JP2953409B2 - Particulate trap for diesel engine - Google Patents

Particulate trap for diesel engine

Info

Publication number
JP2953409B2
JP2953409B2 JP8285746A JP28574696A JP2953409B2 JP 2953409 B2 JP2953409 B2 JP 2953409B2 JP 8285746 A JP8285746 A JP 8285746A JP 28574696 A JP28574696 A JP 28574696A JP 2953409 B2 JP2953409 B2 JP 2953409B2
Authority
JP
Japan
Prior art keywords
heater
filter
temperature
particulates
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8285746A
Other languages
Japanese (ja)
Other versions
JPH10131741A (en
Inventor
克彦 養老
勤 大岡
正隆 大路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8285746A priority Critical patent/JP2953409B2/en
Priority to CA002219542A priority patent/CA2219542A1/en
Priority to EP97308366A priority patent/EP0838578A1/en
Priority to CA002219537A priority patent/CA2219537A1/en
Priority to US08/956,050 priority patent/US6028296A/en
Priority to US08/956,051 priority patent/US5958095A/en
Publication of JPH10131741A publication Critical patent/JPH10131741A/en
Application granted granted Critical
Publication of JP2953409B2 publication Critical patent/JP2953409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0212Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters with one or more perforated tubes surrounded by filtering material, e.g. filter candles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディーゼルエンジ
ンの排気ガス中のカーボン等の微粒子(以降パティキュ
レートと言う)をフィルターに捕集し、加熱燃焼する際
の再生ヒーターの態様に関し、前記再生ヒーターを用い
たディーゼルエンジン用パティキュレートトラップ(以
降DPFと言う)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an embodiment of a regenerative heater in which fine particles such as carbon (hereinafter referred to as "particulates") in exhaust gas of a diesel engine are collected by a filter and heated and burned. The present invention relates to a particulate trap for a diesel engine (hereinafter, referred to as DPF) using the DPF.

【0002】[0002]

【従来の技術】ディーゼルエンジンの排気ガス中には、
パティキュレートと呼ばれるカーボンを主体とした微粒
子が含まれている。これらを排気ガスから除去するため
にDPFが開発されてきた。DPFは、パティキュレー
トを捕集するフィルターの部分と、捕集されたパティキ
ュレートを燃焼させて除去する再生用加熱体を組み合わ
せて構成する。
2. Description of the Related Art Diesel engine exhaust gas contains
It contains particulates mainly composed of carbon called particulates. DPFs have been developed to remove these from exhaust gases. The DPF is configured by combining a filter portion for collecting particulates and a heating element for regeneration for burning and removing the collected particulates.

【0003】捕集用フィルターには、セラミック多孔体
や金属多孔体が用いられるが、セラミック多孔体は、非
常に空隙が微細で排気ガス中のパティキュレートを確実
に捕集できるものの、空隙が微細なるため排気ガスの圧
損が大きいため大きな容量を必要とし、且つ、熱伝導性
が悪いので局部的な加熱による割れや亀裂、溶損等を起
こし易い。特に再生中に不均一な加熱によるヒートスポ
ットが生じ易く、フィルターの破損の原因となり易い。
金属多孔体は、セラミックに比べ空隙の大きさのコント
ロールが可能で、熱伝導性がよいためヒートスポットは
発生しにくく、再生中の温度分布を均一に保つことは容
易である。
[0003] Porous ceramics and metallic porous bodies are used for the filter for collection. Porous ceramics have very small voids and can reliably trap particulates in exhaust gas. Therefore, a large pressure loss is required due to a large pressure loss of the exhaust gas, and cracks, cracks, and erosion due to local heating are liable to occur due to poor thermal conductivity. In particular, heat spots due to non-uniform heating are likely to be generated during regeneration, which is likely to cause damage to the filter.
The porous metal can control the size of the voids as compared with the ceramic, and has good thermal conductivity, so that a heat spot is hardly generated, and it is easy to maintain a uniform temperature distribution during reproduction.

