JPH0419752B2 - - Google Patents

Info

Publication number
JPH0419752B2
JPH0419752B2 JP57008442A JP844282A JPH0419752B2 JP H0419752 B2 JPH0419752 B2 JP H0419752B2 JP 57008442 A JP57008442 A JP 57008442A JP 844282 A JP844282 A JP 844282A JP H0419752 B2 JPH0419752 B2 JP H0419752B2
Authority
JP
Japan
Prior art keywords
channel
horizontal
region
ccd register
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57008442A
Other languages
Japanese (ja)
Other versions
JPS58125969A (en
Inventor
Shinichi Teranishi
Ikuo Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57008442A priority Critical patent/JPS58125969A/en
Publication of JPS58125969A publication Critical patent/JPS58125969A/en
Publication of JPH0419752B2 publication Critical patent/JPH0419752B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 本発明は電荷転送装置を用いた固体撮像装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state imaging device using a charge transfer device.

固体撮像装置は、小型軽量、低消費電力、高信
頼性を特徴とし、しかも撮像管におけるような焼
き付きの心配もないため、近年、多方面にわたつ
て研究開発がなされている。
Solid-state imaging devices are characterized by their small size, light weight, low power consumption, and high reliability, and because they do not have to worry about burn-in unlike image pickup tubes, they have been researched and developed in a wide range of fields in recent years.

第1図は上述した固体撮像装置のうち、インタ
ーライン転送方式と呼ばれるものの概略図であり
複数列の電荷転送装置から成る垂直シフトレジス
タ群10と、各垂直シストレジスタの片側に隣接
して配置された光電変換素子群11と、各垂直シ
フトレジスタの一端に電気的に結合した水平シフ
トレジスタ12と、その一端に設けられた電荷検
出部13から構成されている。
FIG. 1 is a schematic diagram of the so-called interline transfer type solid-state imaging device described above, and includes a vertical shift register group 10 consisting of a plurality of rows of charge transfer devices, and a vertical shift register group 10 arranged adjacent to one side of each vertical shift register. The horizontal shift register 12 is electrically coupled to one end of each vertical shift register, and a charge detection section 13 is provided at one end of the horizontal shift register 12.

第2図は第1図に示す固体撮像装置のうち垂直
CCDレジスタ群10と水平CCDレジスタ12と
の結合領域14の拡大図であり、垂直CCDレジ
スタ10のチヤネル領域20は垂直電荷転送電極
21,22と、垂直CCDレジスタ10から水平
CCDレジスタ12への信号電荷の転送を制御す
る垂直トランスフアゲート電極23で被われてい
る。また水平CCDレジスタ12のチヤネル領域
24は水平電荷転送電極25,26,27,2
8,29で被われている。これらの電極は2層の
ポリシリコンで形成されている。図において1点
鎖線で示した水平電荷転送電極22,25,2
7,29は第1層目のポリシリコンで、破線で示
した水平電荷転送電極21,23,26,28は
第2層目のポリシリコンで形成されている。水平
CCDレジスタは2相駆動の埋め込み型CCDであ
る。蓄積領域の水平電荷転送電極は第1層目のポ
リシリコンで形成され、障壁領域の水平電荷転送
電極は第2層目のポリシリコンで形成されてい
る。水平電荷転送電極26と27,28は29と
にはそれぞれ同じクロツクパルスが印加される。
さらに同図において、チヤネル領域20の末端の
領域30を水平電荷転送電極27の一部で被うこ
とにより、垂直CCDレジスタ10と水平CCDレ
ジスタ12が電気的に結合されている。
Figure 2 shows the vertical position of the solid-state imaging device shown in Figure 1.
It is an enlarged view of the coupling area 14 between the CCD register group 10 and the horizontal CCD register 12, and the channel area 20 of the vertical CCD register 10 is connected to the vertical charge transfer electrodes 21, 22 and horizontally from the vertical CCD register 10.
It is covered with a vertical transfer gate electrode 23 that controls the transfer of signal charges to the CCD register 12. Further, the channel area 24 of the horizontal CCD register 12 has horizontal charge transfer electrodes 25, 26, 27, 2.
It is covered by 8.29. These electrodes are made of two layers of polysilicon. Horizontal charge transfer electrodes 22, 25, 2 indicated by dashed lines in the figure
7 and 29 are the first layer of polysilicon, and the horizontal charge transfer electrodes 21, 23, 26, and 28 shown by broken lines are formed of the second layer of polysilicon. horizontal
The CCD register is a two-phase drive embedded CCD. The horizontal charge transfer electrodes in the storage region are formed from the first layer of polysilicon, and the horizontal charge transfer electrodes in the barrier region are formed from the second layer of polysilicon. The same clock pulse is applied to horizontal charge transfer electrodes 26, 27, 28 and 29, respectively.
Further, in the figure, the vertical CCD register 10 and the horizontal CCD register 12 are electrically coupled by covering the end region 30 of the channel region 20 with a part of the horizontal charge transfer electrode 27.

