combustible particulates while maintaining their permeability. Conventionally, for example, as a pollution control measure, exhaust systems or exhaust systems have been used to remove particulate matter contained in the exhaust gas of automobile engines. Filters have been used as one of the purifying devices for flow systems, but after long-term use, carbon becomes 111% -([t i-+
11, rr, /, J loss is caused (rarely.) This deficiency is assumed to be caused by the fine particles of the τ filter. 4 (!) by heating with electricity, 1 part of 1110 (by heating with the combustion heat of the fuel, 1 part by heating with the combustion heat of the fuel, or by installing a high voltage electrode)
(Methods have been used to prevent clogging, such as heating with electricity, or using carbon fibers as filters and applying electricity to the carbon fibers to sinter the carbon particles.1 However, when using a 1mm wire (the photothermal surface W1 is small and the T energy efficiency is poor, and the 1mm wire is used),
= I tJ b It may be time-consuming, but the photothermal metal layer is 8.
- If the sea urchin is installed in a narrow and small area, the energy efficiency is poor, and the installation process is time-consuming. After starting the engine for a while, I added some carbon to the filter (
Don't let the waste particles burn

【」ればならないことも/1じた1
゜又、燃料噴口・1おJ、び高圧放電方法は格別に?I
J ′N<r−3− 装置を必要と1ノ、1ネルギを大半に消費し、燃料に」
;る火災l−の問題、b’l電によるフィルタの損1論
を牛し、又、ツノ−ポン繊組を使用したものは繊組自体
が燃焼にJ、り消失(ノてしまう欠点を有していた。 一方、同様な用途にヒラミックのハニカム414造ノイ
ルタが知られ(おり、このものは一般のフィルタに比べ
、1:1を細かくしてもIF力損失が少なくて1み、し
かt3]ンパクI・であるので自動中の排ガス用に好適
なもの【′あるがIn−1つを生じた場合、濾過面が広
範囲に1′:l /::るので、フィルタを使用部位よ
り取りはずして全体を加熱処理し、カーボン微粒子を燃
焼消滅さIL <r <ではならなかった、。 これらの欠点を解消づるbのとして、多孔質セラミック
フィルタを自己通電発熱!!;、iとし/、:bのが考
慮されてJ3す、このらのはII力゛ス中のカーボン微
粒子をフィルタ全体に分散捕捉して圧力旧失が大きくな
らない内に、フィルタに通電することにより、カーボン
微あ“l了を燃焼消滅させるタイプのフィルタ装置であ
るが、このものも、フィルタ駅−4− 岡に流)y ’iるす1ガスが、例えば、自動中か市街
地走行時C′あ−)Iこり、1ノ1万スに内燃用の外気
が115人されていた場合などで、温度が低いど、フィ
ルタ特にノ?ルタの前面の)熱度を低下させ、イの部分
では、カーボン微粒子が燃え残ることとな・)”(、[
1詰まりを生じCしまうのでエンジンを11) LVI
t、再度カーボン焼7J1処理が必東となってしまう可
能性があつlこ。 以上述べ1こ課題を解決Jべく本5?、l1114’+
らt沫1ンジンを作動したままで、市街地走行時j時等
でもカーボンが燃え残ることがなり11力損失を悪化さ
ぜす”、又、モのために特に複雑な設備を要せずに、ダ
1率的に可燃性微粒子を除去づることを目的と1ノで、
鋭意細穴の結果、排ガスの流動上流方向より、υFガス
との接触面積の大きい自己通電発熱型加熱器及び自己通
電発熱型フィルタを配列するフィルタ装置にJ:す、現
状の装置を大きく変更づることな(、いかなる状況でも
完全に可燃性微粒子を濾過焼却づることがCぎることを
見い出し、本発明を完成したのである。 −5= 即ら本発明の敷旨と覆るところは、自己通電発熱型の)
rルタの上流側に、排ガスとの接触面積の人さいIM構
造体4j ’?I自己通電升熱型の加熱器を配してなる
排ガスフィルタ装置にある。 次に、図を参照しつつ説明Jる。 第1図及び第2図は自動車排ガス用フィルタ装回に適用
した不発Ill]の第1実施例を示している。 ここにおいて、1は自己通電発熱型セラミックの円筒形
海綿状MA構造体らなる加熱器であり、2は自己通電発
熱型はラミックの短円筒形海綿状構造体からなるフィル
タで・ある。 十−記の自己通電発熱型セラミックの内締状構造体から
なる加熱器1及びフィルタ2は各々の一端面でヒラミッ
クペーストにより焼き付番プ接合され界面7を形成し、
−14iの構成をなしている。 そして加熱器1のbう一方の端面は金属質電極がメタラ
イズ層3と1ノて形成され、更にフィルタ2のらう一方
の端面l〕金属質電極がメタライズ層4として形成され
ている。 ト記メタライズ層3.4には各々ステンレス等−6− の円形波形金網h16が一部ろうイ・1(プに3J、り
電気的に接続され!、:状態で接触し、金網5に(、L
導線12がろうイ・11部分128にて電気的に接続(
きれ、該導線12は碍r−10を介して外筒9の外部に
ヘラυびかれ、スイッ−f14を介して電源[に接結τ
されている。 一方、金網6には導線13がろう+Iiり部分13aに
て電気的に接続され、該導線13は碍F11を介して外
筒9の外部へ導びかれ、電源Fに接続されでいる5゜ 、;記の構成において、金網5、メタライズ層3、加熱
器1、)rルウ2、メタライズ層4及び金網6にり円筒
状積層体が形成され、該内筒状積層体と導線12.13
、スイッチ14及び′電源1′とべ接続づると加熱回路
どなって全体で1)1ガスノ・fルタ装置を構成りるの
′Cある。 前記円筒オへItII体【よレラミックのKtI縁1i
1 El内に納められて、外IP?19に絶縁及び密着
状態1.1重人され、その後、係11片9f+、9bを
イ・1設づる(二とにJ:す、外筒9中の所定の位置に
保持される。。 −7− 外筒9はI)I気管又は、υ1ガス還流管の1部で゛あ
り、排気管に本装置&が付設された場合には、排ガスの
1−流側l:はイグゾース!・マニホールド側、下流側
Bは排気口側Cある。一方、排ガス還流管に本菰買がイ
4設さ’l’L /こ揚台に(ン1、排ガスの上流側「
はイグゾース1〜ンーホールド側、下流側Bはインデー
クマニボールド側である。 以」−の構成にi15いて、丁ンジンからのカーボン微
粒子を含んだ排ガスはイグゾース1へマニホールドをそ
のJ、ま通過して、点線で示づように、上流方向Fより
、フィルタ装置へ流入でるが、金網5及びメタライズ層
l\3をイのまま通り抜け、孔口の径が大きい自己通電
発熱型セラミック向綿状構造体加熱器1に〒す、排ガス
は、カーボン微粒子を含/υだまま、加熱器1を通過す
る。 次いで、IJ1カスは加熱器1とフィルタ2との界面7
を通り抜11 、孔「1の径が小さい自己通電光熱型セ
ラミック向綿状構造体フィルタ2に¥す、ここで刊ガス
中に含J、れているカーボン粒子がほとんど捕捉される
3、ぞし“Cυトガスはメタライズ層4− 8  = 及び金網64通り抜4−Jて、フィルタ菰IN外I\1
7111され、下流のIt気に1の方向13に向かう、
1この結束、カーボン微粒−f131フィルタ2中に分
11(捕物1される。。 このとぎ、スイッチ14をオンしく’ a−3< L−
と(Jまり、円筒状積層体の両端の金網i)、0間(・