【0004】パティキュレートを燃焼して除去する手段
としては、電熱ヒーターに通電して加熱燃焼させる方法
がある。特開平6−257422号公報には、異径円筒
状のフィルターを多層に組み合わせてフィルターの中間
に、板状の再生ヒーターがフィルターに接触しないとこ
ろに配置している態様が提案されている。本願では、こ
れをDPFに装備した様子を概念図として図7に示す。
As a means for burning and removing particulates, there is a method in which an electric heater is energized to heat and burn. Japanese Patent Application Laid-Open No. 6-257422 proposes an embodiment in which filters having different diameters are combined in a multilayer structure and a plate-shaped regenerative heater is disposed in the middle of the filter so as not to contact the filter. In this application, FIG. 7 is a conceptual diagram showing a state in which this is mounted on a DPF.

【0005】ディーゼルエンジンの排気ガスは、排気管
に接続するフランジから左側の矢印Aの方向にケーシン
グ105内に流入し、円筒状のフィルター102の空隙
を通過する際、パティキュレートが捕集される。円筒状
フィルター102の中間には再生ヒーター103が配置
され、パティキュレートを効率よく加熱燃焼するため
に、大気中の酸素を取り入れる空気導入口106や空気
排出口107を設けられている。さらに積極的に酸素を
供給するため、送風ファンを設ける方法や排気ガス中の
酸素を利用する方法もある。浄化されたガスは、左側の
矢印Bの方向に大気中に放出される。
[0005] Exhaust gas of the diesel engine flows into the casing 105 from the flange connected to the exhaust pipe in the direction of arrow A on the left side, and when passing through the gap of the cylindrical filter 102, particulates are collected. . A regeneration heater 103 is disposed in the middle of the cylindrical filter 102, and is provided with an air inlet 106 and an air outlet 107 for taking in oxygen in the atmosphere to efficiently heat and burn the particulates. In order to more positively supply oxygen, there are a method of providing a blower fan and a method of using oxygen in exhaust gas. The purified gas is released into the atmosphere in the direction of arrow B on the left.

【0006】[0006]

【発明が解決しようとする課題】従来技術のように構成
すると、捕集されたパティキュレートが直接加熱される
ため効率のよい再生が可能である。しかし、フィルター
が多層構造になっている場合、多層の外筒側と内筒側で
は熱容量が異なり、又、各筒状の電熱ヒーターを個別に
みるとヒーターに囲まれる内円空間は、熱の流れがほと
んどなく一定の温度に維持されるものの、外側空間はD
PF外部への熱の流れが活発なため放熱されやすい。従
って、多層の筒で構成されるフィルターは、中心側の円
筒が高温になりやすい。
With the prior art configuration, the collected particulates are directly heated so that efficient regeneration is possible. However, when the filter has a multi-layer structure, the heat capacity differs between the outer and inner cylinder sides of the multi-layer, and when looking at each cylindrical electric heater individually, the inner circular space surrounded by the heater is Although there is almost no flow and a constant temperature is maintained, the outer space is D
Since the heat flow to the outside of the PF is active, heat is easily radiated. Therefore, in a filter composed of a multilayer cylinder, the temperature of the center cylinder tends to be high.

【0007】さらに、フィルターに近接する周辺の雰囲
気は捕集されたカーボンの燃焼する600℃近傍より急
激な温度上昇を生じやすく、ついには、フィルターの酸
化による劣化を誘発する温度に至ることもありフィルタ
ーの寿命を縮める。
Furthermore, the ambient atmosphere near the filter tends to cause a sharp rise in temperature from around 600 ° C. where the trapped carbon burns, and eventually reaches a temperature that induces deterioration of the filter due to oxidation. Shorten filter life.

【0008】そこで本発明では、多層の筒型フィルター
の温度分布をパティキュレートの燃焼温度600℃近傍
からフィルターの耐熱温度1000℃以下の範囲で、均
一となる再生ヒーターの形態とその制御方法を提供する
ことを課題とした。
In view of the above, the present invention provides a regenerative heater configuration in which the temperature distribution of a multilayer cylindrical filter is uniform within a range from a particulate combustion temperature of about 600 ° C. to a filter heat-resistant temperature of 1000 ° C. or less, and a control method therefor. The task was to do.