第3図は第2図に示す結合領域の−′線上
の断面を模式的に示したものである。半導体基板
31の主面には絶縁層32を介して上述した垂直
電荷転送電極21,22、垂直トランスフアゲー
ト電極23、水平電荷転送電極27が形成されて
いる。また上記の各電極下には、基板半導体とは
反対の導電型をもつ埋込みチヤネル層33が形成
され、またチヤネル領域の外側には埋込みチヤネ
ル層33の不純物と反対の導電型不純物をドーピ
ングしたチヤネルストツプ領域34が形成されて
いる。また半導体の主面は、例えば金属層35で
光遮蔽されている。同図において領域36は垂直
CCDレジスタのチヤネル領域20の一部で水平
電荷転送電極27で被われた垂直CCDレジスタ
と水平CCDレジスタを電気的に結合している第
2図の領域30を示し、また領域37は水平シフ
トレジスタのチヤネル領域を示している。
FIG. 3 schematically shows a cross section of the bonding region shown in FIG. 2 along the line -'. The above-mentioned vertical charge transfer electrodes 21 and 22, vertical transfer gate electrode 23, and horizontal charge transfer electrode 27 are formed on the main surface of the semiconductor substrate 31 with an insulating layer 32 in between. Further, a buried channel layer 33 having a conductivity type opposite to that of the substrate semiconductor is formed under each of the above electrodes, and a channel stop layer doped with an impurity of a conductivity type opposite to that of the buried channel layer 33 is formed outside the channel region. A region 34 is formed. Further, the main surface of the semiconductor is shielded from light by, for example, a metal layer 35. In the figure, area 36 is vertical.
A region 30 of FIG. 2 is shown electrically coupling the vertical CCD register and the horizontal CCD register covered by the horizontal charge transfer electrode 27 in a part of the channel region 20 of the CCD register, and the region 37 is a horizontal shift register. shows the channel area.

かかる構造の固体撮像装置の動作は、第1図に
おいて光電変換素子群11に入射光量に応じて蓄
積された信号電荷が映像信号のフレーム周期、あ
るいはフイールド周期ごとに対応して垂直シフト
レジスタ群10へ読み出されたのち、映像信号の
水平走査周期(1H)ごとに前記垂直シフトレジ
スタ群10内を並列に下方向に順次転送される。
垂直シフトレジスタ群10の末端まで転送された
信号電荷は、垂直トランスフアグート電極23が
オン状態となる水平走査周期(1H)ごとに水平
CCDレジスタ12へ並列に注入される。水平
CCDレジスタ12へ送られた信号電荷は、次の
周期で垂直CCDレジスタ群10から信号電荷が
転送されてくる間に、水平方向に順次転送され、
電荷検出部13から映像信号として外部へ取り出
される。
In the operation of the solid-state imaging device having such a structure, as shown in FIG. 1, signal charges accumulated in the photoelectric conversion element group 11 according to the amount of incident light are transferred to the vertical shift register group 10 corresponding to each frame period or field period of the video signal. After being read out, the signals are sequentially transferred downward in parallel within the vertical shift register group 10 every horizontal scanning period (1H) of the video signal.
The signal charge transferred to the end of the vertical shift register group 10 is transferred horizontally every horizontal scanning period (1H) when the vertical transfer gate electrode 23 is turned on.
Injected into CCD register 12 in parallel. horizontal
The signal charges sent to the CCD register 12 are sequentially transferred in the horizontal direction while the signal charges are transferred from the vertical CCD register group 10 in the next cycle.
The charge detection unit 13 outputs the signal to the outside as a video signal.

