JPS58137250A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS58137250A
JPS58137250A JP57020256A JP2025682A JPS58137250A JP S58137250 A JPS58137250 A JP S58137250A JP 57020256 A JP57020256 A JP 57020256A JP 2025682 A JP2025682 A JP 2025682A JP S58137250 A JPS58137250 A JP S58137250A
Authority
JP
Japan
Prior art keywords
light
charge
section
transfer
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57020256A
Other languages
Japanese (ja)
Inventor
Akira Shimohashi
下橋 彰
Yuichiro Ito
雄一郎 伊藤
Shuji Watanabe
渡辺 修治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57020256A priority Critical patent/JPS58137250A/en
Publication of JPS58137250A publication Critical patent/JPS58137250A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Abstract

PURPOSE:To improve the resolving power of a picture regenerated by disposing transfer gates on both sides of a charge transfer section, providing the outsides of the transfer gates with light-receiving element rows consisting of two series and flowing charges from light-receiving elements into different cells of the transfer section. CONSTITUTION:The charge transfer section 24 is formed to a meandering channel shape, and the longitudinal rows of the light-receiving elements composed of two series are arranged on both sides. The transfer gates 2a, 2b connected to terminals 7a, 7b are disposed to the upper section of the charge transfer section. Charges from each light-receiving element 1 are flowed into different cells 26 or 26' or 27 or 27' of the charge transfer section 24. According to such constitution, the numbers of several picture element in a light-receiving surface 50 are increased without changing a light-receiving area, and the revolving power of the picture regenerated can be improved.

Description

【発明の詳細な説明】 扛)発明の技術分計 本発明は固体撮像装置に係り、さらに具体的にはいわゆ
るインターフィントランスファ型の撮像装置の構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Summary of the Invention The present invention relates to a solid-state imaging device, and more specifically to the structure of a so-called interfin transfer type imaging device.

(至)技術の背景 近年、固体撮像装置は半導体製造°技術の著しい発達に
伴なって、益々高集積度化されて行く傾向にあるが、そ
の−因は再生画像の分解能をより一層高めようとする要
求に基づいている。
(To) Technical Background In recent years, with the remarkable development of semiconductor manufacturing technology, solid-state imaging devices have tended to become increasingly highly integrated. Based on the requirements.

幹)従来技術と問題点 第1図は従来のインターフィントランスファ型(以下I
T型と略称する)の固体撮像装置の構造を示す平面図で
ある。同図において50は受光面であるが、その中に縦
方向に並ぶ綱索lのうち隣接するもの同志は破線で示し
た電荷堰21によって三方が隔絶されており、光電変換
によって該画素l中に生じた電荷は、端子5に電圧VT
が加えられると、移送ゲート2直下にチャンネルが生じ
るので、該移送ゲート2を介して縦方向C0DIOの単
位セfi/8中に流入する。そして該縦方向CCDl0
の転送動作によって上記電荷が矢印口で示したように縦
方向に転送されれば、該電荷は矢印ハで示したように横
方向CCD20中の単位セル中に導入されて、矢印二方
向に転送され、検出増幅器4で検出されて出力端子18
に時系列信号として取り出される。
Main) Conventional technology and problems Figure 1 shows the conventional interfin transfer type (hereinafter referred to as I
1 is a plan view showing the structure of a solid-state imaging device (abbreviated as T-type). In the figure, reference numeral 50 denotes a light-receiving surface, in which adjacent ropes l lined up in the vertical direction are separated from each other on three sides by a charge weir 21 indicated by a broken line, and photoelectric conversion is carried out in the pixels l. The charge generated at terminal 5 is applied to voltage VT
When is added, a channel is created just below the transfer gate 2, so that it flows through the transfer gate 2 into the unit Sefi/8 in the vertical direction C0DIO. and the longitudinal CCD10
If the charge is transferred in the vertical direction as shown by the arrow opening, the charge is introduced into the unit cell in the horizontal CCD 20 as shown by the arrow C, and is transferred in the two directions of the arrow. detected by the detection amplifier 4 and sent to the output terminal 18.
is extracted as a time-series signal.