【0009】[0009]

【課題を解決するための手段】パティキュレートを捕集
する多層の筒型のフィルターの間に、フィルターに接触
せずに薄板状の電熱ヒーターを設置し、多層の中心側円
筒のフィルターに近づくに従って前記ヒーターの供給電
力を低減して、高温となり易い中心側円筒の温度を下げ
て外周側円筒の温度との均衡を計る。
Means for Solving the Problems A thin plate-shaped electric heater is provided between a multilayer cylindrical filter for collecting particulates without contacting the filter, and as the filter approaches the multilayer central side cylindrical filter. The power supplied to the heater is reduced to lower the temperature of the central cylinder, which tends to be high, to balance with the temperature of the outer cylinder.

【0010】前記ヒーターへの供給電力の低減手段とし
て、薄板状の電熱ヒータの板厚や通電経路の幾何学模様
を変更して、前記ヒーターの抵抗値を予め設定するのが
実用的である。
As means for reducing the electric power supplied to the heater, it is practical to change the thickness of the thin plate-shaped electric heater and the geometrical pattern of the energizing path to preset the resistance value of the heater.

【0011】前記ヒーターへの供給電力の低減方法とし
ては、中心側円筒に近づくに従って前記ヒーターへの通
電量を選択的に少なくすることにより、外周円筒側の温
度との均衡を計るべく制御する。
As a method of reducing the electric power supplied to the heater, the amount of electricity supplied to the heater is selectively reduced as the heater approaches the center cylinder, thereby controlling the balance with the temperature of the outer cylinder.

【0012】[0012]

【発明の実施の形態】以下に本発明を具体化した好適の
実施例を、添付した図面に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0013】本発明のヒーターは、従来のDPFの概念
図である図7中の符号103に相当する部品である。
The heater according to the present invention is a component corresponding to the reference numeral 103 in FIG. 7, which is a conceptual diagram of a conventional DPF.

【0014】ヒーターは、フイルターが導電性を有する
金属多孔体の場合、フィルターと接触しない位置に設け
る。従って、狭い隙間に挿入するヒーターは薄板である
ことが好ましく、導体のパターンはプレス打ち抜き、も
しくは、エッチングにより造形すると好都合である。そ
して、導体のパターンは様々な幾何学模様であってもよ
く、又、パンチングメタルや導電体の粗密な網で構成さ
れてもよい。
When the filter is a porous metal body having conductivity, the heater is provided at a position not in contact with the filter. Therefore, the heater to be inserted into the narrow gap is preferably a thin plate, and the conductor pattern is conveniently formed by press punching or etching. The conductor pattern may be various geometric patterns, or may be formed of a punched metal or a dense and dense net of a conductor.

【0015】前記ヒーターの材質は、Ni−Crを主体
としAlを添加したものや、これより大きい抵抗値を有
するFe−Crを主体としAlを添加したものを用いる
と好都合である。
As the material of the heater, it is convenient to use a material mainly composed of Ni--Cr to which Al is added, or a material mainly composed of Fe--Cr having a higher resistance value to which Al is added.

【0016】フィルターの材質は、特公昭57−393
17号公報に記載される製法で造られた3次元網目構造
の、金属骨格が太さ5〜100μmで、孔径が150〜
400μm連通孔のNiを主原料とし、Cr,Alを拡
散浸透した金属多孔体が好ましい。
The material of the filter is described in Japanese Patent Publication No. 57-393.
No. 17, the metal skeleton of the three-dimensional network structure manufactured by the manufacturing method described in JP-A No. 17 is 5 to 100 μm in thickness, and the pore size is 150 to
It is preferable to use a metal porous body made of Ni having a communication hole of 400 μm as a main raw material and diffusion and infiltration of Cr and Al.

