JPS58136946A - Method and device for obtaining equilibrium in temperature in building - Google Patents

Method and device for obtaining equilibrium in temperature in building

Info

Publication number
JPS58136946A
JPS58136946A JP57017240A JP1724082A JPS58136946A JP S58136946 A JPS58136946 A JP S58136946A JP 57017240 A JP57017240 A JP 57017240A JP 1724082 A JP1724082 A JP 1724082A JP S58136946 A JPS58136946 A JP S58136946A
Authority
JP
Japan
Prior art keywords
heat
building
temperature
pipe
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57017240A
Other languages
Japanese (ja)
Other versions
JPS6122220B2 (en
Inventor
Takashi Mori
敬 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57017240A priority Critical patent/JPS58136946A/en
Publication of JPS58136946A publication Critical patent/JPS58136946A/en
Publication of JPS6122220B2 publication Critical patent/JPS6122220B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/63Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of windows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To obtain an economical equalization of temperature distribution in the building by a method wherein movable energy is generated in a heat transportation fluid by solar energy incident into windows on the sunshine side, the movable energy functioning to transport the solar energy to the part in the building where the sunshine does not reach or the temperature is relatively low. CONSTITUTION:In the window 2 on the sunshine side of the building, a solar energy absorbing part 4 is constituted and connected to a heat discharger 6 on the shaded side through a circulation pipe 5. Within the circulation pipe 5, a coolant such as fleon or the heat transportation fluid such as bline is filled, and a check valve 7 is interposed in a rising part on the sunshine side. When the sun beams are made incident into the window 2, the heat rays thereof is absorbed by a heat ray absorbing glass 9. The heat ray absorbing glass 9 of high temperature heats the air within spaces S1 and S2 defined between outer and inner glasses 8 and 10 so that a rising airstream is generated. By this, the heat transportation fluid in an upper frame member 11 is heated through fins 16. The heat transportation fluid thus heated is made to discharge heat by a heat discharger 6, thereby heating rooms on the shaded side.

Description

【発明の詳細な説明】 この発明は建物内温度平衡方法及び装置に関するもので
あり、特に、窓に入射する太陽の放射熱を利用して建物
内の温度分布の偏りを軽減せしめることを特徴とする建
物内温度平衡方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and device for temperature balancing in a building, and is particularly characterized in that it utilizes the radiant heat of the sun incident on windows to reduce the imbalance in temperature distribution within a building. The present invention relates to a method and apparatus for temperature balancing in a building.

最近、暖冷房費や光熱費を節約するために屋上に太陽熱
コレクタを設置したビルが建設されるようになったが、
これらのビルの使用経験によると、ビル用のソーラーシ
ステムは個人住宅用のソーラーシステムとは基本的に異
った観点から設計されていなければならない、というこ
とがわがってきた。すなわち、従来のソーラービルに於
ては、個人住宅のソーラーシステムと同じように屋根上
に太陽熱ロレクタを設置しているが、この太陽熱コレク
タから得られる温水の温度は設計当初の予想温度よりも
著しく低く、精々、(外気温+10℃)程度の低温温水
しか得ることができないのである。
Recently, buildings have been constructed with solar collectors installed on their rooftops in order to save on heating, cooling, and utility costs.
Experience with these buildings has shown that solar systems for buildings must be designed from fundamentally different perspectives than solar systems for private residences. In other words, in conventional solar buildings, solar heat collectors are installed on the roof like solar systems in private homes, but the temperature of the hot water obtained from this solar heat collector is significantly higher than the temperature expected at the beginning of the design. At best, it is possible to obtain only low-temperature hot water of the order of (outside temperature +10°C).

この事実は、ビルにおける日射の状態や外気温及び周囲
の風速等に関して充分な認識がないま\にソーラーシス
テムが設計されていたことを示すものである。
This fact shows that the solar system was designed without sufficient knowledge of the building's solar radiation conditions, outside temperature, surrounding wind speed, etc.