この様な従来の固体撮像装置では、高輝度被写
体を撮像した場合などに、映像の前に横線状の偽
信号が現われたりする、撮像動作上好ましくない
現象が見受けられた。この現象は前記固体撮像装
置を単板カラーカメラに応用した場合など、色ず
れ、あるいは色のシエーデングの原因ともなつて
いる。
In such conventional solid-state imaging devices, undesirable phenomena in imaging operation have been observed, such as when a high-brightness object is imaged, such as a horizontal line-like false signal appearing in front of the image. This phenomenon also causes color shift or color shading when the solid-state imaging device is applied to a single-chip color camera.

前記現象は第2図あるいは第3図に示す垂直
CCDレジスタと水平CCDレジスタの結合領域の
構造に起因するものである。第4図a,b,cは
前記現象を説明するために第3図に示す結合領域
の断面図の各部分における電位分布を模式的に示
したもので、第4図a,bは垂直電荷転送電極2
1,22と水平電荷転送電極27がオン状態で、
垂直トランスフアゲート電極23がオフ状態とな
る時点の電位分布を示し、第4図cは水平電荷転
送電極27だけが前記状態からオフ状態に変移し
た時点の電位分布を示している。また第5図はチ
ヤネル領域の幅とこの領域でのチヤネル電位の関
係を示す図である。以後、第2図、第3図、第4
図及び第5図を用いて前記現象を説明する。
The above phenomenon occurs in the vertical direction shown in Fig. 2 or 3.
This is due to the structure of the coupling area between the CCD register and the horizontal CCD register. Figures 4a, b, and c schematically show the potential distribution in each part of the cross-sectional view of the coupling region shown in Figure 3 in order to explain the above phenomenon. Transfer electrode 2
1, 22 and the horizontal charge transfer electrode 27 are in the on state,
The potential distribution at the time when the vertical transfer gate electrode 23 turns off is shown, and FIG. 4c shows the potential distribution at the time when only the horizontal charge transfer electrode 27 changes from the above state to the off state. Further, FIG. 5 is a diagram showing the relationship between the width of the channel region and the channel potential in this region. From now on, Fig. 2, Fig. 3, Fig. 4
The above phenomenon will be explained using FIG.

まず、第4図aにおいて第3図に示す領域36
のチヤネル領域Vが領域37のチヤネル電位H
に比べて小さいのは、第2図に示す領域30のチ
ヤネル幅WVが水平CCDレジスタのチヤネル領域
24の幅WHに比べて小さいためである。すなわ
ち第5図においてチヤネル幅WHを有する領域の
チヤネル電位はHであるが、チヤネル幅WVを有
する領域のチヤネル電位Vは狭チヤネル効果に
より上記チヤネル電位Hよりも小さくなる。こ
のため第4図aにおいて水平CCDレジスタのチ
ヤネル領域37を上記2つのチヤネル電位差H
Vよりも小さなレベルの信号電荷が転送され
る場合には、信号電荷は領域36に入いり込ま
ず、効率の良い転送が行なわれる。ところが同図
bに示すように信号電荷のレベルが上記電位差
HVを越える程大きくなると、上記信号電荷
の一部は領域36へ入いり込む。さらに同図cに
示すように水平電荷転送電極27がオフ状態にな
ると、領域36へ入り込んだ信号電荷の一部は垂
直トランスフアゲート23下のバリア40を乗り
越えて垂直電荷転送電極22下のウエル41へ注
入される。ウエル41へ注入された偽の信号電荷
は垂直トランスフアゲート電極23がオン状態と
なるタイミングで再び水平CCDレジスタへ注入
され、あたかも真の信号電荷であるように振る舞
う。これは前述した高輝度被写体撮像時の横線上
の偽信号の発生原因となつていた。
First, in FIG. 4a, the area 36 shown in FIG.
The channel area V of is the channel potential H of area 37
This is because the channel width W V of the area 30 shown in FIG. 2 is smaller than the width W H of the channel area 24 of the horizontal CCD register. That is, in FIG. 5, the channel potential in the region having the channel width W H is H , but the channel potential V in the region having the channel width W V becomes smaller than the channel potential H due to the narrow channel effect. Therefore, in FIG. 4a, the channel area 37 of the horizontal CCD register is
- When a signal charge at a level lower than V is transferred, the signal charge does not enter the region 36, and efficient transfer is performed. However, as shown in figure b, the level of the signal charge is higher than the above potential difference.
When the signal charge becomes large enough to exceed HV , a portion of the signal charge enters the region 36 . Furthermore, when the horizontal charge transfer electrode 27 is turned off as shown in FIG. injected into. The false signal charge injected into the well 41 is again injected into the horizontal CCD register at the timing when the vertical transfer gate electrode 23 turns on, and behaves as if it were a real signal charge. This was a cause of the generation of false signals on the horizontal line when imaging a high-brightness object as described above.

本発明の目的は上記の欠点を無くした高品質な
固体撮像装置を提供することにある。
An object of the present invention is to provide a high-quality solid-state imaging device that eliminates the above-mentioned drawbacks.

本発明によれば、配列された各光電変換素子群
からの信号電荷を垂直方向へ転送するための複数
列の垂直CCD(電荷結合素子)レジスタと、この
垂直CCDレジスタの一方の端部に対応して設け
られた、第一層目の電極で被われた蓄積領域と第
二層目の電極で被われた障壁領域とからなる2相
駆動水平CCDレジスタとを備えた固体撮像装置
において、前記垂直CCDレジスタの最終電極に
被われたチヤネル領域と前記水平CCDレジスタ
の障壁領域とが隣接しており、かつ、この障壁領
域とこの障壁領域と対をなす蓄積領域は他の水平
CCDレジスタの障壁領域と蓄積領域より幅が広
くこの幅広の部分で前記チヤネル領域に入り込ん
でおり、しかもこのチヤネル領域の幅は前記水平
CCDレジスタのチヤネル領域の幅より狭く狭チ
ヤネル効果を生じる程度の幅であることを特徴と
する固体撮像素子が得られる。
According to the present invention, a plurality of columns of vertical CCD (charge-coupled device) registers for vertically transferring signal charges from each arrayed photoelectric conversion element group and one end of the vertical CCD registers are provided. In the solid-state imaging device, the solid-state imaging device includes a two-phase drive horizontal CCD register including an accumulation region covered with a first-layer electrode and a barrier region covered with a second-layer electrode. The channel region covered by the final electrode of the vertical CCD resistor and the barrier region of the horizontal CCD resistor are adjacent to each other, and this barrier region and the storage region paired with this barrier region are adjacent to each other, and the barrier region and the storage region paired with this barrier region are
It is wider than the barrier area and the storage area of the CCD register, and this wide part enters the channel area, and the width of this channel area is wider than the horizontal area.
A solid-state imaging device is obtained which is characterized in that the width is narrower than the width of the channel region of the CCD register and is narrow enough to produce a narrow channel effect.

次に本発明の実施例について図面を用いて説明
する。
Next, embodiments of the present invention will be described using the drawings.

本発明の一実施例の基本構成は、従来例の第1
図とほぼ同一である。第6図は本発明による固体
撮像装置のうち第1図に示す垂直CCDレジスタ
群10と水平CCDレジスタ12との結合領域1
4の拡大図であり、従来例の第2図に対応してい
る。また同図において第2図と同一番号のものは
同一構成要素を示している。垂直CCDレジスタ
10のチヤネル領域20は垂直電荷転送電極6
1,62と、垂直CCDレジスタ10から水平
CCDレジスタ12への信号電荷の転送を制御す
る垂直トランスフアゲート電極63で被われてい
る。また水平CCDレジスタ12のチヤネル領域
24は水平電荷転送電極64〜69で被われてい
る。これらの電極は2層のポリシリコンで形成さ
れている。図において、1点鎖線で示した水平電
荷転送電極61,63,65,67,69は第1
層目のポリシリコンで、破線で示した水平電荷転
送電極62,64,66,68は第2層目のポリ
シリコンで形成されている。水平CCDレジスタ
は蓄積領域と障壁領域とからなる2相駆動の埋め
込み型CCDである。蓄積領域の水平電荷転送電
極は第1層目のポリシリコンで形成され(65,
67,69)、障壁領域の水平電荷転送電極は第
2層目のポリシリコンで形成されている(64,
66,68)。水平電荷転送電極64と65,6
6と67,68と69とがそれぞれ対の電極であ
りそれぞれ同じクロツクパルスが印加される。さ
らに同図において、垂直CCDレジスタのチヤネ
ル領域20の末端の領域70と71を水平電荷転
送電極67と66の一部で被うことにより、垂直
CCDレジスタ10と水平CCDレジスタ12とが
電気的に結合される。このとき垂直CCDレジス
タ10の最終電極である垂直トランスフアゲート
63と水平CCDレジスタ10の障壁領域である
水平電荷転送電極66とが隣接している。第7図
aは第6図に示す結合領域−′線上の断面を
模式的に示したもので、従来例の第3図に対応し
ている。半導体基板31の主面には絶縁層32を
介して上述した垂直電荷転送電極62、垂直トラ
ンスフアゲート電極63、水平電荷転送電極66
(障壁領域)、67(蓄積領域)が形成されてい
る。上記の各電極下には基板半導体とは反対の導
電型をもつ埋込みチヤネル層33が形成されてい
る。障壁領域の埋込みチヤネル層33の表面に
は、埋込みチヤネル層とは逆導電型の不純物イオ
ン注入層72が形成されており、チヤネル電位が
蓄積領域に比較して小さくなつている。チヤネル
領域の外側には半導体基板31と同一導電型の不
純物をドーピングしたチヤネルストツプ領域34
が形成されている。
The basic configuration of one embodiment of the present invention is similar to the first embodiment of the conventional example.
It is almost the same as the figure. FIG. 6 shows a coupling area 1 between the vertical CCD register group 10 and the horizontal CCD register 12 shown in FIG. 1 in the solid-state imaging device according to the present invention.
4, and corresponds to FIG. 2 of the conventional example. Further, in this figure, the same numbers as in FIG. 2 indicate the same components. The channel region 20 of the vertical CCD register 10 is connected to the vertical charge transfer electrode 6
1, 62 and horizontal from vertical CCD register 10
It is covered with a vertical transfer gate electrode 63 that controls the transfer of signal charges to the CCD register 12. Further, the channel region 24 of the horizontal CCD register 12 is covered with horizontal charge transfer electrodes 64-69. These electrodes are made of two layers of polysilicon. In the figure, horizontal charge transfer electrodes 61, 63, 65, 67, and 69 indicated by dashed lines are the first
The horizontal charge transfer electrodes 62, 64, 66, and 68 shown by broken lines are formed of the second layer of polysilicon. The horizontal CCD register is a two-phase driven embedded CCD consisting of a storage region and a barrier region. The horizontal charge transfer electrode in the storage region is formed of the first layer of polysilicon (65,
67, 69), the horizontal charge transfer electrode in the barrier region is formed of the second layer of polysilicon (64,
66, 68). Horizontal charge transfer electrodes 64, 65, 6
6 and 67, and 68 and 69 are paired electrodes, to which the same clock pulse is applied. Furthermore, in the same figure, by covering the end regions 70 and 71 of the channel region 20 of the vertical CCD register with a part of the horizontal charge transfer electrodes 67 and 66, the vertical
CCD register 10 and horizontal CCD register 12 are electrically coupled. At this time, the vertical transfer gate 63, which is the final electrode of the vertical CCD register 10, and the horizontal charge transfer electrode 66, which is the barrier region of the horizontal CCD register 10, are adjacent to each other. FIG. 7a schematically shows a cross section taken along the bonding region-' line shown in FIG. 6, and corresponds to FIG. 3 of the conventional example. The above-mentioned vertical charge transfer electrode 62, vertical transfer gate electrode 63, and horizontal charge transfer electrode 66 are formed on the main surface of the semiconductor substrate 31 via the insulating layer 32.
(barrier region) and 67 (storage region) are formed. A buried channel layer 33 having a conductivity type opposite to that of the substrate semiconductor is formed under each of the above electrodes. An impurity ion implantation layer 72 having a conductivity type opposite to that of the buried channel layer is formed on the surface of the buried channel layer 33 in the barrier region, and the channel potential is lower than that in the accumulation region. Outside the channel region is a channel stop region 34 doped with impurities of the same conductivity type as the semiconductor substrate 31.
is formed.

かかる構造の固体撮像装置の動作は第1図〜第
3図に示した従来例と同様である。ここでは第7
図b,cを用いて水平CCDレジスタでの電荷転
送の模様を説明する。第7図b,cは第7図aに
示す結合領域の電位分布を模式的に示したもので
ある。第7図bは垂直電荷転送電極62がオン状
態、垂直トランスフアゲート電極63がオフ状
態、水平電荷転送電極66,67がオン状態の時
の電位分布であり、信号電荷が破線の電位まで蓄
積領域に蓄積されている。第7図bの状態から水
平電荷転送電極66,67がオン状態よりオフ状
態に変移した時点の電位分布を第7図cに示す。
水平電荷転送電極66と67とには常に同一パル
スが印加されているので、領域71のチヤネル電
位は領域70のチヤネル電位に比較して常に小さ
い。このために水平電荷転送電極66と67がオ
フ状態の時にも、水平CCDレジスタの蓄積領域
と垂直CCDレジスタの間には、領域71が電気
的な障壁として存在することになり、信号電荷が
水平CCDレジスタより垂直CCDレジスタへ移動
することはない。従つて本発明による固体撮像装
置では高輝度被写体を撮像した場合にも横線状の
偽信号の発生が完全に防止できる。さらに、この
発明による固体撮像装置では垂直CCDレジスタ
のチヤネル領域20のチヤネル幅W′Vを水平CCD
レジスタの障壁領域と蓄積領域のチヤネル長から
目合わせズレの余裕を差し引いた大きさにでき
る。これに対して従来の第2図の固体撮像装置で
は垂直CCDレジスタのチヤネル領域20のチヤ
ネル幅WVを水平CCDレジスタの蓄積領域のチヤ
ネル長から目合わせズレの余裕を差し引いた大き
さにしかできない。この結果、本発明の固体撮像
装置では垂直CCDレジスタのチヤネル幅を大き
くでき、垂直CCDレジスタから水平CCDレジス
タへの電荷転送効率がよくなる。
The operation of the solid-state imaging device having such a structure is similar to the conventional example shown in FIGS. 1 to 3. Here the seventh
The charge transfer pattern in the horizontal CCD register will be explained using Figures b and c. FIGS. 7b and 7c schematically show the potential distribution of the bonding region shown in FIG. 7a. FIG. 7b shows the potential distribution when the vertical charge transfer electrode 62 is in the on state, the vertical transfer gate electrode 63 is in the off state, and the horizontal charge transfer electrodes 66 and 67 are in the on state. is accumulated in. FIG. 7c shows the potential distribution when the horizontal charge transfer electrodes 66 and 67 change from the on state to the off state from the state shown in FIG. 7b.
Since the same pulse is always applied to the horizontal charge transfer electrodes 66 and 67, the channel potential of region 71 is always smaller than the channel potential of region 70. Therefore, even when the horizontal charge transfer electrodes 66 and 67 are in the off state, the region 71 exists as an electrical barrier between the storage region of the horizontal CCD register and the vertical CCD register, and the signal charge is transferred horizontally. There is no movement from the CCD register to the vertical CCD register. Therefore, the solid-state imaging device according to the present invention can completely prevent the generation of horizontal line-like false signals even when a high-brightness object is imaged. Furthermore, in the solid-state imaging device according to the present invention, the channel width W'V of the channel area 20 of the vertical CCD register is
The size can be determined by subtracting the allowance for misalignment from the channel length of the resistor barrier area and storage area. In contrast, in the conventional solid-state imaging device shown in FIG. 2, the channel width WV of the channel area 20 of the vertical CCD register can only be made equal to the channel length of the storage area of the horizontal CCD register minus the allowance for misalignment. . As a result, in the solid-state imaging device of the present invention, the channel width of the vertical CCD register can be increased, and the charge transfer efficiency from the vertical CCD register to the horizontal CCD register can be improved.

なお、垂直CCDレジスタのチヤネル領域20
のうちで、水平電荷転送電極66,67で被われ
ている領域71,70のチヤネル電位φB,φV
水平CCDレジスタの領域73のチヤネル電位φH
より浅くなつている。このため、転送電荷量が小
さくφVより浅くまで電荷が蓄積されない場合に
は、領域73のみに電荷が蓄積され、水平CCD
レジスタの実効的なチヤネル領域は凹凸のない真
直な形状を保つている。この結果、電荷量が小さ
い場合でも転送距離が実効的に長くなることはな
く、水平CCDレジスタの転送効率はよい。
In addition, the channel area 20 of the vertical CCD register
Among them, the channel potentials φ B and φ V of the regions 71 and 70 covered by the horizontal charge transfer electrodes 66 and 67 are the channel potentials φ H of the region 73 of the horizontal CCD register.
It's getting shallower. Therefore, if the amount of transferred charge is small and the charge is not accumulated to a depth shallower than φ V , the charge is accumulated only in the region 73, and the horizontal CCD
The effective channel area of the resistor maintains a straight shape with no irregularities. As a result, even when the amount of charge is small, the transfer distance does not become effectively long, and the transfer efficiency of the horizontal CCD register is high.

なお、ここではこの発明をインターライン転送
方式の撮像装置を使つて説明したが、フレーム転
送方式のものでも同様に実現できる。
Note that although the present invention has been described here using an image pickup device using an interline transfer method, it can be similarly implemented using an image pickup device using a frame transfer method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はインターライン転送方式の撮像装置の
概略図、第2図は第1図における垂直シフトレジ
スタと水平シフトレジスタの結合領域の拡大図で
従来例を示している。第3図は第2図の−′
線上の断面図、第4図a,b,cは第3図におけ
る電位分布模式図、第5図はチヤネル電位のチヤ
ネル幅依存性を示す図、第6図は第1図における
垂直シフトレジスタと水平シフトレジスタの結合
領域の拡大図で本発明による構造が示されてい
る。第7図aは第6図の−′線上の断面図、
第7図b,cは第7図aにおける電位分布模式図
である。 10……垂直CCDレジスタ、11……光電変
換素子、12……水平CCDレジスタ、64,6
6,68……水平電荷転送電極(障壁領域)、6
5,67,69……水平電荷転送電極(蓄積領
域)。
FIG. 1 is a schematic diagram of an imaging device using an interline transfer method, and FIG. 2 is an enlarged view of a coupling area of a vertical shift register and a horizontal shift register in FIG. 1, showing a conventional example. Figure 3 is -' of Figure 2.
4a, b, and c are schematic diagrams of the potential distribution in FIG. 3, FIG. 5 is a diagram showing the channel width dependence of channel potential, and FIG. 6 is a vertical shift register in FIG. The structure according to the invention is shown in an enlarged view of the coupling area of a horizontal shift register. Figure 7a is a sectional view taken along the line -' in Figure 6;
FIGS. 7b and 7c are schematic potential distribution diagrams in FIG. 7a. 10... Vertical CCD register, 11... Photoelectric conversion element, 12... Horizontal CCD register, 64, 6
6, 68...Horizontal charge transfer electrode (barrier region), 6
5, 67, 69...Horizontal charge transfer electrode (storage region).

Claims (1)

【特許請求の範囲】[Claims] 1 配列された各光電変換素子群からの信号電荷
を垂直方向へ転送するための複数列の垂直CCD
(電荷結合素子)レジスタと、この垂直CCDレジ
スタの一方の端部に対応して設けられ、第一層目
の電極で被われた蓄積領域と第二層目の電極で被
われた障壁領域とからなる2相駆動水平CCDレ
ジスタとを備えた固体撮像装置において、前記垂
直CCDレジスタの最終電極に被われたチヤネル
領域と前記水平CCDレジスタの障壁領域とが隣
接しており、かつ、この障壁領域とこの障壁領域
と対をなす蓄積領域は他の水平CCDレジスタの
障壁領域と蓄積領域より幅が広くこの部分で前記
チヤネル領域に入り込んでおり、しかもこのチヤ
ネル領域の幅は前記水平CCDレジスタのチヤネ
ル領域の幅より狭く狭チヤネル効果を生じる程度
の幅であることを特徴とする固体撮像素子。
1 Multiple rows of vertical CCDs to vertically transfer signal charges from each arrayed photoelectric conversion element group
(charge-coupled device) resistor, an accumulation region provided corresponding to one end of this vertical CCD resistor, covered by the first layer electrode, and a barrier region covered by the second layer electrode. A solid-state imaging device equipped with a two-phase drive horizontal CCD register consisting of a channel region covered with a final electrode of the vertical CCD register and a barrier region of the horizontal CCD register are adjacent to each other, and The storage area paired with this barrier area is wider than the barrier area and storage area of other horizontal CCD registers and enters the channel area at this part, and the width of this channel area is wider than the channel of the horizontal CCD register. A solid-state imaging device characterized in that the width is narrower than the width of a region and is narrow enough to produce a narrow channel effect.
JP57008442A 1982-01-22 1982-01-22 Solid-state image pickup device Granted JPS58125969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008442A JPS58125969A (en) 1982-01-22 1982-01-22 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008442A JPS58125969A (en) 1982-01-22 1982-01-22 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS58125969A JPS58125969A (en) 1983-07-27
JPH0419752B2 true JPH0419752B2 (en) 1992-03-31

Family

ID=11693236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008442A Granted JPS58125969A (en) 1982-01-22 1982-01-22 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS58125969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592578B2 (en) * 1993-03-11 1997-03-19 バッハマン オプティカル エンジニアリング Polishing machine for spectacle lens with means for controlling the pressure value for tightening the spectacle lens material to be polished

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666346B2 (en) * 1984-04-09 1994-08-24 日本電気株式会社 Charge coupled device and driving method thereof
JPH0618265B2 (en) * 1984-05-02 1994-03-09 株式会社日立製作所 Solid-state image sensor
JPH0758770B2 (en) * 1986-01-21 1995-06-21 日本電気株式会社 Solid-state imaging device
JP2699841B2 (en) * 1993-12-10 1998-01-19 日本電気株式会社 Solid-state imaging device
JP3649397B2 (en) * 2002-03-01 2005-05-18 松下電器産業株式会社 Solid-state imaging device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546779A (en) * 1977-06-17 1979-01-19 Fujitsu Ltd Composition charge transfer device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546779A (en) * 1977-06-17 1979-01-19 Fujitsu Ltd Composition charge transfer device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592578B2 (en) * 1993-03-11 1997-03-19 バッハマン オプティカル エンジニアリング Polishing machine for spectacle lens with means for controlling the pressure value for tightening the spectacle lens material to be polished

Also Published As

Publication number Publication date
JPS58125969A (en) 1983-07-27

Similar Documents

Publication Publication Date Title
KR920010830B1 (en) Interline type charge transfer imaging device
US4460912A (en) Solid state image sensors
US4518978A (en) Solid state image sensor
US4758895A (en) Storage registers with charge packet accumulation capability, as for solid-state imagers
JPH05505920A (en) image sensor
JP2000340784A (en) Solid-state image pickup device
JPH0419752B2 (en)
JPH0424873B2 (en)
JPH07161970A (en) Solid-state image pickup device
JPH0262170A (en) Solid-state image pickup device
JP3052560B2 (en) Charge transfer imaging device and method of manufacturing the same
KR960001182B1 (en) Solid state image pick-up device
US5382978A (en) Method for driving two-dimensional CCD imaging device
JPS6210469B2 (en)
JP2002151673A (en) Solid-state image pickup element
JP2877047B2 (en) Solid-state imaging device
JPH0150156B2 (en)
JPH0789583B2 (en) Charge coupled device device and driving method thereof
JPS59122085A (en) Solid-state image pickup element
JPH0421351B2 (en)
KR950002194B1 (en) Frame transfer style ccd image sensor
JPH0424874B2 (en)
JP2825075B2 (en) Solid-state imaging device and driving method thereof
JP3179080B2 (en) Charge coupled device and solid-state imaging device provided with the device
JPH07112058B2 (en) Solid-state image sensor