【0017】DPFのケーシング105の内部の温度を
均一に維持するのには、フィルターの中心側円筒に近い
ヒーターほどヒーターの板厚を厚くして抵抗値を下げた
り、導電性の良い材質と組み合わせて抵抗値を下げるこ
とにより発熱量を制限する。或は、ヒーターの仕様が同
一である場合は、中心側円筒に近いヒーターほど供給電
力を減らせばよい。
In order to maintain the temperature inside the casing 105 of the DPF uniform, it is necessary to use a filter close to the center cylinder of the filter.
The amount of heat generated is limited by increasing the thickness of the heater as the heater becomes thicker to lower the resistance value, or by lowering the resistance value in combination with a material having good conductivity. Alternatively, when the specifications of the heaters are the same, the power supply may be reduced as the heater is closer to the center cylinder.

【0018】図1に具体的な構成図を示す。ディーゼル
エンジンの排気ガスは、排気管に接続するフランジから
左側の矢印Aの方向にケーシング105内に流入し、円
筒状のフィルター4、5、6、7の空隙を通過する際、
パティキュレートが捕集される。円筒状フィルター4、
5と6、7との中間には再生ヒーター2、3が配置され
る。フィルターの捕集長さの中間点のフィルター4の外
周、フィルター5の内周、フィルター6の外周、フィル
ター7の内周に熱電対イ、ロ、ハ、ニを設置してフィル
ターの温度変化を検出する。符号8、9は排気ガスの流
れをコントロールする遮蔽板である。再生ヒーター2、
3へは、電源11から可変抵抗器12、13を経由して
電力が配給される。パティキュレートを効率よく加熱燃
焼するために、大気中の酸素を取り入れる空気導入口1
06や空気排出口107が設けられることもある。
FIG. 1 shows a specific configuration diagram. When the exhaust gas of the diesel engine flows into the casing 105 from the flange connected to the exhaust pipe in the direction of arrow A on the left side and passes through the gaps of the cylindrical filters 4, 5, 6, and 7,
Particulates are collected. Cylindrical filter 4,
Regeneration heaters 2 and 3 are arranged between 5, 6 and 7. Thermocouples A, B, C, and D are installed on the outer circumference of the filter 4, the inner circumference of the filter 5, the outer circumference of the filter 6, and the inner circumference of the filter 7 at the midpoint of the collection length of the filter to monitor the temperature change of the filter. To detect. Reference numerals 8 and 9 are shielding plates for controlling the flow of exhaust gas. Regeneration heater 2,
Power is supplied to the power supply 3 from the power supply 11 via the variable resistors 12 and 13. Air inlet 1 for taking in atmospheric oxygen to heat and burn particulates efficiently
06 or the air outlet 107 may be provided.

【0019】[0019]

【実施例】図6に示す実験装置は、DPFの性能を評価
するものであり、その構成は、シャシダイナモメータ上
に設置した排気量3400cc、4気筒の直噴式ディー
ゼルエンジンを搭載した乗用車の排気ガスをダイリュウ
ショントンネルに導入する中間にDPF100を配置し
たものである。このDPF100を図1の如く構成した
再生ヒーターの仕様を表のように準備した。
EXAMPLE The experimental apparatus shown in FIG. 6 evaluates the performance of a DPF. The configuration of the experimental apparatus is the same as that of a passenger car equipped with a 3400 cc, 4-cylinder direct injection diesel engine installed on a chassis dynamometer. The DPF 100 is arranged in the middle of introducing gas into the dilution tunnel. The specifications of the regenerative heater in which the DPF 100 was configured as shown in FIG. 1 were prepared as shown in the table.

【0020】[0020]

【表】【table】

【0021】表に用いたヒーター単体は、均一な板厚に
一定の幾何学模様の通電経路が形成され、全てのヒータ
ーに同一の条件の電圧が負荷されている。
The heaters used in the table each have an energization path of a uniform geometric pattern formed with a uniform thickness, and all heaters are loaded with a voltage under the same conditions.