このように、従来の屋根上設置式の太陽熱コレクタから
俸〈低温の温水しか得られない原因は、ビル等の高層部
における風の影響を考慮しなかったことにある。このた
め、屋根上設置式の太陽熱コレクタ金偏えたソーラービ
ルに於ては給湯器の極く一部分しか節約できず、従って
ソーラーシステム設備費の償却のために長年月を要する
こととなっていた。
As described above, the reason why only low-temperature hot water can be obtained from conventional roof-mounted solar collectors is that the influence of wind in high-rise areas of buildings has not been taken into consideration. For this reason, in solar buildings that rely heavily on roof-mounted solar collectors, only a small portion of the water heater can be saved, and it takes many years to amortize the solar system equipment costs.

一方、このような太陽熱コレクタの低効率の反面、高層
ビルでは窓から入ってくる日射によって予想外の冷房費
の増加を招いており、従って、ビルに対する日射熱の利
用に関しては更に検討しなければならない。
On the other hand, despite the low efficiency of solar heat collectors, in high-rise buildings, sunlight entering through windows causes an unexpected increase in cooling costs, so further consideration must be given to the use of solar heat in buildings. No.

一般に建物の窓から入ってくる日射入熱量はかなり大き
なものであり、従って晴天時には雲天時にくらべて建物
内の温度分布の偏りが著しく大きくなる。たとえば、晴
天時には建物の日照面側の室では冬期であっても冷房が
必要になる程、温度が高くなるのに反し、日陰側の室で
は春期もしくは秋期に於てさえも暖房を停止することは
不可能な程低温である。このように日照は建物内の温度
分布を偏らせる作用をするため、建物内の温度分布を均
一化することを目的とする場合には、むしろ障害となっ
ていた。従って、建物内部の換気と温度調整とを空調設
備のみで行う方式の近代的な事務所ビルの設計に於ては
、窓及び外壁への日射入熱量を冷房負荷として計算はす
るが、この熱量を積極的に利用して建物内の温度分布の
偏りを是正しようとする試みはなされていなかった。ま
た、窓を開放することによって建物内の温度を調整する
ように構成されているビル及び個人用住宅などの設計に
於ても、日射入熱量により生じる建物内温度分布の偏り
を日射入熱量それ自身を利用して是正することは考えら
れていなかった。
Generally, the amount of solar heat input through the windows of a building is quite large, and therefore the temperature distribution inside the building becomes significantly more biased during sunny days than when it is cloudy. For example, on sunny days, rooms on the sunny side of a building can become hot enough to require air conditioning even in the winter, whereas rooms on the shaded side of the building can have their heating turned off even in the spring or fall. is impossibly low. In this way, sunlight has the effect of biasing the temperature distribution within a building, so it has rather become an obstacle when the aim is to equalize the temperature distribution within a building. Therefore, in the design of modern office buildings in which ventilation and temperature control inside the building are performed solely by air conditioning equipment, the amount of solar radiation input to windows and exterior walls is calculated as the cooling load. No attempt has been made to actively utilize heat to correct the imbalance in temperature distribution within the building. In addition, in the design of buildings and private residences that are configured to adjust the temperature inside the building by opening windows, the bias in the temperature distribution inside the building caused by the amount of solar heat input can be It had not been considered to correct the problem by using heat itself.

この発明は前記の如き背景の下になされたものであり、
この発明の目的は、従来のビル用ソーラーシステムにお
ける誤りを除くとともに窓からの日射入熱量により生じ
る建物内温度分布の偏りを日射入熱それ自身を利用する
ことによって是正し、建物内の各所における温度差をで
きるだけ小さくすることのできる建物内温度平衡方法及
び装置を提供することである。
This invention was made against the background as described above,
The purpose of this invention is to eliminate errors in conventional building solar systems, and correct the imbalance in temperature distribution inside a building caused by the amount of solar radiation input from windows by utilizing the solar radiation itself. It is an object of the present invention to provide a method and device for temperature balancing in a building that can minimize temperature differences at various locations.