しかるにこのようなIT型の固体撮像装置においては、
受光素子lの縦列は縦方向電荷転送装置(以下CODと
略称する)8と交互に配設されているために実質的受光
面積は受光面50よりもかなり小さくなってしまう。そ
の上便宜上、図示していないが、C0DIOならびにC
0DIOの上面には転送電圧を各転送電極に供給する複
数本の母線が配設されることになるのであるが、最近で
は分解能を高めるためにCODの横幅は受光素子の占有
面積と同様に小さく設計され、例えば今まで50@素で
あったものを100画素あるいは150画素と増加させ
る傾向にある。こうなると前記CODの横幅はますます
小さくする必要が生じて来るが、この縦方向C0DI 
Oの横幅が例えば20μm以下となれば転送効率が著し
く低下する。
However, in such an IT-type solid-state imaging device,
Since the columns of light-receiving elements 1 are arranged alternately with longitudinal charge transfer devices (hereinafter abbreviated as COD) 8, the actual light-receiving area becomes considerably smaller than the light-receiving surface 50. Furthermore, for convenience, although not shown, C0DIO and C
Multiple busbars are placed on the top surface of 0DIO to supply transfer voltage to each transfer electrode, but recently, in order to improve resolution, the width of COD has been reduced to be as small as the area occupied by the photodetector. For example, there is a trend to increase the number of pixels from 50 pixels to 100 or 150 pixels. In this case, it becomes necessary to make the width of the COD smaller and smaller, but the width of the COD in the vertical direction
If the width of O is less than 20 μm, for example, the transfer efficiency will drop significantly.

その上、前記母線の幅は製作上定まった値以下には出来
ないので、こうした従来の構造になる撮像装置の高集積
化は一層困難となるという欠点があった。
Furthermore, since the width of the generatrix cannot be made less than a predetermined value for manufacturing purposes, there is a drawback that it becomes even more difficult to increase the integration density of an imaging device having such a conventional structure.

四 発明の目的 本発明は上記従来の欠点に鑑み、受光面積を変えること
なく、受光面50内の各画素の数f:増加させて再生画
像の分解能を向上せしめるべく高集積化が可能なIT型
固体撮像装置の提供を目的とするものである、 (e)  発明の構成 そしてこの目的は本発明によれば、複数の受光素子列か
らなる光電変換部と、当該光電変換部中の電荷を移送す
る移送ゲートと、該移送ゲートを介して電荷を受は入れ
て転送する電荷転送部とを主体とした構成において、前
記電荷転送部の両側にそれぞれ移送ゲートを配置し、さ
らに該移送ゲートの外側に2系列からなる光電変換部の
受光素子列を設けて、前記各受光素子からの電荷を上記
電荷転送部の異なる七p中へ流入せしめる構成とました
ことを特徴とする固体撮像装置を提供することによって
達成される。
4. Purpose of the Invention In view of the above-mentioned conventional drawbacks, the present invention provides an IT that can be highly integrated in order to increase the number f of each pixel in the light receiving surface 50 and improve the resolution of reproduced images without changing the light receiving area. (e) Structure of the Invention According to the present invention, it is an object of the present invention to provide a photoelectric conversion section comprising a plurality of light receiving element arrays, and a method for converting charges in the photoelectric conversion section. In a configuration mainly consisting of a transfer gate that transfers and a charge transfer section that receives and transfers charges via the transfer gate, transfer gates are arranged on both sides of the charge transfer section, and A solid-state imaging device characterized in that a light-receiving element row of a photoelectric conversion section consisting of two series is provided on the outside, and the charge from each of the light-receiving elements flows into different seven points of the charge transfer section. This is achieved by providing

(0発明の実施例 以下本発明の実施例を図面によって詳述する、第2図は
本発明に係る工T1n固体撮像装筐の要部構造を示す平
面図であるが、第1図と同等部位しての縦方向CCDは
いわゆるミアンダチャンネ/I/!!l!となっており
、その両側の大部分は光電変換部すなわち受光部11a
、llb中のセlvlと同様に。
(Embodiments of the Invention Below, the embodiments of the present invention will be described in detail with reference to the drawings. Fig. 2 is a plan view showing the main structure of the T1n solid-state imaging device casing according to the present invention, which is equivalent to Fig. 1. The vertical CCD as a part is a so-called meander channel /I/!!l!, and most of the parts on both sides are photoelectric conversion parts, that is, light receiving parts 11a.
, as well as cell lvl in llb.