【0022】(比較例1) 図1に示すDPFのヒータ
ー2、3の材質をNi−Cr−Alに統一し板厚も0.
2mmにそろえて共に500Wの電力を供給し、再生開
始後パティキュレートの燃焼が始まって約25分後に再
生を終了し、電力の供給を中断する迄の時間経過に伴う
熱電対イ、ロ、ハ、ニの温度変化を図2に示す。
(Comparative Example 1) The materials of the heaters 2 and 3 of the DPF shown in FIG.
Electric power of 500 W is supplied together with 2 mm. After the start of regeneration, the burning of the particulates is started, and after about 25 minutes, the regeneration is finished. FIG.

【0023】温度上昇の割合は、パティキュレートの自
己燃焼温度600℃に至るまで、最外周に存在する熱電
対ほど熱電対イの温度のように急速に上昇し、パティキ
ュレートの自己燃焼温度600℃を越えたところで、全
ての熱電対の温度が不連続に上昇した後、中心側に存在
する熱電対ほど熱電対ニの温度のように、フィルターの
酸化温度である1000℃をこえる領域に急激に上昇し
ているのが判る。つまり、中心側のフィルター7ほど高
温にさらされることが立証された。
The rate of temperature rise is such that the thermocouple at the outermost periphery rises more rapidly like the temperature of the thermocouple A until the particulate self-combustion temperature reaches 600 ° C., and the particulate self-combustion temperature 600 ° C. After that, the temperature of all the thermocouples rises discontinuously, and then the temperature of the thermocouple located closer to the center suddenly rises to a region exceeding the oxidation temperature of the filter, 1000 ° C, like the temperature of the thermocouple d. You can see that it is rising. In other words, it was proved that the filter 7 closer to the center was exposed to a higher temperature.

【0024】(比較例2) 図1に示すDPFのヒータ
ー2に1000Wの電力を供給し、ヒーター3には通電
しないで、再生開始後パティキュレートの燃焼が始まっ
て約25分後に再生を終了し、電力の供給を中断する迄
の時間経過に伴う熱電対イ、ロ、ハ、ニの温度変化を図
3に示す。
Comparative Example 2 Electric power of 1000 W was supplied to the heater 2 of the DPF shown in FIG. 1 and power was not supplied to the heater 3, and the regeneration was terminated about 25 minutes after the start of particulate combustion after the start of regeneration. FIG. 3 shows the temperature changes of the thermocouples A, B, C, and D with the lapse of time until the power supply is interrupted.

【0025】温度上昇の割合は、比較例1とは逆にヒー
ター2から最も遠いところに存在する熱電対である熱電
対ニほど温度上昇は鈍く、パティキュレートの自己燃焼
温度600℃を越えたところで、全ての熱電対の温度が
不連続に上昇した後、最も高温に至る最外周の熱電対イ
の温度でもフィルターの酸化温度である1000℃以下
に留まることが判る。この現象は、中心側円筒のヒータ
ーの温度を制御することでケーシング105内の温度の
均衡の計れることを示唆するものである。しかし、熱電
対間の温度のバラツキは大きく効率的な燃焼はなされて
いない。
Contrary to Comparative Example 1, the rate of temperature rise is slower as the thermocouple d, which is the thermocouple located farthest from the heater 2, has a lower temperature rise and exceeds the self-combustion temperature of particulates of 600 ° C. It can be seen that after the temperature of all the thermocouples rises discontinuously, even the temperature of the outermost thermocouple a, which reaches the highest temperature, stays below 1000 ° C., which is the oxidation temperature of the filter. This phenomenon suggests that the temperature in the casing 105 can be balanced by controlling the temperature of the heater in the center cylinder. However, temperature variation between thermocouples is large, and efficient combustion has not been achieved.

【0026】(実施例1) 図1に示すDPFのヒータ
ー2、3の材質をNi−Cr−Alに統一する他は、板
厚を0.12mmと0.28mmにすることで抵抗値を
0.83オームと0.36オームに変更した上で、30
0Wと700Wの電力を供給し、再生開始後パティキュ
レートの燃焼が始まって約25分後に再生を終了し、電
力の供給を中断する迄の時間経過に伴う熱電対イ、ロ、
ハ、ニの温度変化を図4に示す。
(Example 1) Except that the materials of the heaters 2 and 3 of the DPF shown in FIG. 1 are unified to Ni-Cr-Al, the resistance is reduced to 0 by setting the plate thickness to 0.12 mm and 0.28 mm. After changing to .83 ohm and 0.36 ohm, 30
0 W and 700 W of electric power are supplied. After the start of regeneration, the burning of the particulates is started, and after about 25 minutes, the regeneration is terminated.
FIG. 4 shows the temperature changes of C and D.