この発明による方法は、建物の日照面側の窓に入射した
太陽光の放射熱を利用して熱輸送流体に移動エネルギー
を与え、該熱輸送流体を該建物の日陰部分の室又は冷所
に自然流動させることにより、建物内温度の著しい偏り
を是正することを特徴とする。また、この発明による建
物内温度平衡装置は、建物の日照面側の窓部に設けた日
射熱吸熱部と、該建物の日陰側の室もしくは冷所に設け
た放熱器と、該日射熱吸熱部と該放熱器とを接続する熱
輸送流体の管路と、から成っている。
The method according to the present invention utilizes the radiant heat of sunlight incident on a window on the sunny side of a building to provide movement energy to a heat transport fluid, and transfers the heat transport fluid to a room or a cool area in a shaded part of the building. It is characterized by correcting significant deviations in temperature within the building by allowing natural flow. Furthermore, the in-building temperature balance device according to the present invention includes a solar heat absorbing section provided in a window on the sunny side of the building, a radiator provided in a room or cold area on the shade side of the building, and the solar heat absorbing section provided in a window on the sunny side of the building. and a heat transport fluid conduit connecting the radiator and the radiator.

以下に図面を参照してこの発明の実施例について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第一実施例の概略図である。FIG. 1 is a schematic diagram of a first embodiment of the invention.

同図に於て1は建物、2は日照面側の窓、3は日陰側の
窓である。日照面側の窓2は本発明装置の一部である日
射熱吸熱部4を構成している。建物1の壁、天井、床の
内側には日照面側と日陰側とを循環する循環管路5が設
けられ、この循環管路5には日射熱吸熱部4及び日陰側
の放熱器6が接続されている。また、循環管路5の日照
面側の立ち上9部には逆止弁7が設けられているっ循環
管路5内にはたとえばフレオン等の冷媒もしくはプライ
ン等の熱輸送流体が充満されている。日射熱吸熱部4を
構成している日照面側の窓2は第2図及び第3図に示す
ように三重窓構造となっており、外面ガラス8、熱線吸
収ガラス9、内面ガラス10を有し、これらの窓ガラス
間には密閉した空間S1+82が形成されている。これ
らの窓ガラス8〜10は上部枠11は第2図に示すよう
に中間部材であってアルミ等の熱伝導性のよい金属で作
られており、その内部を循環管路5内の熱輸送流体が通
過しうるように流体人口14と流体出口15とが設けら
れ、そこに循環管路5が接続されるようになっている。
In the figure, 1 is a building, 2 is a window on the sunny side, and 3 is a window on the shaded side. The window 2 on the sunny side constitutes a solar radiation heat absorption section 4 which is a part of the device of the present invention. A circulation pipe 5 that circulates between the sunny side and the shaded side is provided inside the walls, ceiling, and floor of the building 1, and this circulation pipe 5 includes a solar heat absorption section 4 and a radiator 6 on the shaded side. It is connected. In addition, a check valve 7 is provided at a rising portion 9 on the sunny side of the circulation pipe 5.The circulation pipe 5 is filled with a refrigerant such as freon or a heat transport fluid such as prine. There is. As shown in FIGS. 2 and 3, the window 2 on the solar surface side that constitutes the solar heat absorption section 4 has a triple window structure, and has an outer glass 8, a heat ray absorbing glass 9, and an inner glass 10. However, a sealed space S1+82 is formed between these window glasses. The upper frame 11 of these window glasses 8 to 10 is an intermediate member, as shown in FIG. A fluid port 14 and a fluid outlet 15 are provided so that fluid can pass therethrough, and a circulation pipe 5 is connected thereto.

上部枠11の空間S1及びS2に面した部分にはフィン
16が設けられ、空間S1及びS2に溜る高温空気の熱
を能率よく上部枠11内の熱輸送流体に伝達しうるよう
に構成されている。上部枠11の外周部分全体は断熱材
17で被覆されていて外気への熱の放散を阻止している
Fins 16 are provided in the portions of the upper frame 11 facing the spaces S1 and S2, and are configured to efficiently transfer the heat of the high temperature air accumulated in the spaces S1 and S2 to the heat transport fluid within the upper frame 11. There is. The entire outer periphery of the upper frame 11 is covered with a heat insulating material 17 to prevent heat from dissipating into the outside air.