斜線で示し念電荷堰21で囲まれており、2系列からな
る受光素子lの縦列によって挾まれたような構成となっ
ている。
It is indicated by diagonal lines and is surrounded by a charge weir 21, and is structured as if it is sandwiched between two columns of light-receiving elements I.

そして上記ミアンダチャンネ/L’5の縦方向ccDを
挾む太い電荷堰fl″の上部には、端子7a。
A terminal 7a is provided above the thick charge weir fl'' that sandwiches the longitudinal direction ccD of the meander channel/L'5.

7bにつながる移送ゲー) 2a、 21)が配設され
ているのであるが、上記端子?a、7bに、第3図れ)
に示した時刻t1〜t2の期間において電圧φTGが印
加されると、この電荷堰Q l’の一部に−開かれた電
荷通路22a、11)の移送ゲー) 2a、 21)の
直下にはチャンネルが生じる。
The transfer game connected to 7b) 2a, 21) is installed, but the above terminal? a, 7b, Figure 3)
When voltage φTG is applied during the period from time t1 to time t2 shown in FIG. A channel arises.

この場合、端子8aにφlなる転送電圧が第8図C[)
)K示したように上記ti−tgの期間において高レベ
ルで印加されていれば、転送電極28a直下0CCDセ
/l/、26の電位面は低下し、電位の井戸(以下単に
井戸と称する)が生じるために、受光部11b中のセ/
l/1中で光電変換によって生じた電荷は前記チャンネ
ルを通って矢印イで示したように上記のCCDセIV8
6中に流れ込ん憤9となる、ところで上記セルg6の斜
線で示した一部分26′KFi半導体基板と同じ導電型
の不純物がドープされているので、当該部分26′の井
戸は斜線が入っていない部分の井戸よシも浅くなってい
る。そのために上記の斜線が入っていない部分に流入し
た電荷a1が斜線の入っている部分に逆流し欧い。
In this case, the transfer voltage φl is applied to the terminal 8a as shown in FIG.
) As shown in the above, if a high level is applied during the period of ti-tg, the potential surface of the 0CCD set/l/, 26 directly below the transfer electrode 28a decreases, and the potential well (hereinafter simply referred to as well) is lowered. occurs, the sensor in the light receiving section 11b
The charges generated by photoelectric conversion in l/1 pass through the channel to the CCD cell IV8 as shown by arrow A.
By the way, since the hatched part 26' of the cell g6 above is doped with impurities of the same conductivity type as the KFi semiconductor substrate, the well in the part 26' is not shaded. The well has also become shallower. Therefore, the charge a1 flowing into the above-mentioned non-hatched area flows back into the hatched area.

この場合、電極gsaVcは第8図(至)に示したよう
に、電圧φlが端子8bから供給されていて、や社り時
刻tt−tzにおいて高しベμを保っているために、C
OD七A/2フにも井戸が生じている、セして該セA/
27の斜線部分27′の井戸は浅く、斜線が入っていな
い部分の井戸は深〜なっている。
In this case, as shown in FIG. 8 (to), the electrode gsaVc is supplied with the voltage φl from the terminal 8b and maintains a high level μ at the end time tt-tz.
There is also a well in OD7A/2F.
The wells in the shaded area 27' of 27 are shallow, and the wells in the non-shaded area are deep.