【0027】温度上昇の割合は、パティキュレートの自
己燃焼温度600℃に至るまで、最外周に存在する熱電
対ほど熱電対イの温度のように上昇するが、熱電対間の
温度のバラツキは、比較例1または2に比べて少なくパ
ティキュレートの自己燃焼温度600℃を越えたところ
で、全ての熱電対の温度が不連続に上昇した後も、80
0℃近傍に収斂している。
The rate of temperature rise is as high as the temperature of the thermocouple A as the thermocouples present on the outermost periphery reach the self-combustion temperature of particulates of 600 ° C., but the temperature variation between the thermocouples is as follows. When the temperature exceeds the self-combustion temperature of particulates of 600 ° C. as compared with Comparative Example 1 or 2, even after the temperature of all thermocouples rises discontinuously, 80
It converges around 0 ° C.

【0028】(実施例2) 図1に示すDPFのヒータ
ー2、3の板厚を同一とする他は、材質をFe−Cr−
AlとNi−Cr−Alに設定することで抵抗値を0.
83オームと0.36オームに変更した上で、300W
と700Wの電力を供給し、再生開始後パティキュレー
トの燃焼が始まって約25分後に再生を終了し、電力の
供給を中断する迄の時間経過に伴う熱電対イ、ロ、ハ、
ニの温度変化を図5に示す。
(Example 2) Except that the thicknesses of the heaters 2 and 3 of the DPF shown in FIG.
Al and Ni-Cr-Al are used to set the resistance to 0.1.
After changing to 83 ohm and 0.36 ohm, 300W
And 700 W of electric power, and after the start of the regeneration, the burning of the particulates is started, and after about 25 minutes, the regeneration is completed. The thermocouples A, B, C,
FIG. 5 shows the temperature change of D.

【0029】温度上昇の割合は、実施例1とほとんど変
わらなく、パティキュレートの自己燃焼温度600℃に
至るまで、最外周に存在する熱電対ほど熱電対イの温度
のように上昇するが、熱電対間の温度のバラツキは、比
較例1または2に比べて少なくパティキュレートの自己
燃焼温度600℃を越えたところで、全ての熱電対の温
度が不連続に上昇した後も、800℃近傍に収斂してい
る。
The rate of temperature rise is almost the same as that of the first embodiment, and the thermocouple existing at the outermost periphery rises like the temperature of the thermocouple a until the self-combustion temperature of particulates reaches 600 ° C. The variation in the temperature between the pairs is smaller than that in Comparative Example 1 or 2, and exceeds the self-combustion temperature of particulates of 600 ° C., and converges to around 800 ° C. even after all the thermocouples rise discontinuously. doing.

【0030】[0030]

【発明の効果】本発明は、パティキュレートを捕集する
多層の筒型のフィルターの間に、フィルターに接触しな
い位置に再生フィルターを配置し、フィルターの中心側
円筒に近いヒーターほど板厚を厚くして抵抗値を下げた
り、導電性の良い材質と組み合わせて抵抗値を下げた
り、中心側円筒に近いヒーターほど供給電力を減らす等
の手段により、発熱量を制御したから、DPFのケーシ
ング内部の温度分布は、再生開始後10〜25分後に
は、いづれのフィルターもパティキュレートの自己燃焼
温度である600℃からフィルターの耐熱温度1000
℃の範囲に収斂させることができる。従って、再生効率
の良好な耐久性のあるDPFを提供できる。
According to the present invention, a regeneration filter is arranged at a position not in contact with a filter between multilayer cylindrical filters for collecting particulates, and a heater closer to a center cylinder of the filter has a larger thickness. The amount of heat generated was controlled by lowering the resistance value, lowering the resistance value in combination with a material having good conductivity, or reducing the power supply as the heater was closer to the center cylinder. 10 to 25 minutes after the start of regeneration, the temperature distribution of each filter was from 600 ° C., which is the self-combustion temperature of particulates, to 1000 ° C., which is the heat resistant temperature of the filter.
It can be converged in the range of ° C. Therefore, a durable DPF with good regeneration efficiency can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のDPFの構成図である。FIG. 1 is a configuration diagram of a DPF of the present invention.