通電されて、金網6、メタライズ層4、)Cルウ2゜界
[i 7.1111熱器1、メタライズ層3及び金網5
]4通つ′(N流が流れ、自己通電発熱性である加熱器
1及びフィルタ2が発熱づる。 イして排ガスはまずフィルタ2の濾過にかかる前に、加
熱器1の孔の中を通過中に孔の壁jn1から熱を吸収づ
ることにより高温となるので、1)1万スがフィルタ2
に〒−)Iこ1)、フィルタ21S1にフィルタ2のI
J1万ス」−流側がIJIガスににり冷7Jlされるこ
とがなくてフィルタ2中におけるカーボン微粒子の燃焼
消滅が阻害されず、フィルタ2中に分散してin) I
’ir:されたカーボン*Fn了が全1完全に燃焼し、
フィルタ2の目詰まりが発生することがむいのぐある。 上記の向綿状構造体は排ガス中のカーボン微粒−9− 子が濾別され・」゛に排ガスと共に通過するJ、うな大
ぎさの孔口(¥のt)のが、加熱器用として選ばれ、1
 ・−3mmの孔]1のtY /J<適当て・あり、−
7’i、排ガス中のカニ−ボン微粒子が(Jどんど全部
濾別8れ、排ガスのみが通過りるような人きさの孔口径
のものが、フィルタ用として選ばれ、0.1〜1m…の
孔[壜の径が適当である。 次に第3図に本発明の第2実施例を示’!I’ここにお
いて、21は自己通電5を前型セラミックの短円筒形向
綿状楢造林からなる加熱器であり、22は自己通電s表
熱Qljヒラミックの短円筒形湖綿状構造体からなる)
fル9である。 こねら加熱器21及びフィルタ22の端面には各々金属
質電極がメタライズ層23.24.25.26どして形
成され゛(いる。イして加熱器21の片方のメタライズ
層23に、その−面が車なり合うj:うにステンレス等
の円形波形金網27が接触状態にあり、一方フィルタ2
20片方のメタライズ層26に一面が巾なり合うように
ステンレス等の円形波形金網29が接触状態にあり、場
合によ−10− り金網27.29は各々部分的にメタライズ11123
.26にろう付番ノにより電気的に接続さtlている。 更に加熱器21のもう一方のメタライズ層24とフィル
タ22のも−う一方のメタライズ層2乏)とに挾まれて
ステンレス等の円形波形金網2 [1の表裏が各々メタ
ライズ層24.25ど接触状態にあり、場合ににり金網
28は部分的にメタライズ層24.25にろう付けによ
り電気的に接続されている。 一方、金網27.29には各々導線30.331がろう
付は部分32.33にて接合され、+il了;39.4
0を介1)で、絶縁的に外IPI136の外部へ導かれ
(いる。そして導線30は、電源Eの一方の極へスイッ
チ7を介して接続され、Tim Fとスイッチ7の間で
車体に接地されている。1一方、導線6bは電源Fの他
方の極へ接続されている。 上記の構成において、金網27、加熱器21、金網28
、フィルタ22及び金網29にり円筒状積層体が形成さ
れ、該円筒状積層体と導線30、− 11 − 31、スイッチ34及び電源Fとを接続づると加熱回路
となり、全体r IJI’がスフィルタ装置を構成りる
のである。 前記円筒状積層体はセラミックの絶縁筒35内に納めら
れて、外筒36に絶縁及び密着状態に挿入され、外F7
136の鍔部36bど結合している接合管38の鍔部3
8aと絶縁環37との間に配設されたバネ月19の押L
E力にJ:す、円筒状積層体は絶縁環37を介して、絶
縁筒35の係止部35aにイ・1勢され、更に絶縁筒3
5が外筒36の内部に付設された係止突条36a方向に
付勢されることにJ:す、支持されている。 外筒36は1夛1気管又は、排ガス還流管の一部分であ
ってもよいし、本発明の排ガス用フィルタ装置の外筒と
して独\γに成形し、排気管又【ま排ガス還流管に組み
込Δ、でfBJ、い。排気管に木装置が付設された場合
は、IJIガスの上流側Fはイグゾース1〜マニホール
ド側1.下流側Bは排気1]側である。 一方、排ガス還流管に本装置が付設された場合には、排
ガスの上流側Fはイグゾーストマニホールー  12 
 − ド側、上流側F3はインテークマニホールド側である。 以」、の構成にa3いて、エンジンからのカーボン微粒
子を含んだ排/Jスはイブジ−ストマニホールドをその
まま通過して、点線で示】−ように」−流方向Fより、
フィルタ装置へ流入するが、金網27及びメタライズ層
23をそのまま通り抜け、孔口の径が大きい自己通電発
熱型セラミック向綿状構造体加熱器21に至り、排ガス
はカーボン微粒子を含んだまま、加熱器21を通過する
3゜次いで、排ガスは加熱器21のもう一方のメタライ
ズ層を24を通過し、金網28及び“フィルタ22のメ
タライズ層25をも通過し、孔口の径の小さい自己通電
発熱型セラミック海綿状構造体フィルタ22に至り、こ
こでJulガス中に含ま4シているカーボン微粒子がフ
ィルタ22中の?1.の各所ぐそのほとんどが1111
捉される。その後、4Jlガス13Lフイルタのもう一
方のメタライズ層の26及び金網29を通過して、フィ
ルタ装置外へ排出され、下流の排気口の方向Bへ向かう
。つまり、1」1ガス中−13− のノJ−ボン微粒子はフィルタ22中に分散して残留し
てすることどなる。 このとき、スイッチ34をオンしておくことにより、円
筒状flilli体の両端の金網27.29間に通電さ
れて、金網29、メタライズ層26、フィルタ22、メ
タライズ層25、金網28、メタライズ層24、加熱器
21、メタライズ層23、及び金網27を通って電流が
流れ、自己通電発熱性である加熱器21及びフィルタ2
2が発生する。 第1実施例と同様に排ガスはまずフィルタ22での濾過
にかかる前に加熱器21で高温に熱せられるので、排ガ
スがフィルタ22に至った時、フィルタ22、特にフィ
ルタ22の排ガス上流側が排ガスにより冷Mlされるこ
とがなくて、フィルタ22中にお(づる)J−ボン微粒
子の燃焼消滅が阻害されず、フィルタ22中に分散して
捕捉されたカーボン微粒子が全て完全に燃焼し、フィル
タ22の目詰まりが発生することがないのである。 これらの海綿状構造体の孔口の径は、第1実施例と同様
に加熱器どしては1〜3m111、フーrルタと−1/
I   − しては0.1−・ivnが適当である。。 本実施例は第1実施例と比較して、同じ加熱器及びフィ
ルタを使えば、カルホン微粒子の浦1i1及び燃焼効果
は同様であるが、加熱器とノCルタどを直接接合Jる必
要がないので円筒状積層体の製造が簡単である。 次に第4図及び第5図に本発明の第3実施例を示づ。 ここにおいて、41は自己通電発熱性」?シミツクの円
筒形ハニカム状構造体から<Zる加熱器であり、42は
自己通電発熱型セラミックの>、C目11M形向綿状構
造体からなるフィルタである、1この加熱器41の端面
どフィルタ/12の格r状端面には各々金属質電極がメ
タライズ層/I 3.14.45、/I6として形成さ
れでいる。 加熱器41のメタライズ層71I4とフrルタ42のメ
タライズIP1715とに挾まれてステンレス等の円形
波形金網48の表裏が各々メタライズ層44.45ど接
触状態にあり、場合により金網48は部分的にメタライ
ズ層44.45にろう付()により−15− 電気的に接続されている。 加熱器のしう一方の格子状端面のメタ5−(ズ層’13
に、その−面が會トなり合うにうにステンレス等の円形
波形金網?lが接触状態にあり、場合にJ、り金網27
は部分的にメタライズ層28aに、ろう付けにより電気
的に接続されている。 同様にフィルタ/I2のもう一方の端面のメタライズ層
46に、その−而がΦなり合うようにステンレス等の円
形波形金網7I9が接触状態にあり、場合ににり金網4
9は部分的にメタライズ層46に、ろう付りにJ、り電
気的に接続されている。11−記、金網47.49には
各々導線57.58がろうイ・1番)部分b7a、 5
8aにて電気的に接続され、11q子59.00を介し
て、絶縁的に外筒53の外部へ導出されている。 導線57は電源[の一方の極へスイッチ61を介l)で
接続され、′?FU源「どスイッチ61の間で車体に接
地されている。一方、導線58は電源[の他の極へ接続
されている。 上記の構成において、金網47、ハニカム状加−16− 熱器41、金網48、海綿状フィルタ42及び金網49
により円筒状積層体が形成され、該円筒状8!1層体と
導線57.58、スイッチ34及び7F7踪Eとを接続
すると加熱回路となり、全体でJJlガス用フィルタ装
置を構成(るのである、。 前記円筒状積層体はセラミックの絶縁筒I52内に納め
られて、外筒53に絶縁及び密着状態に挿入され、外筒
53の鍔部53bと結合している接続管55の鍔部56
と絶縁環5/Iどの間に配設されたバネ材62の押圧力
により、絶縁環54を介して絶縁筒52の係止部52a
にイー1勢され、史に外筒53の内部にト1設された係
止突条53a方向に付勢されることにj;り支持されて
いる。 外筒53は排気管又は排ガス還流管の一部分であっても
よいし、本発明の排ガス用フィルタ装買の外筒として独
立に成荊し、排気管又は排ガス還流管に組み込lυでb
J:い。排気管に本装置が句段された場合には、排ガス
の1流側Fは一イグゾーストマニホールド側、下流側[
3はυY気口側である。 一方排ガス還流管に本装置がrjl設された場合には、
−17− 排ガスの上流側「はイブジ−ストマニホールド側、下流
側Bはインテークマニホールド側である。 以上の構成において、]ニンジンからのカーボン微粒子
を含んだIIガスはイブジ−ストマーホールドをそのま
ま通過して、点線で示すように上流り向1:より、フィ
ルタ装置へ流入するが、金147をそのまま通りJ/j
 L−J 、自己通電発熱型レラミックハニカム状構造
体加熱器41に至り、排ガスはカーボン微粒子を含んだ
まま、加熱器41の壁50で支切られた導通孔51を通
過する。 次いで排ガスは金網18及びフィルタ’12のメタライ
ズ層45を通過し、孔口の径の小さい自己通電発熱型セ
ラミック海綿状構造体フィルタ42に至り、ここで排ノ
Jス中に含まれているカーボン微粒子がフィルタ112
中の孔の各所で王のはとlυどが捕捉される。その後、
排ガスはフィルタのう一方のメタライズ層46及び金網
49を通過して、フィルタ装置外へ排出され、下流の排
気口の方向日へ向かう。つまり、illガス中のjj−
ボン微粒子はフィルタ42 +’l−1+、:分散して
残留Jることとイする。 −18− このどき、スイッチ61をAンしl’ il’j < 
を二とにより、円筒状積層体の両端の金網47、・11
)間IQ二通電されて、金網49、メタライズ層46、
フィルタ42、メタライズ層45、金網/I E3 、
メタライズ層44、加熱器41、メタライズIf!i 
/l 3及び金網/17を通って電流が流れ、自己通電
発熱性である加熱器711及びフィルタ42が発生づる
。 そして第1実施例と同様に、排ガスはまずフィルタ42
の濾過にかかる前に加熱器41の導通孔。 51を通過中に、壁50から熱を吸収1JることにJ:
り高湿となるので、排ガスがフィルタ42に至った時、
フィルタ42、特にフィルタ42のl1lJSス上流側
がIJIガスにより冷7JIされることがなくで、フィ
ルタ42中にA3けるカーボン微粒子の燃焼W1減がt
ill t)されず、フィルタ42中に分散して捕捉さ
れたカーボン微粒子が全一(完全に燃焼し、)Cルタ/
12の目詰J:りが発生づることがないのである。 ここC使用される加熱器41のへニカム状構′)5体の
導通孔51の大きさは20〜200セル/in”−19
− に設定することが、11ガスを十分加熱する十で適当で
ある。又、−フィルタ42の海綿状構造体の孔1目1の
径は20〜50[ル/ i +1(約0.1〜11I1
111の孔径)が適当である。 第3実施例は、第゛112実施例に比較して排ガスの通
路が大ぎく通過しやJいので圧力損失がより少なく−て
1む。 1−記の各々の実施例において、加熱器あるいはフィル
タとして使われる海綿状構造体は、連通孔を分布状に右
″!Jる自己通電発熱型導電性セラミックであるが海綿
状構造体以外に多数の自己通電発熱≧vJ導電導電性セ
ラミック線状県東8i構造体、例えば、フェルト状若し
くは織布状成形体をフィルタあるいは加熱器どして使用
できる。 −[記の海綿状構造体の製造方法は、組成を焼成時に海
綿状となるように配合された生のセラミックを使って焼
成製造する以外に、例えば、次の如く成される。 炭化II索あるいは= I−1索モリブデン等の主成分
の他に、アルミプ込シリカ等の原料微粉末、アル−20
− ギン酸ソーダ、アルギン酸アンモン、ポリビニールアル
」−ル等の有機バインダー、水、エチルアルコール等の
溶剤を加えて混練しτ泥漿状調合物を作り、その中に所
定の目の細かさをもつ、1」的どづる所定形状のポリウ
レタン等のプラスチックフオームを浸漬し、乾燥後大気
雰囲気あるいし1窒素雰囲気下1600℃前後で焼成す
ることにj:す1りられる。 」−記の海綿状構造体製造方法において、プラスチック
フオームとして、2種類の目の細かさをもつフt−ムを
、予め接合した形で泥漿状調合物に浸漬、乾燥した後、
あるいは2種のフオームを別々に浸漬乾燥後更に泥漿状
調合物で接合した後、焼成することにより、第1実施例
にお【ノる加熱器とフィルタとを一体とした海綿状構造
体(4,をVJ 造’Jることができる。 金a質電極手段は向綿状構3h体あるいはバーカム状構
造体の両端面に、例えば、白金等の金属粉末ペース1−
あるいはニラ9ル、“]バルト等と1117との粉末ペ
ース[・混合物を焼ぎ付(Jること(・二J、り一  
21 − 形成される。この場合、特に、海綿状構造体などは端面
全面に形成しなくても、格子状、縞状等に形成してもよ
い9゜ 又、ハニカム状構造体を製造づるには、例えば次のよう
になされる1、炭化■1素あるいは二珪化モリブデン等
の主成分の他に、アルミナ、シリカ等の原料微粉末、ア
ルギン酸ソーダ、アルギン酸アンモン、ポリビニールア
ル−1−ル等の有機バインダー、水、エチルアルコール
等の溶剤を加えて混練して調合物を作り、これを導通孔
の断面形状が三角形、四角形、六角形等の多角形及び円
形、楕円形等の所定の形状を構成1゛るように多数のス
リットからなるダイスより押し出すことにより一体構造
の長尺物を冑、該長尺物を必要な長さに切断することに
より生のハニカム状構造体を得ることができる。又、ハ
ニカム状4Mm体の導通孔の形状は四角柱、六角性、三
角柱等の各種の形態を選択することが可能である。 上記したごとく、使用されるセラミック原料は、炭化珪
素(化学式Si C)あるいは二月化モリブー  22
 − fン(化学式Mo5iz)等を主成分とするものが使用
されるが、特に二珪素化T:1ノ”グデンを1−成分ど
した・bのは湿度に対する電気抵抗の変化が、使用され
る全温度領域で優れた正特性を承りので湯度調節がしや
Jい。 電極を設【づる部分は、円筒状積層体の両端而の全面と
は限らず、例えば網目状になる、」、うにjttJりる
場合ら含み、また両端而ばかりで【、1.4「り、例え
ば、イの周面上に適当な間隔をおいて電極を設()でも
、J:い。 しかし、円筒状8!1層体の両端面に電極を設けた場合
のように、111°万ス流動方向と電流方向とが平行で
あり、しかも加熱器とフィルタが電気的に直列に接続さ
れている場合、特に加熱器及びフィルタに二珪化モリブ
デン等の正R1’l(!イJηる自己通電発熱型はラミ
ックを採用した場合、加熱器の側、特に排ガスが流入J
る前面は比較的低湿となるので加熱器の電気抵抗値が下
がり、全体として電流量が増加し、そのためフィルタ部
分の光熱用がより増加して全体として温度は低下Vず、
カーボン=  23 − 微粒子が燃え残ることがなく目詰まりしない。 又、逆に負特性のものは、前記のように電極を周面に設
(プて電流方向と排ガス流シJ方向とを直角とし、加熱
器と−7−(ルタとが電気的に並列に接続されている場
合に、加熱器側の温度低下により、加熱器の電気抵抗I
よ増加し、そのため加熱器と電気的に並列に接続された
フィルタ側で電流量が増加すると共に発熱吊ら増加して
、全体として温度は低下せず、カーボン微粒子が燃え残
ることがなく、目詰まりを起こさない。 また、この多孔質フィルタの全体または一部分の表面部
に白金、白金と1−]ジウムの混合または合金、白金と
パラジウムの混合または合金などの触媒金属を分散状に
旧持させておくことは、カーボンの焼7JIをより低い
湿度で行うことができるので有利となる。これは、たと
えば、多孔質壁構造体を触媒金属のハトbしくは塩の液
に浸漬後、比較的高い温度で加熱処理することによって
得ることができる。 以」−説明した如く、本発明の排ガスノイルタ装−24
− 置によれば、予め排ガスを排ガスとの接触面積の大きい
自己通電発熱型加熱器により、速やかに加熱昇温するこ
とがて゛き、フィルタ特にフィルタの前面の濡洩を低下
さけることなく、フィルタ中でのカーボン微粒子の燃焼
を完全なものと−C゛きるので、自動車の運転中におい
ても、カーボン微粒子をフィルタから除去でき、フィル
タの目詰まりを防いで、エンジン出力がフィルタ部位で
圧力損失にJ:つ゛C低下するのを防止ぐことかできる
のである。 次に従来例との比較試験について)diべる、。 比較試験 排ガス用フィルタ装置は第1表に示覆仕様の第3実施例
と同じらの、比較例として【二1、加熱器部分が存在し
ない以外は全て第1実施例と同じものを使用し、常温空
気の流量毎分1.5nfを111ガス流吊とみなして、
加熱器側から流し込ん(”、1.1カ損失、飽和消費電
力及び飽和温度を測定し/;−、。 =  25  − 以−トの比較試験にJ:り第2表に示す如くの結果を得
た。 −26− この結束から明らかな如く、同じ消″R電力でありなが
ら、フィルタ前面におりる飽和温度が、実施例では(3
50’Cで、カーボン燃焼に必要な渇用である600℃
以−トとなっており、比較例においては550℃で60
0℃以下であって、カーボン微粒子が燃え残って石積し
、目詰まりを生ずることになる。
There are things that must be done / 1 Jita 1
゜Also, is the fuel nozzle, 1J, and high pressure discharge method special? I
J'N<r-3- Requires 1 unit of equipment, consumes most of 1 energy, and becomes fuel.
In addition, the problem of fire caused by fire and the loss of the filter due to electricity, and the problem of the fibers themselves disappearing due to combustion in those using horn-pond fibers, can be avoided. On the other hand, Hiramic's honeycomb 414 filter is known for similar applications (and compared to general filters, this filter has less IF power loss even if the filter is made finer by 1:1). t3] It is suitable for exhaust gas in automatic vehicles because it has a low density of I. After removing the filter and heat-treating the whole, the carbon particulates were burned out and IL < r < was not achieved. As a solution to these shortcomings, the porous ceramic filter was self-energized and heated!!;, i/, :B is taken into consideration, and these carbon particles are dispersed and captured in the entire filter, and by energizing the filter before the loss of pressure becomes large, the carbon particles are removed. This is a type of filter device that burns and extinguishes the gas, but this one is also effective when the gas flows into the filter station -4-oka. In cases where outside air for internal combustion is being used for 10,000 seconds, the temperature is low, and the heat level of the filter (especially in the front of the nozzle) decreases, causing carbon particles to burn. It will remain...)”(,[
1) If the engine becomes clogged, the LVI
There is a possibility that carbon sintering 7J1 treatment will be necessary again. Book 5 to solve the above problem 1? , l1114'+
If the engine is left running, the carbon will remain burnt even when driving in the city, worsening the power loss. , with the aim of efficiently removing combustible particulates,
As a result of the careful design of the holes, the current device has been significantly changed to a filter device that has a self-energizing heating type heater with a large contact area with the υF gas and a self-energizing heating type filter arranged from the upstream direction of the exhaust gas flow. The present invention was completed by discovering that it is possible to completely filter and incinerate flammable particles under any circumstances. type)
Is there an IM structure 4j' with a small contact area with the exhaust gas on the upstream side of the router? This is an exhaust gas filter device equipped with a self-energizing heating type heater. Next, explanation will be given with reference to the figures. FIG. 1 and FIG. 2 show a first embodiment of the "Unexploded Ill" applied to an automobile exhaust gas filter. Here, 1 is a heater made of a self-energizing heating type ceramic cylindrical spongy MA structure, and 2 is a self-energizing heating type filter consisting of a short ramic cylindrical spongy structure. The heater 1 and the filter 2, which are made of a self-energizing heat-generating ceramic inner clamp-like structure as described in 10-10, are bonded together at one end surface by baking with Hiramic paste to form an interface 7,
-14i configuration. On the other end surface of the heater 1 (b), a metallic electrode is formed in contact with the metallized layer 3, and on the other end surface (l) of the filter 2, a metallic electrode is formed as the metalized layer 4. A circular corrugated wire mesh h16 made of stainless steel or the like is partially electrically connected to the metallized layer 3.4, and the wire mesh 5 is electrically connected to the wire wire 5 ( , L
The conductor 12 is electrically connected at the wire 11 portion 128 (
Then, the conductor 12 is pulled to the outside of the outer cylinder 9 through the insulator r-10, and connected to the power supply through the switch f14.
has been done. On the other hand, a conductive wire 13 is electrically connected to the wire mesh 6 at a brazed portion 13a, and the conductive wire 13 is guided to the outside of the outer cylinder 9 via the insulator F11 and connected to the power source F. In the configuration described above, a cylindrical laminate is formed by the wire mesh 5, the metallized layer 3, the heater 1, the roux 2, the metallized layer 4, and the wire mesh 6, and the inner cylindrical laminate and the conductor 12.13.
, the switch 14 and the power supply 1 are connected together to form a heating circuit, and the whole constitutes 1) a gas filter device. ItII body [Yoreramic KtI edge 1i]
1 Is it stored within El and is an external IP? 19 is insulated and in a close contact state 1.1, and then the 11 pieces 9f+ and 9b are installed (2 and J: are held in a predetermined position in the outer cylinder 9. - 7- The outer cylinder 9 is a part of the I)I trachea or υ1 gas recirculation pipe, and when this device & is attached to the exhaust pipe, the 1-stream side of the exhaust gas is the exhaust! - Manifold side, downstream side B has exhaust port side C. On the other hand, the exhaust gas recirculation pipe is equipped with a main purchaser (1) on the upstream side of the exhaust gas.
is the exhaust 1 to hold side, and the downstream side B is the intake manifold side. In the following configuration, the exhaust gas containing carbon particles from the engine passes through the manifold to the exhaust 1, and flows into the filter device from the upstream direction F, as shown by the dotted line. However, the exhaust gas passes through the wire mesh 5 and the metallized layer 1\3 as it is, and is delivered to the self-energizing heating type ceramic flocculent structure heater 1 with a large hole diameter, while containing carbon fine particles. , passes through heater 1. Next, the IJ1 debris is transferred to the interface 7 between the heater 1 and the filter 2.
The carbon particles contained in the gas are mostly captured by the self-energizing photothermal ceramic flocculent structure filter 2, which has small diameter pores 1. Then, the Cυ gas is passed through the metallized layer 4-8 = and the wire mesh 64, and the filter is removed from the IN outside I\1.
7111, heading downstream in direction 13,
1. After this bundling, the carbon fine particles - f131 are collected in the filter 2. At this point, turn on the switch 14.'a-3<L-
and (J Mari, wire mesh i at both ends of the cylindrical laminate), 0 (・
When energized, the wire mesh 6, metallized layer 4,) Clue 2° field [i 7.
] 4' (N flow flows, and the heater 1 and filter 2, which are self-energized and generate heat, generate heat.) Then, the exhaust gas first passes through the holes of heater 1 before being filtered by filter 2. During the passage, heat is absorbed from the hole wall jn1, resulting in a high temperature.
〒-)I 1), I of filter 2 to filter 21S1
J10,000 - The flow side is not cooled by the IJI gas, so the combustion extinction of carbon particles in the filter 2 is not inhibited, and the carbon particles are dispersed in the filter 2.
'ir: The carbon *Fn completed completely burned,
There is a possibility that the filter 2 will become clogged. The above-mentioned flocculent structure has an eel-sized hole (T in ¥), which allows carbon particles in the exhaust gas to be filtered out and passes through with the exhaust gas. ,1
・-3mm hole] tY /J of 1 < Appropriate fit, -
7'i, the fine particles in the exhaust gas are all filtered out (8), and a filter with a human-sized pore diameter that allows only the exhaust gas to pass through is selected for the filter, with a diameter of 0.1 to 1 m. ... hole [the diameter of the bottle is appropriate. Next, a second embodiment of the present invention is shown in Fig. It is a heater made of oak plantation, and 22 is made of a short cylindrical lake-like structure with self-energizing surface heat Qlj.
It is f le 9. Metallic electrodes are formed on the end faces of the kneading heater 21 and the filter 22 as metallized layers 23, 24, 25, and 26, respectively. - The surfaces are aligned with each other: The circular corrugated wire mesh 27 made of sea urchin and stainless steel is in contact, while the filter 2
20 A circular corrugated wire mesh 29 made of stainless steel or the like is in contact with one side of the metallized layer 26 so that its width overlaps, and depending on the case, each of the wire meshes 27 and 29 is partially metalized 11123.
.. It is electrically connected to 26 by a brazing number. Further, a circular corrugated wire mesh 2 made of stainless steel or the like is sandwiched between the other metallized layer 24 of the heater 21 and the other metallized layer 24 of the filter 22, and the front and back sides of the wire mesh 2 are in contact with the metallized layers 24 and 25, respectively. In this case, the wire mesh 28 is partially electrically connected to the metallization layer 24, 25 by brazing. On the other hand, conductive wires 30 and 331 are brazed to the wire meshes 27 and 29 at portions 32 and 33, respectively.
The conductor 30 is connected to one pole of the power source E via the switch 7, and is connected to the vehicle body between Tim F and the switch 7. On the other hand, the conductor 6b is connected to the other pole of the power source F. In the above configuration, the wire mesh 27, the heater 21, the wire mesh 28
A cylindrical laminated body is formed by the filter 22 and the wire mesh 29, and when the cylindrical laminated body is connected to the conductors 30, -11-31, the switch 34, and the power source F, a heating circuit is formed, and the entire r IJI' is It constitutes a filter device. The cylindrical laminate is housed in a ceramic insulating cylinder 35, inserted into an outer cylinder 36 in an insulated and tightly sealed state, and is inserted into an outer cylinder F7.
The flange 3 of the joint pipe 38 connected to the flange 36b of 136
Pressing L of the spring lug 19 disposed between 8a and the insulating ring 37
Due to the E force, the cylindrical laminate is pushed against the locking portion 35a of the insulating cylinder 35 via the insulating ring 37, and then the insulating cylinder 3
5 is supported by being biased toward a locking protrusion 36a attached to the inside of the outer cylinder 36. The outer cylinder 36 may be a part of the trachea or the exhaust gas recirculation pipe, or it may be formed into a unique shape as the outer cylinder of the exhaust gas filter device of the present invention and assembled into the exhaust pipe or the exhaust gas recirculation pipe. Including Δ, fBJ. If a wooden device is attached to the exhaust pipe, the upstream side F of IJI gas is from exhaust 1 to manifold side 1. The downstream side B is the exhaust 1] side. On the other hand, when this device is attached to the exhaust gas recirculation pipe, the upstream side F of the exhaust gas is the exhaust manifold 12
- The upstream side F3 is the intake manifold side. In the configuration A3, the exhaust gas containing carbon particles from the engine passes through the exhaust manifold as it is, as shown by the dotted line, from the flow direction F.
The exhaust gas flows into the filter device, but passes through the wire mesh 27 and the metallized layer 23 as it is, and reaches the self-energizing heating type ceramic flocculent structure heater 21 with a large hole diameter. Next, the exhaust gas passes through the other metallized layer 24 of the heater 21, and also passes through the wire mesh 28 and the metallized layer 25 of the filter 22. It reaches the ceramic spongy structure filter 22, where most of the carbon particles contained in the Jul gas are found in various places in the filter 22 at 1111.
captured. Thereafter, the 4Jl gas passes through the other metallized layer 26 of the 13L filter and the wire mesh 29, is discharged outside the filter device, and heads toward the downstream exhaust port direction B. In other words, the -13- particulate matter in the gas is dispersed and remains in the filter 22. At this time, by turning on the switch 34, electricity is applied between the wire meshes 27 and 29 at both ends of the cylindrical flilli body, and the wire mesh 29, the metallized layer 26, the filter 22, the metallized layer 25, the wire mesh 28, the metallized layer 24 , a current flows through the heater 21, the metallized layer 23, and the wire mesh 27, and the heater 21 and filter 2 are self-energizing and generate heat.
2 occurs. As in the first embodiment, the exhaust gas is first heated to a high temperature by the heater 21 before being filtered by the filter 22, so when the exhaust gas reaches the filter 22, the exhaust gas is heated upstream of the filter 22, especially the upstream side of the filter 22. Since there is no cold Ml, the burning and extinction of the O(Zuru) J-bon particulates in the filter 22 is not inhibited, and all the carbon particulates dispersed and captured in the filter 22 are completely combusted, and the filter 22 This prevents clogging. The diameter of the pores of these spongy structures is 1 to 3 m111 for the heater and -1/111 for the heater, as in the first embodiment.
For I-, 0.1-·ivn is appropriate. . Compared to the first embodiment, in this embodiment, if the same heater and filter are used, the heating effect and combustion effect of the calphonic particles are the same, but it is not necessary to directly connect the heater and the nozzle filter. Since there is no cylindrical laminate, it is easy to manufacture the cylindrical laminate. Next, a third embodiment of the present invention is shown in FIGS. 4 and 5. Here, 41 is "self-energizing heat generation"? 42 is a filter made of a self-energizing heat-generating ceramic cylindrical honeycomb-like structure; Metallic electrodes are formed as metallized layers /I3.14.45 and /I6 on the r-shaped end faces of the filter /12, respectively. Sandwiched between the metallized layer 71I4 of the heater 41 and the metallized IP1715 of the fluter 42, the front and back sides of the circular corrugated wire mesh 48 made of stainless steel or the like are in contact with the metalized layers 44 and 45, respectively, and in some cases the wire mesh 48 is partially -15- It is electrically connected to the metallized layers 44 and 45 by brazing (). Meta 5-(z layer'13) on the other grid-like end surface of the heater.
Is it a circular corrugated wire mesh made of stainless steel, etc. whose sides meet? If l is in contact and J, wire mesh 27
are partially electrically connected to the metallized layer 28a by brazing. Similarly, a circular corrugated wire mesh 7I9 made of stainless steel or the like is in contact with the metallized layer 46 on the other end surface of the filter/I2 so that the wire mesh 7I9 is in contact with the metallized layer 46 on the other end surface of the filter/I2.
9 is partially electrically connected to the metallized layer 46 by soldering. 11-, the conductor wires 57 and 58 are connected to the wire mesh 47 and 49 respectively (No. 1) part b7a, 5
It is electrically connected at 8a and led out to the outside of the outer cylinder 53 via the 11q element 59.00 in an insulating manner. The conductor 57 is connected to one pole of the power supply [l) via a switch 61; The FU source is grounded to the vehicle body between the switch 61. On the other hand, the conductor 58 is connected to the other pole of the power source. , wire mesh 48, spongy filter 42 and wire mesh 49
A cylindrical laminate is formed, and when the cylindrical 8!1 layer is connected to conductors 57, 58, switch 34, and 7F7 E, it becomes a heating circuit, and the whole constitutes a filter device for JJl gas. The cylindrical laminate is housed in a ceramic insulating cylinder I52, inserted into the outer cylinder 53 in an insulated and tightly adhered state, and the flange 56 of the connecting pipe 55 is connected to the flange 53b of the outer cylinder 53.
Due to the pressing force of the spring member 62 disposed between the insulating ring 5/I and the insulating ring 5/I, the locking portion 52a of the insulating cylinder 52 is
It is supported by being biased in the direction of a locking protrusion 53a provided inside the outer cylinder 53. The outer cylinder 53 may be a part of the exhaust pipe or the exhaust gas recirculation pipe, or it can be formed independently as an outer cylinder of the exhaust gas filter of the present invention and incorporated into the exhaust pipe or the exhaust gas recirculation pipe.
J: Yes. When this device is installed in the exhaust pipe, the first flow side F of the exhaust gas is the one exhaust manifold side, the downstream side [
3 is the υY vent side. On the other hand, if this device is installed in the exhaust gas recirculation pipe,
-17- The upstream side "B" of the exhaust gas is the ibgest manifold side, and the downstream side "B" is the intake manifold side. In the above configuration, the II gas containing carbon particles from the carrot passes through the ibgest manifold as it is. Then, as shown by the dotted line, upstream direction 1: flows into the filter device, but it passes through gold 147 as it is J/j
L-J, the exhaust gas reaches the self-energizing heating type relamic honeycomb structure heater 41, and passes through the conduction hole 51 separated by the wall 50 of the heater 41 while containing the carbon particles. Next, the exhaust gas passes through the wire mesh 18 and the metallized layer 45 of the filter 12, and reaches the self-energizing heating type ceramic spongy structure filter 42 with a small hole diameter, where the carbon contained in the exhaust gas is removed. Fine particles filter 112
The king's throat is captured at various points in the hole. after that,
The exhaust gas passes through the metallized layer 46 on the other side of the filter and the wire mesh 49, is discharged out of the filter device, and is directed toward the downstream exhaust port. In other words, jj− in ill gas
The fine particles are dispersed and remain in the filter 42. -18- Nowadays, switch 61 is turned on and l'il'j<
and wire meshes 47 and 11 at both ends of the cylindrical laminate.
), the wire mesh 49, the metallized layer 46,
Filter 42, metallized layer 45, wire mesh/I E3,
Metallized layer 44, heater 41, metalized If! i
Current flows through /13 and wire mesh /17, generating heater 711 and filter 42, which are self-energizing and heat generating. As in the first embodiment, the exhaust gas is first passed through the filter 42.
The conduction hole of the heater 41 before being filtered. 51, it absorbs 1J of heat from the wall 50. J:
When the exhaust gas reaches the filter 42, the humidity becomes high.
The filter 42, especially the upstream side of the filter 42, is not cooled by the IJI gas, and the combustion W1 of carbon particles in A3 in the filter 42 is reduced by t.
The carbon particulates dispersed and captured in the filter 42 are completely combusted and
No. 12: Clogging J: No clogging occurs. The size of the five conductive holes 51 of the heater 41 used here is 20 to 200 cells/in"-19
- It is appropriate to set the temperature to 11 to sufficiently heat the gas. Further, the diameter of each pore of the spongy structure of the filter 42 is 20 to 50 [L/i +1 (approximately 0.1 to 11I1
111 pore diameter) is suitable. In the third embodiment, compared to the 112th embodiment, the exhaust gas passage is much easier to pass through, so the pressure loss is smaller. In each of the embodiments described in 1-1, the spongy structure used as the heater or the filter is a self-energizing heat-generating conductive ceramic with communication holes distributed in the right direction. A large number of self-energizing heat generation≧vJ conductive ceramic linear Kento 8i structures, for example, felt-like or woven fabric-like molded bodies, can be used as filters or heaters. - [Manufacture of the following spongy structure In addition to producing by firing using a raw ceramic whose composition is blended so that it becomes spongy when fired, the method is, for example, carried out as follows. In addition to the ingredients, raw material fine powder such as aluminum-containing silica, Al-20
− Organic binders such as sodium ginate, ammonium alginate, polyvinyl alcohol, etc., and solvents such as water and ethyl alcohol are added and kneaded to make a slurry-like preparation, and a predetermined fineness is formed in the mixture. A plastic foam such as polyurethane having a predetermined shape is immersed, dried, and then fired at around 1600° C. in an air atmosphere or a nitrogen atmosphere. In the method for producing a spongy structure described in "-", after immersing a plastic foam having two types of fineness in a pre-bonded form in a slurry-like composition and drying it,
Alternatively, two types of foams may be immersed and dried separately, then bonded with a slurry-like mixture, and then fired to create a spongy structure (4 , can be made by VJ.The gold aluminous electrode means is made of a metal powder paste such as platinum on both end surfaces of a flocculent-like structure or a barcum-like structure.
Or, by baking a powder paste [・mixture of chives, etc. and 1117]
21 - formed. In this case, in particular, the spongy structure does not have to be formed on the entire end face, but may be formed in a lattice shape, striped shape, etc. In addition to the main components such as 1, carbide or molybdenum disilicide, fine raw material powders such as alumina and silica, organic binders such as sodium alginate, ammonium alginate, and polyvinyl alcohol, water, A mixture is prepared by adding a solvent such as ethyl alcohol and kneading, which is then mixed so that the cross-sectional shape of the through hole is a polygon such as a triangle, square, or hexagon, or a predetermined shape such as a circle or an ellipse. A raw honeycomb-like structure can be obtained by extruding through a die having a large number of slits to obtain a monolithic elongated object, and by cutting the elongated object into required lengths. Further, the shape of the conductive holes in the honeycomb-like 4 mm body can be selected from various shapes such as a square prism, a hexagonal prism, and a triangular prism. As mentioned above, the ceramic raw material used is silicon carbide (chemical formula: SiC) or molybou 22
- Those whose main component is F (chemical formula: Mo5iz) etc. are used, but in particular, those containing T:1-gden disilicide as a single component are used. It has excellent positive characteristics over the entire temperature range, making it easy to adjust the hot water temperature. For example, even if electrodes are placed at appropriate intervals on the circumference of A, J: is not possible. Case 8! When the 111° flow direction and the current direction are parallel, and the heater and filter are electrically connected in series, such as when electrodes are provided on both end faces of a single-layer structure. If the heater and filter are made of positive R1'l (!IJη) such as molybdenum disilicide, etc., if a self-energizing heat-generating type is used, the heater side, especially when the exhaust gas flows in.
Since the front surface has relatively low humidity, the electrical resistance of the heater decreases, and the amount of current increases as a whole.As a result, the filter part uses more light and heat, and the overall temperature does not decrease.
Carbon = 23 - Fine particles do not remain unburned and do not cause clogging. On the other hand, for those with negative characteristics, the electrodes are placed on the peripheral surface as described above, so that the current direction and the exhaust gas flow direction are at right angles, and the heater and -7- (ruter) are electrically parallel to each other. When the heater is connected to
As a result, the amount of current increases on the filter side, which is electrically connected in parallel with the heater, and the heat generation increases, so the overall temperature does not drop, the carbon particles do not remain unburned, and clogging occurs. Don't wake up. In addition, dispersing a catalytic metal such as platinum, a mixture or alloy of platinum and 1-]dium, or a mixture or alloy of platinum and palladium on the entire or partial surface of the porous filter, This is advantageous because carbon sintering 7JI can be carried out at lower humidity. This can be obtained, for example, by immersing the porous wall structure in a solution of catalytic metal or salt and then heating it at a relatively high temperature. - As explained, the exhaust gas noilter device 24 of the present invention
- According to the system, the exhaust gas can be quickly heated up in advance by a self-energizing heating type heater that has a large contact area with the exhaust gas, and the temperature inside the filter can be increased without reducing the leakage of the filter, especially the front surface of the filter. Since the combustion of carbon particulates is completely completed at -C, carbon particulates can be removed from the filter even while the car is in operation, preventing filter clogging and reducing engine output due to pressure loss at the filter part. : It is possible to prevent a drop in C. Next, regarding the comparative test with the conventional example). Comparative test The exhaust gas filter device was the same as that of the third embodiment with the specified specification shown in Table 1. , assuming that the flow rate of room temperature air is 1.5nf per minute as 111 gas flow rate,
Injected from the heater side (1.1 power loss, saturated power consumption and saturated temperature were measured. -26- As is clear from this combination, the saturation temperature at the front of the filter is (3
At 50'C, 600°C is the thirst required for carbon combustion.
In the comparative example, the temperature was 60°C at 550°C.
If the temperature is below 0°C, carbon fine particles remain unburned and form masonry, resulting in clogging.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1)1ガス用フイルタIi!1lFi
lの1fll実施例の断面図、第2図はでの■−・■断
面図、第3図は本発明の第2実施例171I!li而図
、第4図は本発明の第3実施例の断面図、第5図はイの
V−V断面図である。 −27− 1,21、/11・・・自己通電発熱型加熱器2.22
.42・・・自己通電発熱型フィルタ5.6.27..
28.29.47.48.49・・・円形波形金網 3.4.23.24.25.26.43.44.45.