したがって受光部11aの真中に示したtIvl中で光
電変換された電荷は、端子7aにつながる移送ゲー)2
aK電圧φTGが印加されており、このために電荷通路
22a直下にもチャンネ〜が生じているので、前述のC
CDセA/26中への電荷の流入と時を同じくして、受
光部11aの真中の七yl中のt荷ti電荷a路22a
t通ってCCD−klv27中に流入してOとなる。こ
の場合にも↑はり斜線で示し九部分27′の井戸は斜線
が入っていない部分の井戸よりも浅くなっているために
上記電荷の逆流は起こらカいのであるが、こうしたこと
は8相駆動のCODにおける電荷の逆流防止策と何ら変
るところはない。
Therefore, the charge photoelectrically converted in tIvl shown in the middle of the light receiving part 11a is transferred to the transfer gate ()2 connected to the terminal 7a.
Since the aK voltage φTG is applied and a channel is also generated directly under the charge path 22a, the above-mentioned C
At the same time as the charge flowing into the CD cell A/26, the t charge ti charge a path 22a in the center 7yl of the light receiving section 11a
It flows into CCD-klv27 through t and becomes O. In this case as well, the well in the 9th part 27' shown by the diagonal line is shallower than the well in the part without the diagonal line, so the above-mentioned reverse flow of charge does not occur. This is no different from the charge backflow prevention measure in COD.

そして上と同様な過程によってCCD[24の電極28
a直下の最下段の七μにも上記t;−tg。
Then, by the same process as above, the electrode 28 of the CCD [24]
The above t;-tg is also applied to the bottom 7μ directly below a.

間に受光部111)の最下段のセA/lからも矢印イ方
肉に電荷が流入して・と危る、 そして電極28&に印加されている電圧φlが第8図(
至)に示したように、時刻t8〜t4においても末だ高
しペyt維持する一層で、電極28bに端子8bから印
加される電圧φ處が第8図(0)のt 8−t 4にお
いて低しペ〃になると、電極28b直下にある0CDi
lS24の右側のすべての七μの井戸は消滅するので、
七μ27中に存在していた電荷OケCOD部24の左側
のセfi/14中に矢印ホで示したように流入して[株
]となる。しかしこの場合上記のようにC0DilS2
4の右側のセルの井戸はすべて消滅しているために前払
す、・の電荷が動くことはなく、このままの位置に止ま
るだけである、こうし良状態に至って後に、前記電圧φ
1.φ2はt4〜t5 、 to〜t7・・・・・・な
る狭い間隔の転送バμスと化すために、上述した電荷@
、(Q、@は矢印へのように、まずCOD部24の右側
の各セル中に移され、さらにこれに引き続いて左下側の
各セルに移送され、ここに電荷の蛇行状転送が開始され
ることになる、 上記CCD111g4は第1図に示した受光面60中に
おいて複数条配設されるものである、ところが第2図で
示したCCD部はいわゆるミアンダチャンネル型である
ために、転送電圧を送る母線は転送電極28a、 28
b上に配設する必要はなく、単に上記電極の各一端に同
図に示したごとく、端子sa、sbに接続するだけでよ
い。このためにCCD111g4の横幅は上記母線の横
幅によって制限されることがなくなり、したがって上記
CCD部24の24a、 241)として示したそれぞ
れの横幅を例えば15μmに狭めることもできる。
In the meantime, there is a danger that charge will flow from the lowest stage SEA/l of the light receiving section 111) to the direction of the arrow A, and the voltage φl applied to the electrode 28& will be as shown in Fig. 8 (
As shown in FIG. 8(0), the voltage φ applied to the electrode 28b from the terminal 8b remains at a high level even from time t8 to t4, and the voltage φ applied from the terminal 8b to the electrode 28b increases from t8 to t4 in FIG. 8(0). When it becomes low, 0CDi directly below the electrode 28b
Since all the 7μ wells to the right of lS24 disappear,
The charge existing in the 7 μ 27 flows into the Sefi/14 on the left side of the COD section 24 as shown by the arrow H and becomes [Stock]. However, in this case, as mentioned above, C0DilS2
Since the wells of the cell on the right side of 4 have all disappeared, the charge of . does not move and just stays in the same position. After reaching a good state, the voltage φ
1. φ2 is the above-mentioned charge@
, (Q, @ is first transferred to each cell on the right side of the COD section 24 as shown by the arrow, and then transferred to each cell on the lower left side, where the serpentine transfer of charge begins. The above CCD 111g4 is arranged in plural lines in the light receiving surface 60 shown in FIG. 1. However, since the CCD section shown in FIG. 2 is of a so-called meander channel type, the transfer voltage is The busbars for sending are the transfer electrodes 28a, 28
It is not necessary to arrange it on the terminal b, and it is sufficient to simply connect one end of each of the electrodes to the terminals sa and sb as shown in the figure. For this reason, the width of the CCD 111g4 is no longer limited by the width of the generatrix, and therefore the width of each of the CCD portions 24 shown as 24a, 241) can be narrowed to, for example, 15 μm.