【図2】本発明の効果を説明する比較例1の再生時間中
のヒーターの温度変化の推移を示したものである。
FIG. 2 shows a transition of a temperature change of a heater during a regeneration time of Comparative Example 1 for explaining an effect of the present invention.

【図3】本発明の効果を説明する比較例2の再生時間中
のヒーターの温度変化の推移を示したものである。
FIG. 3 shows a transition of a temperature change of a heater during a regeneration time of Comparative Example 2 for explaining an effect of the present invention.

【図4】本発明の実施例1の再生時間中のヒーターの温
度変化の推移を示したものである。
FIG. 4 shows a transition of a temperature change of a heater during a regeneration time according to the first embodiment of the present invention.

【図5】本発明の実施例2の再生時間中のヒーターの温
度変化の推移を示したものである。
FIG. 5 shows a transition of a temperature change of a heater during a regeneration time according to a second embodiment of the present invention.

【図6】DPFの実験装置の構成図である。FIG. 6 is a configuration diagram of a DPF experimental apparatus.

【図7】従来のDPFの概念図である。FIG. 7 is a conceptual diagram of a conventional DPF.

【符号の説明】[Explanation of symbols]

2、3:再生ヒーター 4、5、6、7:フィルター 8、9:遮蔽板 11:電源 12、13:可変抵抗器 100:DPF 105:ケーシング 106:空気導入口 107:空気排出口 2, 3: regenerative heater 4, 5, 6, 7: filter 8, 9: shielding plate 11: power supply 12, 13: variable resistor 100: DPF 105: casing 106: air inlet 107: air outlet

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−257422(JP,A) 特開 平5−106425(JP,A) 特開 平5−125925(JP,A) 特開 平8−193509(JP,A) 特開 平7−310530(JP,A) (58)調査した分野(Int.Cl.6,DB名) F01N 3/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-257422 (JP, A) JP-A-5-106425 (JP, A) JP-A-5-125925 (JP, A) JP-A-8- 193509 (JP, A) JP-A-7-310530 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F01N 3/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 パティキュレートを捕集する多層の筒型
のフィルターの間に、フィルターに接触せずに薄板状の
電熱ヒーターを設置し、多層の中心側円筒のフィルター
近いヒーターほど前記ヒーターの供給電力を減らした
ことを特徴とするディーゼルエンジン用パティキュレー
トトラップ。
1. A thin plate-shaped electric heater is provided between a multilayer cylindrical filter for collecting particulates without contacting the filter, and a heater closer to the multilayer central-side cylindrical filter has a higher temperature. A particulate trap for a diesel engine, characterized in that the supply power is reduced .
【請求項2】 前記ヒーターへの供給電力を減らす手段
が、前記ヒーターの抵抗値を多層の中心側円筒のフィル
ターに近いヒーターほど減らしたことを特徴とする請求
項1に記載のディーゼルエンジン用パティキュレートト
ラップ。
2. The diesel engine patty according to claim 1, wherein the means for reducing the electric power supplied to the heater reduces the resistance value of the heater toward a heater closer to a filter having a multilayered central cylinder. Cured trap.
【請求項3】 前記ヒーターへの供給電力を減らす手段
が、前記ヒーターへの通電量を多層の中心側円筒のフィ
ルターに近いヒーターほど減らしたことを特徴とする請
求項1に記載のディーゼルエンジン用パティキュレート
トラップ。
3. The device according to claim 1, wherein the means for reducing the power supplied to the heater reduces the amount of power supplied to the heater as the heater is closer to a filter having a multilayered central cylinder. Particulate trap for diesel engines.
JP8285746A 1996-10-22 1996-10-29 Particulate trap for diesel engine Expired - Fee Related JP2953409B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8285746A JP2953409B2 (en) 1996-10-29 1996-10-29 Particulate trap for diesel engine
CA002219542A CA2219542A1 (en) 1996-10-22 1997-10-21 Regenerative heater of diesel engine particulate trap and diesel engine particulate trap using the same heater
EP97308366A EP0838578A1 (en) 1996-10-22 1997-10-21 Particulate trap and heater
CA002219537A CA2219537A1 (en) 1996-10-22 1997-10-21 Regenerative heater of diesel engine particulate trap and diesel engine particulate trap using the same heater
US08/956,050 US6028296A (en) 1996-10-22 1997-10-22 Regenerative heater of diesel engine particulate trap and diesel engine particulate trap using the same heater
US08/956,051 US5958095A (en) 1996-10-22 1997-10-22 Regenerative heater of diesel engine particulate trap and diesel engine particulate trap using the same heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8285746A JP2953409B2 (en) 1996-10-29 1996-10-29 Particulate trap for diesel engine