下部枠12及び側部枠13は通常の窓枠とはソ同じよう
な中実の金属製であるが、窓ガラスの周縁部を挿入する
溝内には断熱材18 、19が装填されていて窓ガラス
の熱が下部枠12と側部枠13とのそれぞれの金属部分
に逃げないように構成されている。
The lower frame 12 and side frames 13 are made of solid metal, similar to ordinary window frames, but insulation materials 18 and 19 are filled in the grooves into which the peripheral edges of the window glass are inserted. The structure is such that heat from the window glass does not escape to the respective metal parts of the lower frame 12 and side frame 13.

放熱器6は空冷式熱交換器でちって正逆転可能なファン
もしくはガイドベーンを内部に備えており、また、建物
1の外へ開いた排気管21有している、該ファンもしく
はガイドベーン(図示せず)は日照面側の室内と日陰側
の室内に設けた温度検出器(図示せず)の検出信号に応
じて正逆転するようになっており、たとえば日照面側の
室内の温度が日陰側の室内の温度よりも高い時には正転
して放熱器6内の熱を室内へ放出するが、室内温度が2
7℃を越えると逆転して放熱器内の温空気を排気管20
を通して建物外へ排気するように作動する。
The radiator 6 is an air-cooled heat exchanger, and is equipped with a fan or guide vane that can be reciprocated in the forward and backward directions. (not shown) is designed to rotate forward or reverse in response to detection signals from temperature detectors (not shown) installed in the sunny side of the room and the shaded side of the room.For example, the temperature inside the sunny side of the room changes. When the temperature is higher than the indoor temperature on the shade side, it rotates in the normal direction and releases the heat inside the radiator 6 into the room, but when the indoor temperature is 2.
When the temperature exceeds 7℃, the reverse occurs and the hot air inside the radiator is discharged to the exhaust pipe 20.
It operates to exhaust air out of the building through the

なお、第3図に示すように上部枠11と側部枠13との
接触面間には断熱材21を入れて上部枠11の熱が側部
枠13に逃げないようにしておくとよいっ次に、前記の
如き構成の本発明装置の作動について説明する。
In addition, as shown in FIG. 3, it is a good idea to insert a heat insulating material 21 between the contact surfaces of the upper frame 11 and the side frames 13 to prevent the heat from the upper frame 11 from escaping to the side frames 13. Next, the operation of the apparatus of the present invention configured as described above will be explained.

日照面側の窓2に太陽光が入射すると、太陽光の中の熱
線部分は熱線吸収ガラス9に吸収され、熱線以外のスペ
クトル部分のみが熱線吸収ガラス9及び内面ガラス10
ヲ通って日照面側の室内に入射する。熱線を吸収した熱
線吸収ガラス9の温度はかなりの高温となり、それによ
り空間S1及びS2内の空気は熱線吸収ガラス9によっ
て加熱され該空間Sl、S2内に上昇気流が生じる。こ
のため、空間51182の頂部へ熱が運ばれて上部枠1
1に設けたフィン16が加熱されるが、フィン16は上
部枠11内の熱輸送流体によって冷却されているので、
空間S1. S2内の熱は上部枠11内の熱輸送流体に
伝達される。その結果、熱輸送流体が加熱されると、熱
輸送流体は循環管路5内を上昇して天井内の上方横行管
部に達し、更に該上方横行管部を通って建物の日陰側に
達する。そこで、熱輸送流体は循環管路5の下降管部を
流下して放熱器6に入り、該放熱器6で放熱した後、床
下の下方横行管部を通って日照面側の上昇管部の下端に
入る。そして、後から流れてくる後続の熱輸送流体の圧
力に押されて上昇管部を徐々に上昇するが、この上昇管
部には逆止弁7が設けられているため、熱輸送流体は後
戻りすることなく押し上げられて再び日照面側の窓2の
上部枠11内に流入する。放熱器6に装備されたファン
は前記したように日照面側の室内と日陰側の室内に設置
された温度検出器によって側転して熱輸送流体から放出
された熱を日陰側の室内に放出するが、日陰側の室内温
度が27℃を越えると逆転して核熱を排気管20を通し
て建物1の外へ放出する。
When sunlight enters the window 2 on the sunny side, the heat rays in the sunlight are absorbed by the heat ray absorbing glass 9, and only the spectral parts other than the heat rays are absorbed by the heat ray absorbing glass 9 and the inner glass 10.
It passes through and enters the room on the sunny side. The temperature of the heat ray absorbing glass 9 that has absorbed the heat rays becomes quite high, and the air in the spaces S1 and S2 is thereby heated by the heat ray absorbing glass 9, creating an upward air current within the spaces Sl and S2. Therefore, heat is carried to the top of the space 51182 and the upper frame 1
1 is heated, but since the fins 16 are cooled by the heat transport fluid in the upper frame 11,
Space S1. The heat within S2 is transferred to the heat transport fluid within the upper frame 11. As a result, when the heat transport fluid is heated, it rises in the circulation pipe 5, reaches the upper transverse pipe section in the ceiling, and further passes through the upper transverse pipe section to reach the shaded side of the building. . Therefore, the heat transport fluid flows down the descending pipe section of the circulation pipe 5 and enters the radiator 6, and after dissipating heat in the radiator 6, it passes through the lower transverse pipe section under the floor and enters the rising pipe section on the sunny side. Enter the bottom end. Then, the heat transport fluid gradually rises up the rising pipe section due to the pressure of the subsequent heat transport fluid flowing from behind, but since this rising pipe section is provided with a check valve 7, the heat transport fluid flows backward. The liquid is pushed up without any movement and flows into the upper frame 11 of the window 2 on the sunny side again. As mentioned above, the fan installed in the heat radiator 6 rotates cartwheel according to the temperature detectors installed in the room on the sunny side and the room on the shaded side, and releases the heat released from the heat transport fluid into the room on the shaded side. However, when the indoor temperature on the shaded side exceeds 27° C., the situation is reversed and nuclear heat is released outside the building 1 through the exhaust pipe 20.

以上のように、この発明によれば、従来、建物内の温度
分布の均一化のためには障害となっていた窓への入射熱
全利用することにより、新規な建物内温度平衡方法及び
装置が提供されるのである。
As described above, according to the present invention, a new method and device for temperature balancing in a building can be achieved by utilizing all the heat incident on windows, which has conventionally been an obstacle to uniform temperature distribution in a building. is provided.

第4図は、本発明の第二実施例である。この実施例では
日照面側の循環管路5に熱交換部nが設けられ、日射熱
吸熱部4がこの熱交換部nに挿入された熱輸送体23ヲ
介して循環管路5に接続されている。また、日陰側の室
に設置される放熱器6は循環管路5の上方横行管部に設
けられ、該放熱器6には加熱空気管24が接続されてお
り、加熱空気管路の末端に室内吹出し口部が設けられて
いる。
FIG. 4 shows a second embodiment of the invention. In this embodiment, a heat exchange part n is provided in the circulation pipe 5 on the sunny side, and the solar heat absorption part 4 is connected to the circulation pipe 5 via a heat transport body 23 inserted into the heat exchange part n. ing. Further, a radiator 6 installed in the room on the shade side is provided in the upper transverse pipe part of the circulation pipe 5, and a heated air pipe 24 is connected to the radiator 6, and the end of the heated air pipe is connected to the radiator 6. An indoor air outlet is provided.

加熱空気管5の途中には室内の温度検出器(図示せず)
によって制御される切換弁26が設けられるとともに該
切換弁26を介して加熱空気管5から分岐した排気管2
7が設けられ、該排気管nは建物1の外部に開口してい
る。循環管路5の熱交換部nと日射熱吸熱部4とを接続
している熱輸送体%はたとえばヒートパイプの如きもの
でもよいが、フレオン等の冷媒を循環させる冷媒循環管
路として構成してもよい。ヒートパイプを用いる場合に
は窓2の上部枠11内にヒートパイプの一端側全収容し
、第2図に示す循環管路5の代りにヒートツクイブを該
上部枠11内から引き出すように構成する。
An indoor temperature detector (not shown) is installed in the middle of the heated air pipe 5.
The exhaust pipe 2 is provided with a switching valve 26 controlled by the switching valve 26 and branched from the heated air pipe 5 via the switching valve 26.
7 is provided, and the exhaust pipe n opens to the outside of the building 1. The heat transporter connecting the heat exchange part n of the circulation pipe 5 and the solar heat absorption part 4 may be, for example, a heat pipe, but it is configured as a refrigerant circulation pipe that circulates a refrigerant such as Freon. It's okay. When a heat pipe is used, one end of the heat pipe is entirely housed within the upper frame 11 of the window 2, and a heat tube is drawn out from within the upper frame 11 in place of the circulation pipe 5 shown in FIG.