その上、第2図の構成は第1図のものと異なって1本の
縦方向CCD部対して2条から表る受光素子列が接続さ
れたものであるために、こうした構成が採用されれば、
受光面積が同じであっても、その中に配置される画素数
や縦方向CODの本数を従来のものより増やすことがで
き、したがって撮像装置の一層の高集積化が可能となる
。そしてこれは横方向CODのセル数を増やすだけであ
るので横方向CCD20が大型化する必要もない。
Furthermore, unlike the configuration shown in Figure 1, the configuration shown in Figure 2 is one in which two light-receiving element rows are connected to one vertical CCD section, so such a configuration was not adopted. Ba,
Even if the light-receiving area is the same, the number of pixels and the number of vertical CODs arranged in the area can be increased compared to the conventional one, and therefore, it is possible to further increase the integration of the imaging device. Since this only increases the number of lateral COD cells, there is no need to increase the size of the lateral CCD 20.

上記実施例では縦方向CODをミアンダチャンネル構造
のものとして説明したが、当該縦方向CODはミアンダ
チャンネル型でなくても上記の高集積化はある程度可能
となる。これを変形実施例として描けば第4図の構成と
なる。ただし同図の記号は第1図における同等部位と同
じにして示されている。
In the above embodiment, the vertical COD has been described as having a meander channel structure, but even if the vertical COD does not have a meander channel type, the above-mentioned high integration is possible to some extent. If this is depicted as a modified example, the configuration will be as shown in FIG. 4. However, the symbols in this figure are the same as the equivalent parts in FIG.

この第4図中における縦方向CCt110はミアンダチ
ャンネル型ではないが、それでも1本の縦方向C0DI
 Oに対して2条から表る受光素子lの列が隣接して配
置されているために受光面積を大きくすることなく、そ
の受光面積上に配設される縦および横方向CODならび
に受光素子の数を相当増加させることができ、高集積化
が可能となる。
Although the vertical direction CCt110 in FIG. 4 is not a meandering channel type, it still has one vertical direction C0DI.
Because the rows of light-receiving elements L that appear from two rows are arranged adjacent to O, the light-receiving area can be avoided without increasing the vertical and horizontal COD and the light-receiving elements arranged on the light-receiving area. The number can be increased considerably, making it possible to achieve high integration.

リ 発明の効果 以上、詳細に説明したように、本発明のIT型型体体操
像装置同一受光面積で一来iりも高い密度での集積化が
可能とまるために、実用上多大の効果が期待できる。
Effects of the Invention As explained in detail above, the IT-type body gymnastics imaging device of the present invention can be integrated at a higher density than ever before with the same light-receiving area, so it has great practical effects. You can expect it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のITT固体撮像装置の構造を示す平面図
、第2図は本発明に係るITT固体撮像装置の要部構造
を示す図、第8図は第2図の撮像装置の動作を示すタイ
ミングダイヤグラム、第4図は本発明の変形実施例を示
す図である1図面において、lは受光素子、2a、 2
1)は移送ゲート、7a、 7b、8a、8bは端子、
lla、 111)は受光部、1i11.21’は電荷
堰、22a、 Hl)は電荷通路、24は縦方向CCD
部をそれぞれ示す。 ( −」 ト      2      へ 6   6    ()−
FIG. 1 is a plan view showing the structure of a conventional ITT solid-state imaging device, FIG. 2 is a diagram showing the main structure of an ITT solid-state imaging device according to the present invention, and FIG. 8 shows the operation of the imaging device shown in FIG. In the timing diagram shown in FIG. 4, which is a diagram showing a modified embodiment of the present invention, l is a light receiving element, 2a, 2
1) is a transfer gate, 7a, 7b, 8a, 8b are terminals,
lla, 111) is a light receiving part, 1i11.21' is a charge weir, 22a, Hl) is a charge path, and 24 is a vertical CCD.
The parts are shown respectively. (-” To 2 to 6 6 ()-

Claims (1)

【特許請求の範囲】[Claims] 複数の受光素子列からなる光電変換部と、当該光電変換
部中の電荷を移送する移送ゲートと、該移送ゲートを介
して電荷を受は入れて転送する電荷転送部とを主体とし
た構成において、前記電荷転送部の両側にそれぞれ移送
ゲートを配置し、さらに該移送ゲートの外側に2系列か
らなる光電変換部の受光素子列を設けて、前記各受光素
子からの電荷を上記電荷転送部の異カるセμ中へ流入せ
しめる構成としたことを特徴とする固体撮像装置。
In a configuration mainly consisting of a photoelectric conversion section consisting of a plurality of light-receiving element arrays, a transfer gate that transfers charges in the photoelectric conversion section, and a charge transfer section that receives and transfers charges via the transfer gate. , transfer gates are arranged on both sides of the charge transfer section, and furthermore, a light receiving element row of two series of photoelectric conversion sections is provided outside the transfer gate, and the charge from each of the light receiving elements is transferred to the charge transfer section. A solid-state imaging device characterized in that it is configured to allow flow into a different cell.
JP57020256A 1982-02-09 1982-02-09 Solid-state image pickup device Pending JPS58137250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57020256A JPS58137250A (en) 1982-02-09 1982-02-09 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57020256A JPS58137250A (en) 1982-02-09 1982-02-09 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS58137250A true JPS58137250A (en) 1983-08-15

Family

ID=12022109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57020256A Pending JPS58137250A (en) 1982-02-09 1982-02-09 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS58137250A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160580A (en) * 1996-09-25 2000-12-12 Nec Corporation CCD image sensor having two-layered electrode structure
KR20010007345A (en) * 1999-06-14 2001-01-26 가네꼬 히사시 Solid state image sensor and driving method thereof
US7446353B2 (en) 2004-02-09 2008-11-04 Nec Electronics Corporation Solid-state imaging apparatus and charge transfer apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160580A (en) * 1996-09-25 2000-12-12 Nec Corporation CCD image sensor having two-layered electrode structure
KR20010007345A (en) * 1999-06-14 2001-01-26 가네꼬 히사시 Solid state image sensor and driving method thereof
US7446353B2 (en) 2004-02-09 2008-11-04 Nec Electronics Corporation Solid-state imaging apparatus and charge transfer apparatus

Similar Documents

Publication Publication Date Title
US5418387A (en) Solid-state imaging device with nand cell structure
JPS62126667A (en) Solid-state image pickup element
JPH0525174B2 (en)
JPS58137250A (en) Solid-state image pickup device
US4908684A (en) Solid-state imaging device
JP3284986B2 (en) Photoelectric conversion element and solid-state imaging device using the same
JP3970425B2 (en) Solid-state imaging device
US6118143A (en) Solid state image sensor
JPS60170255A (en) Solid-state image pickup device
JPH0419752B2 (en)
JP3047965B2 (en) Solid-state imaging device
JPS6239061A (en) Solid-state image pickup element
JPH0150156B2 (en)
US4812668A (en) Multiplexer elements for photovoltaic detectors
JP2689086B2 (en) Solid-state imaging device
JPH04369268A (en) Ccd solid-state image sensor
JPH0227874B2 (en)
JPH0755005Y2 (en) Solid-state imaging device
JP2005223258A (en) Solid-state imaging device and charge transfer
JPS62265758A (en) Solid state image pickup element
JP2608959B2 (en) Solid-state imaging device
JP3552410B2 (en) CCD solid-state imaging device
JPH0758770B2 (en) Solid-state imaging device
JPS58188156A (en) Solid-state image pickup device
JPS58157264A (en) Solid-state image pickup device