Publications (2)

Publication Number Publication Date
JPH10131741A JPH10131741A (en) 1998-05-19
JP2953409B2 true JP2953409B2 (en) 1999-09-27

Family

ID=17695520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8285746A Expired - Fee Related JP2953409B2 (en) 1996-10-22 1996-10-29 Particulate trap for diesel engine

Country Status (1)

Country Link
JP (1) JP2953409B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8418444B2 (en) 2006-03-30 2013-04-16 Umicore Shokubai Japan Co., Ltd. Method for purification of exhaust gas from internal combustion engine
US9429055B2 (en) 2006-07-13 2016-08-30 Umicore Shokubai Usa Inc. Method for purification of exhaust gas from internal-combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3192991B1 (en) * 2012-02-22 2019-04-24 Watlow Electric Manufacturing Company Method of heating an exhaust gas in an exhaust aftertreatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8418444B2 (en) 2006-03-30 2013-04-16 Umicore Shokubai Japan Co., Ltd. Method for purification of exhaust gas from internal combustion engine
US9429055B2 (en) 2006-07-13 2016-08-30 Umicore Shokubai Usa Inc. Method for purification of exhaust gas from internal-combustion engine

Also Published As

Publication number Publication date
JPH10131741A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
JP3991447B2 (en) Induction heat purification device for internal combustion engine
JP2707049B2 (en) Diesel particulate filter
EP0606071B1 (en) Particulate trap
JP2003509620A (en) Exhaust gas purification device with heating element
JPH10176519A (en) Particulate trap for diesel engine
JPH0211287B2 (en)
JP2953409B2 (en) Particulate trap for diesel engine
JP3909450B2 (en) Self-heating diesel particulate filter
US6028296A (en) Regenerative heater of diesel engine particulate trap and diesel engine particulate trap using the same heater
JPH07127434A (en) Diesel particulate filter
JP2928540B2 (en) Exhaust gas purification device
JPH06294313A (en) Trap for purifying exhaust gas
JP2953408B2 (en) Regenerative heater for particulate trap for diesel engine and particulate trap for diesel engine using the heater
JPH08151919A (en) Particulated trap for diesel engine
JPH11280451A (en) Exhaust emission control device
JP3043543B2 (en) Diesel Particulate Filter
JPH07291756A (en) Porous ceramics and production thereof
JP2001164923A (en) Particulate removing filter unit and method of manufacturing the filter
JPH11294139A (en) Exhaust emission control device
JPH034725B2 (en)
JPH02173310A (en) Remover of particle in exhaust gas
JPS6235854Y2 (en)
JP3401946B2 (en) Exhaust particulate processing equipment for internal combustion engines
JP3111829B2 (en) Exhaust particulate processing equipment for internal combustion engines
JPH07189657A (en) Exhaust particulate collecting filter for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees