JPS58137240A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58137240A
JPS58137240A JP1885682A JP1885682A JPS58137240A JP S58137240 A JPS58137240 A JP S58137240A JP 1885682 A JP1885682 A JP 1885682A JP 1885682 A JP1885682 A JP 1885682A JP S58137240 A JPS58137240 A JP S58137240A
Authority
JP
Japan
Prior art keywords
single crystal
semiconductor device
layer
electrode
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1885682A
Other languages
Japanese (ja)
Other versions
JPS6314870B2 (en
Inventor
Toshimasa Ishida
俊正 石田
Masahiro Akiyama
秋山 正博
Toshio Nonaka
野中 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1885682A priority Critical patent/JPS58137240A/en
Publication of JPS58137240A publication Critical patent/JPS58137240A/en
Publication of JPS6314870B2 publication Critical patent/JPS6314870B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To realize a cooling means for semiconductor device which does not require an exclusive power supply and can be loaded easily by integrating a Peltier effect element into a GaAs semiconductor device and utilizing an operating current of semiconductor device itself for Peltier cooling. CONSTITUTION:A Ge single crystal 2 is formed on an N type GaAs substrate 1. A semi-insulating GaAs single crystal layer 3 is formed on a single crystal 2. A logic IC layer 4 is formed as the active layer on the surface of single crystal layer 3. The wirings for drain electrode 5 and source electrode 6 are provided on the upper surface of said active layer, thus forming a Schottky gate FET. An ohmic electrode 7 is fixed on the heat sink material consisting of a diamond in the opposite side of the substrate 1. The electrode 8 is fixed to the earth. When each logic IC layer 4 executes logic operation, a current flows between the source and drain and a current I flows into the substrate 1 through the electrodes 6, 7. The Peltier effect is generated by this operation.

Description

【発明の詳細な説明】 この発明は、ペルチェ効果による冷却効果を自分自身の
動作電流で行う構造を一体化構成とした半導体装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device having an integrated structure in which a cooling effect due to the Peltier effect is achieved using its own operating current.

GaAaを基板材料とした論理IC,FIT、メモリ、
レーザダイオードなどは高速コンピュータ用IC,光通
信用デバイスとして開発が行゛われ、一部実用化されて
いる。これらの素子はいずれも自からの動作に要する消
費電力によシ発熱し、温度上昇によシ素子性能(高速性
、効率)を著しく低下させると云う欠点がめった。
Logic ICs, FITs, memories using GaAa as a substrate material,
Laser diodes and the like have been developed as ICs for high-speed computers and devices for optical communications, and some have been put into practical use. All of these devices have the disadvantage that they generate heat due to the power consumption required for their own operation, and the device performance (high speed, efficiency) is significantly reduced due to temperature rise.

この欠点を解決する方法として、従来、次に列挙するご
とき方法かめる。
Conventionally, the following methods have been used to solve this drawback.

(1)  なるべく低電力で高効率動作させるように素
子構造を工夫する。
(1) Devise element structure to operate with low power and high efficiency as much as possible.

(2)熱設計の工夫によシ、素子よシ発生する熱量を単
時間に広面積に拡散させるような構造的工夫を行い、適
切なヒートシンク材料を選定する。
(2) By devising a thermal design, structural devises are made to spread the amount of heat generated by each element over a wide area in a single time period, and an appropriate heat sink material is selected.

と云う2通シの方法が採られていた。Two methods were adopted:

しかしながら、これらの方法はすでに技術的に限界に近
いところまで改良されておシ、さらに飛躍的に改良する
ことは困難である。
However, these methods have already been improved to a point close to their technical limits, and it is difficult to improve them further dramatically.

この発明は、上記の点にかんがみなされたもので、Ga
Ag半導体装置内部にペルチェ効果素子を一体化構造で
組み込み、半導体装置自身の動作電流をペルチェ冷却に
利用できる構造にして、別電源が不要であるとともに、
実装が容易になる半導体装置を提供することを目的とす
る。
This invention has been made in view of the above points, and
A Peltier effect element is integrated into the Ag semiconductor device, and the operating current of the semiconductor device itself can be used for Peltier cooling, eliminating the need for a separate power source.
An object of the present invention is to provide a semiconductor device that can be easily mounted.

以下、この発明の半導体装置の実施例について図面に基
づき説明する。図はその一実施例の構成を示す断面図で
ib、冷却素子付論理素子に適用した場合を示している
1図中の1はペルチェ冷却に利用するNfiGaAs基
板でib、キャリア濃度は8 X 10” as@度が
最も効率よく冷却される。
Embodiments of the semiconductor device of the present invention will be described below with reference to the drawings. The figure is a cross-sectional view showing the configuration of one example, ib, and shows the case where it is applied to a logic element with a cooling element. 1 in the figure is an NfiGaAs substrate used for Peltier cooling, and the carrier concentration is 8 x 10. ” as@degrees is the most efficient cooling method.

このNi1JGaAs基板l上にエピタキシャル成長さ
れ九G・単結晶2が形成されている。このG@単結晶2
はN型G&ム纒基板1とは良好なオーミック性を有して
いる。
On this Ni1JGaAs substrate 1, a 9G single crystal 2 is formed by epitaxial growth. This G @ single crystal 2
It has good ohmic properties with the N-type G&M printed circuit board 1.

このG・単結晶2上にエピタキシャル成長させて、10
1Ω傷以上の比抵抗を有する半絶縁性のQaAs単結晶
層3が形成されている。GeとQaAiは格子定数およ
び熱膨張係数が極めて一致しているため、このようなエ
ピタキシャル成長は容易に実現できる。
Epitaxially grown on this G single crystal 2, 10
A semi-insulating QaAs single crystal layer 3 having a resistivity of 1Ω or more is formed. Since Ge and QaAi have extremely similar lattice constants and coefficients of thermal expansion, such epitaxial growth can be easily achieved.

このように形成されたGaAs単結晶層30表面にイオ
ン注入などによシ、能動層(半導体装it)として、論
理IC層4が形成されている。この論理IC層4はその
上面に電極配謙、すなわち共通ドレイン電極5および共
通ソース電極6の配線と、ノ9ツシヴエーションを行っ
たショットキーゲートFETを構成主体としている。
A logic IC layer 4 is formed as an active layer (semiconductor device IT) on the surface of the GaAs single crystal layer 30 thus formed by ion implantation or the like. This logic IC layer 4 mainly consists of an electrode arrangement on its upper surface, that is, wiring for a common drain electrode 5 and a common source electrode 6, and a Schottky gate FET which has been subjected to 99stivation.

一方、7はN!II!lGmAs基illの反対側のオ
ーミック電極で、A u G @/N iなどによ多形
成されている。このオーミック電極7はダイヤモンドな
どを用いたヒートシンク材上に固定されている。
On the other hand, 7 is N! II! It is an ohmic electrode on the opposite side of the lGmAs base ill, and is formed of a polygon of A u G @/N i or the like. This ohmic electrode 7 is fixed on a heat sink material made of diamond or the like.

また、8は選択エツチングによりm出させたG・単結晶
2上に設けた電極で、Auなどによ多形成されている。
Reference numeral 8 denotes an electrode provided on the G single crystal 2 which has been exposed by selective etching, and is made of Au or the like.

そして、共通ソース電極6とオーミック電極7とが結線
され、電極8はアースに固定されておシ、さらに、共通
ドレイン電極5には。
The common source electrode 6 and the ohmic electrode 7 are connected together, the electrode 8 is fixed to ground, and the common drain electrode 5 is connected to the common source electrode 6 .

通常+1v〜3.V程度の電位がかけられる。Normally +1v~3. A potential of about V is applied.

このように構成されたこの発明の半導体装置において、
各論理IC層4に論理動作を行わせると、各論理IC層
4のソース・ドレイン間に[m カfiれ、これらはす
べ、不共通ソース電極6およびオーミック電極7を通し
て、N型GaAs基板lに・鑞流工が流れ込み、さらに
、Go単結晶2および電極8を通してアースに落ちる。
In the semiconductor device of the present invention configured in this way,
When each logic IC layer 4 is made to perform a logic operation, [m] is generated between the source and drain of each logic IC layer 4, and these are all connected to the N-type GaAs substrate through the uncommon source electrode 6 and the ohmic electrode 7. The liquid flows in and further falls to the ground through the Go single crystal 2 and the electrode 8.

この動作にあ・いて。Watch this action.

ベルチェ効果が生じる。A Beltier effect occurs.

すなわち、電子の動電に着目すれば、電子はG・単結晶
211ilからN11GaAsfi板lへおよびNll
N11G基板lからオーミック電極7へ流れ込み、前者
によりG・単結晶2の冷却を行い、後者にょジオ−ミッ
ク電極7の発熱が生じる。このGo単結晶2の冷却によ
り、論理IC層4が冷却される。
That is, if we focus on the electrodynamics of electrons, electrons move from G single crystal 211il to N11GaAsfi plate l and Nll
It flows from the N11G substrate l to the ohmic electrode 7, and the former cools the G single crystal 2, while the latter generates heat in the ohmic electrode 7. By cooling the Go single crystal 2, the logic IC layer 4 is cooled.

一方、オーミック電極7での発熱はすみゃかにヒートシ
ンクから熱放散される。
On the other hand, the heat generated by the ohmic electrode 7 is immediately dissipated from the heat sink.

なお、上記実施例に2いて拡、ヒートシンクとして、ダ
イヤモンドと云う絶縁材料を用いたが、Cuなどの導電
材料を用いても、ヒートシンク材料を薄い導電性絶縁層
を有する・臂ツケージ材料を用意し、電位を周Hよシ浮
かす工夫をすることによシ、上記実施例と同様に実現で
きる。
In addition, in Example 2 above, an insulating material called diamond was used as the heat sink, but even if a conductive material such as Cu is used, the heat sink material can be replaced with a thin conductive insulating layer or an arm cage material. , can be realized in the same way as in the above embodiments by making arrangements to raise the potential above H.

また、上記実施例において、N盤GmAg基板lの比抵
抗は2 X 10−aΩ−傷程度でibシ、オーミック
接触抵抗dlO−・Ω−−オーダ以下で容易に実現でき
るため、ペルチェ効果素子自身の抵抗発熱による電位降
下は無視し得る。
In addition, in the above example, the specific resistance of the N-board GmAg substrate l can be easily realized with a scratch on the order of 2 x 10-aΩ, and the ohmic contact resistance can be easily realized on the order of less than dlO-・Ω-, so that the Peltier effect element itself The potential drop due to resistance heating can be ignored.

以上説明した上記実施例においては、 (1) ベルチェ効果によシ論理IC層4自身を直接冷
却できる。
In the embodiment described above, (1) the logic IC layer 4 itself can be directly cooled by the Beltier effect;

(2)論理IC層の動作電流を直接利用するため、別電
源を必要としない。
(2) Since the operating current of the logic IC layer is directly utilized, no separate power supply is required.

(3)論理IC層、とペルチェ効果素子が一体化講造で
あるため、実装が容易である。
(3) Since the logic IC layer and the Peltier effect element are integrated, implementation is easy.

などの利点がある。There are advantages such as

さらに、上記実施例においては、 GaAaを用いた論
理ICを用いた例についてi1!明したが、このイオー
ド、メモリ、FITなどについても電極配線を適切に行
うことにょ)容易に実現できる。
Furthermore, in the above embodiment, i1! is used for an example using a GaAa logic IC. As described above, the diodes, memories, FITs, etc. can be easily realized by properly wiring the electrodes.

また、ペルチェ効果素子が一体化しているので、高速高
一度論現素子、メモ91C,高効率・9ワーFET、高
効率長寿命LED、レーデダイオードなどに利用するこ
とができる。
Furthermore, since the Peltier effect element is integrated, it can be used in high-speed high-speed logic elements, Memo 91C, high-efficiency/9-watt FETs, high-efficiency long-life LEDs, LED diodes, etc.