46・・・メタライズ層 12.13、;30.31.57.58・・・導線19
.62、・・・バネ材 8.35.52・・・絶縁筒 代理人 弁理士 定立 勉 −28− 第1図 第3図 ′+lIl   。 :、:、、’、、l、、、’、、 :):、、:  −
、。 F−”−’r”’Z’rZ+:’、+ 0 ”’  35a ”’″ζ4先゛屹ぼ (−→11 第4図 第5図 7
Figure 1 shows 1) 1 gas filter Ii! of the present invention! 1lFi
Fig. 2 is a cross-sectional view of the 1flll embodiment of 171I of the present invention, Fig. 3 is a cross-sectional view of 171I of the second embodiment of the present invention. FIG. 4 is a sectional view of the third embodiment of the present invention, and FIG. 5 is a sectional view taken along line V-V in FIG. -27- 1, 21, /11...Self-energizing heating type heater 2.22
.. 42... Self-energizing heating type filter 5.6.27. ..
28.29.47.48.49...Circular corrugated wire mesh 3.4.23.24.25.26.43.44.45.
46...Metallized layer 12.13,;30.31.57.58...Conducting wire 19
.. 62,...Spring material 8.35.52...Insulating tube agent Patent attorney Tsutomu Seitachi-28- Figure 1 Figure 3'+lIl. :,:,,',,l,,,',, :):,,: -
,. F-"-'r"'Z'rZ+:', + 0 "' 35a "'"ζ4 forward (-→11 Figure 4 Figure 5 Figure 7

Claims (1)

【特許請求の範囲】 1 自己通電発熱型のフィルタの−1−流側に、Itガ
スとの接触面積の大きい構造体をな1自己通電発熱型の
加熱器を配してなる排ガスフィルタ装置。 2 加熱器が多数の通孔を有するハニカム状構造体から
なる特許請求の範囲第1項記載の排ガス用フィルタ装置
。 3 加熱器が31通孔を分布状に有する)石綿状構造体
からなる特許請求の範囲第1項記載の排ガス用フィルタ
装置。 4 加熱器が連通孔を分布状に有Jる多数の線状素体の
集合構造体からなる特許請求の範囲第1項記載の排ガス
用フィルタ装置。 5 フィルタと加熱器とが分離しlζ構ii’i ’?
・(4する特許請求の範囲第1項記載の排ガス用フィル
’J S’:置。 6 フィルタと加熱器が一体構造とな−)でいる−  
1 − 特許請求の範囲第1Jr!記載の排ガス用フィルタ装置
。 7 フィルタと加熱器とが電気的に直列に接続された特
許請求の範囲第1項記載の排ガス用フィルタ装置。 8 フィルタの全体または一部の表面部に触媒金属を分
布状にIL1持させた特許請求の範囲第1項記載の排ガ
ス用フィルタ装置。
[Scope of Claims] 1. An exhaust gas filter device comprising a self-energizing heating type heater having a structure having a large contact area with It gas on the -1- flow side of a self-energizing heating type filter. 2. The exhaust gas filter device according to claim 1, wherein the heater comprises a honeycomb-like structure having a large number of through holes. 3. The exhaust gas filter device according to claim 1, comprising an asbestos-like structure in which the heater has 31 holes distributed in a distributed manner. 4. The exhaust gas filter device according to claim 1, wherein the heater comprises an aggregate structure of a large number of linear elements having communication holes distributed in a distributed manner. 5 Is the filter and heater separated?
・(Exhaust gas filter 'JS' according to claim 1 of claim 4: installation. 6 The filter and the heater have an integrated structure).
1 - Claim No. 1 Jr! The exhaust gas filter device described. 7. The exhaust gas filter device according to claim 1, wherein the filter and the heater are electrically connected in series. 8. The exhaust gas filter device according to claim 1, wherein the entire or part of the surface of the filter has IL1 of catalytic metal distributed thereon.
JP57019418A 1982-02-09 1982-02-09 Filter apparatus for exhaust gas Granted JPS58137424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57019418A JPS58137424A (en) 1982-02-09 1982-02-09 Filter apparatus for exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57019418A JPS58137424A (en) 1982-02-09 1982-02-09 Filter apparatus for exhaust gas

Publications (2)

Publication Number Publication Date
JPS58137424A true JPS58137424A (en) 1983-08-15
JPH0247248B2 JPH0247248B2 (en) 1990-10-19

Family

ID=11998707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57019418A Granted JPS58137424A (en) 1982-02-09 1982-02-09 Filter apparatus for exhaust gas

Country Status (1)

Country Link
JP (1) JPS58137424A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140112U (en) * 1987-03-06 1988-09-14
JP2008030038A (en) * 2007-08-10 2008-02-14 Ibiden Co Ltd Exhaust gas filter
US8984863B2 (en) 2010-11-02 2015-03-24 Ihi Corporation Ammonia injection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118669U (en) * 1973-02-07 1974-10-11
JPS53117121A (en) * 1977-03-21 1978-10-13 Texaco Development Corp Heating controllable exhaust filter of internal combustion engine
JPS57110311A (en) * 1980-12-27 1982-07-09 Kyocera Corp Ceramic honeycomb filter
JPS5872610A (en) * 1981-10-26 1983-04-30 Nippon Denso Co Ltd Fine particle collective purifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118669U (en) * 1973-02-07 1974-10-11
JPS53117121A (en) * 1977-03-21 1978-10-13 Texaco Development Corp Heating controllable exhaust filter of internal combustion engine
JPS57110311A (en) * 1980-12-27 1982-07-09 Kyocera Corp Ceramic honeycomb filter
JPS5872610A (en) * 1981-10-26 1983-04-30 Nippon Denso Co Ltd Fine particle collective purifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140112U (en) * 1987-03-06 1988-09-14
JP2008030038A (en) * 2007-08-10 2008-02-14 Ibiden Co Ltd Exhaust gas filter
US8984863B2 (en) 2010-11-02 2015-03-24 Ihi Corporation Ammonia injection device

Also Published As

Publication number Publication date
JPH0247248B2 (en) 1990-10-19

Similar Documents

Publication Publication Date Title
US4881959A (en) Exhaust emission purifier for diesel engines
US8205441B2 (en) Zone heated inlet ignited diesel particulate filter regeneration
JPH0211287B2 (en)
JP2011212577A (en) Honeycomb structure
JPH0153083B2 (en)
JPS6231165B2 (en)
JPS58137424A (en) Filter apparatus for exhaust gas
US20050252177A1 (en) Ceramic filter and smoke treatment device
JPS6363015B2 (en)
JPH0153082B2 (en)
US5958095A (en) Regenerative heater of diesel engine particulate trap and diesel engine particulate trap using the same heater
JPS6239247B2 (en)
JPH0211288B2 (en)
JPH07127434A (en) Diesel particulate filter
JP7058536B2 (en) Honeycomb structure
JPH07136435A (en) Filter for exhaust gas purifying apparatus and production thereof
JPH0211289B2 (en)
JPS5937224A (en) Filtering device for removing inflammable fine particle
JP2953409B2 (en) Particulate trap for diesel engine
JPS6235854Y2 (en)
JP5417959B2 (en) Filter regeneration system
JP2532621Y2 (en) Diesel engine exhaust purification system
JP2001096115A (en) Exhaust gas cleaning apparatus and honeycomb filter
JPS6338330Y2 (en)
JP2953408B2 (en) Regenerative heater for particulate trap for diesel engine and particulate trap for diesel engine using the heater