以上詳述したように、この発明の半導体装置によれは、
N 111 G aム1基板上の一方の面にオーミッり
電極を形成するとともに、このN l[G aム畠基板
の他方の面にこれとオー擢ツク性を有するG・単結晶を
形成することによジベルチェ効果素子のG・単結晶面上
にGaAsまたはG・ム1ム膳あるいは両者の組合せか
らなる半導体装置を形成し、その動作電力をペルチェ効
果素子の冷却に用いるように起重するようにしたので、
ペルチェ効果によシ素子自身を直接冷却できるとともに
、別電源が不要となp、しかも実装が容易でめるなどの
利点を有する。
As detailed above, the semiconductor device of the present invention has the following features:
An ohmic electrode is formed on one surface of the N 111 Ga 1 substrate, and a G single crystal having osmotic properties is formed on the other surface of the N 111 Ga 1 substrate. In particular, a semiconductor device made of GaAs or G/Mumium or a combination of both is formed on the G/single crystal plane of the Gibertier effect element, and the semiconductor device is raised so that its operating power is used for cooling the Peltier effect element. I did it like this,
It has the advantage that the element itself can be directly cooled by the Peltier effect, no separate power supply is required, and it can be easily mounted.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の半導体装置の一実施例の構成を示す断面
図でるる。 l・・・NllN11G基板、2・・・G・単結晶、3
・・・半絶縁性GaAs単結晶層、4・・・論理IC層
、5・・・共通ドレイy電極、6・・・共通ソース電極
、7・・・オーミック電極、8・・・電極。 1、事件の表示 昭和17年 畳 許 願第 1m1@1!II  号2
、ii明O名称 半導体装置 &補正をする者 事件との関係    特  許 出願人C029)沖電
気工業株式会社 4、代理人 5、補正命令の日付  昭和  年  月  日 (自
発)6、補正の対象 明細書0411許−求の範■および発−0Wsな諷−O
欄 2 補正の内容 11)明細書の「2、特許請求の範囲」を別紙の通シ訂
正する。 2)  IN細書5頁13行「導電性」を削除する。 3)同7頁3行「ペルチェ効果素子の」を削除する。 2、特許請求の範囲 一方の面にオーミック電極を有するN 51 GaAs
基板と、とのN[GaAs基板の他面にオーミック性を
有して形成され九G・単結晶と、このG・単結晶の面上
に形成され、G1As tたはGaAAAiあるいはそ
の両者の組合せからなる半導体装置と、この半導体装置
の動作電力をペルチェ効果素子の冷却に用いるように結
線された配線とよシなる半導体装置。
The figure is a sectional view showing the structure of an embodiment of the semiconductor device of the present invention. l...NllN11G substrate, 2...G single crystal, 3
... Semi-insulating GaAs single crystal layer, 4... Logic IC layer, 5... Common drain y electrode, 6... Common source electrode, 7... Ohmic electrode, 8... Electrode. 1.Indication of the incident 1945 Tatami permission request 1m1@1! II No. 2
, ii MeiO Name Semiconductor Device & Relationship with the Person Making Amendment Case Patent Applicant C029) Oki Electric Industry Co., Ltd. 4, Agent 5, Date of amendment order Showa year, month, day (self-motivated) 6, Details subject to amendment Book 0411 Permission - Requesting Range ■ and Issue - 0Ws Narration - O
Column 2 Contents of amendment 11) Correct "2. Scope of Claims" in the specification in the attached document. 2) Delete "Conductivity" from page 5, line 13 of the IN specifications. 3) Delete "Peltier effect element" on page 7, line 3. 2. Claims N 51 GaAs with an ohmic electrode on one surface
A substrate, a N[GaAs substrate formed with ohmic properties on the other surface of the G single crystal, and a G single crystal formed on the surface of the G single crystal, G1Ast or GaAAAi, or a combination of both. A semiconductor device consisting of a semiconductor device and wiring connected so that the operating power of the semiconductor device is used for cooling a Peltier effect element.

Claims (1)

【特許請求の範囲】[Claims] 一方の面にオーミック電極を有するN型GaAs基板と
、このN型GaAs基板の他面にオーミック性を有しペ
ルチェ効果素子を形成するGe単結晶と、このGe単結
晶の面上にGaAsまたはGaAlAsあるいはその両
者の組合せからなる半導体装置と、この半導体装置の動
作電力を上記ペルチェ効果素子の冷却に用いるように結
線された配線とよシなる半導体装置。
An N-type GaAs substrate having an ohmic electrode on one surface, a Ge single crystal having ohmic properties on the other surface forming a Peltier effect element, and a GaAs or GaAlAs layer on the surface of the Ge single crystal. Or a semiconductor device consisting of a combination of both, and a semiconductor device consisting of wiring connected so that the operating power of this semiconductor device is used for cooling the Peltier effect element.
JP1885682A 1982-02-10 1982-02-10 Semiconductor device Granted JPS58137240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1885682A JPS58137240A (en) 1982-02-10 1982-02-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1885682A JPS58137240A (en) 1982-02-10 1982-02-10 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS58137240A true JPS58137240A (en) 1983-08-15
JPS6314870B2 JPS6314870B2 (en) 1988-04-01

Family

ID=11983174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1885682A Granted JPS58137240A (en) 1982-02-10 1982-02-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58137240A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222240A (en) * 1985-03-28 1986-10-02 Matsushita Electronics Corp Semiconductor device
JPH01245549A (en) * 1988-03-26 1989-09-29 Matsushita Electric Works Ltd Semiconductor device and manufacture thereof
DE10136667A1 (en) * 2001-07-27 2003-02-13 Oliver Eibl Peltier edge used in semiconductor components comprises a p-conducting volume material with a high thermoelectric Q-factor and a diode
RU168761U1 (en) * 2016-09-20 2017-02-17 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Device for cooling secondary power supplies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222240A (en) * 1985-03-28 1986-10-02 Matsushita Electronics Corp Semiconductor device
JPH01245549A (en) * 1988-03-26 1989-09-29 Matsushita Electric Works Ltd Semiconductor device and manufacture thereof
DE10136667A1 (en) * 2001-07-27 2003-02-13 Oliver Eibl Peltier edge used in semiconductor components comprises a p-conducting volume material with a high thermoelectric Q-factor and a diode
DE10136667C2 (en) * 2001-07-27 2003-06-18 Oliver Eibl Peltier leg with integrated diode
RU168761U1 (en) * 2016-09-20 2017-02-17 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Device for cooling secondary power supplies

Also Published As

Publication number Publication date
JPS6314870B2 (en) 1988-04-01

Similar Documents

Publication Publication Date Title
US6563227B1 (en) Temperature control method for integrated circuit
KR960706696A (en) Buffer structure between silicon carbide and gallium nitride and semiconductor device formed from this structure
KR870004496A (en) Semiconductor memory
DE602005006025D1 (en) Lateral Schottky diode with several mesa
KR840008222A (en) High power metal oxide semiconductor field effect transistor connected directly from connection pad to underlying silicon
US2862160A (en) Light sensitive device and method of making the same
JPH0783108B2 (en) Semiconductor device
JPS58137240A (en) Semiconductor device
US2968750A (en) Transistor structure and method of making the same
GB1236157A (en) Improvements in or relating to impatt diodes
JPS59198750A (en) Semiconductor device
US4984037A (en) Semiconductor device with conductive rectifying rods
CN209266411U (en) A kind of high-performance transistor
Lee The (pre-) history of the integrated circuit: a random walk
JPS5690565A (en) Schottky barrier diode
GB927214A (en) Improvements in semi-conductor devices
US3310866A (en) Mountings for power transistors
JPH0227739A (en) Semiconductor device
GB1017777A (en) Improvements in and relating to semi-conductor devices
US3324361A (en) Semiconductor contact alloy
US3080441A (en) Diffusion barriers for semiconductor devices
EP0091342B1 (en) Process for manufacturing a planar field-effect transistor having a supplementary buried gate
Bardeen To a solid state
US3435303A (en) Semiconductor bulk effect microwave oscillator
JPS6139575A (en) Semiconductor rectifying equipment