なお、第4図に於て7は循環管路5の上昇管部に設け°
た逆止弁であり、これは第1図の実施例と同じものであ
る。
In addition, in FIG. 4, 7 is installed in the rising pipe part of the circulation pipe 5.
1, which is the same as the embodiment of FIG.

第二実施例に於ける作動は以下の通りである。The operation in the second embodiment is as follows.

すなわち、日照面側の窓2に入射した太陽光線によって
空間81 、82内の空気が加熱され、その熱が上部枠
11内の冷媒もしくはヒートツクイブに伝達まれると、
熱はヒートパイプもしくは冷媒循環管路たる熱輸送体2
3を通して循環管路5の熱交換部22に入って循環管路
5内の熱輸送流体に移された後、該熱輸送流体の移動に
よって日陰側の放熱器6に於て冷却用空気中に放散され
る。放熱器6に於て加熱された空気は加熱空気管列に入
9、更に切換弁26を通って室内吹出し口5から日陰側
の室内へ吹き出される。これにより日陰側の室内温度が
徐々に上昇する。切換弁は日照面側の室内温度が日陰側
の室内温度よりも高く且つ日陰側の室内温度が27℃以
下の場合には放熱器6と排気管27との連通を阻止して
いるが、日照面側の室内温度と日陰側の室内温度が等し
くなったり、或いは日陰側の室内温度が27℃を越える
と、放熱器6と排気管nとを連通させるとともに放熱器
6と室内吹出し口或いは日陰側の室内温度が27′c’
i越えると、日照面側の窓2で吸収された熱は排気管γ
を通って建物1の外部へ排出される。一方、放熱器6に
於て熱を放出して低温となった熱輸送流体は循環管路5
の下降管部を流下して下方横行管部に入り、日照面側の
上昇管部の下端に達した後、上昇管部内で徐々に押し上
げられてゆく。
That is, when the air in the spaces 81 and 82 is heated by the sunlight entering the window 2 on the sunny side, and the heat is transferred to the refrigerant or heat tube in the upper frame 11,
Heat is transferred to heat transporter 2, which is a heat pipe or refrigerant circulation pipe.
3 and enters the heat exchange section 22 of the circulation pipe 5 and is transferred to the heat transport fluid in the circulation pipe 5, and then transferred to the cooling air in the radiator 6 on the shade side due to the movement of the heat transport fluid. Dissipated. The air heated in the radiator 6 enters the heated air pipe array 9, passes through the switching valve 26, and is blown out from the indoor air outlet 5 into the room on the shade side. As a result, the indoor temperature on the shaded side gradually rises. The switching valve prevents communication between the radiator 6 and the exhaust pipe 27 when the indoor temperature on the sunny side is higher than the indoor temperature on the shaded side and the indoor temperature on the shaded side is 27°C or less. When the indoor temperature on the surface side becomes equal to the indoor temperature on the shade side, or when the indoor temperature on the shade side exceeds 27°C, the radiator 6 and the exhaust pipe n are communicated, and the radiator 6 is connected to the indoor air outlet or the shade. The indoor temperature on the side is 27'c'
i, the heat absorbed by the window 2 on the sunny side is transferred to the exhaust pipe γ
is discharged to the outside of the building 1 through the On the other hand, the heat transport fluid that has become low temperature by releasing heat in the radiator 6 is transferred to the circulation pipe 5.
It flows down the downcomer pipe section, enters the downward transverse pipe section, reaches the lower end of the riser pipe section on the sunny side, and is gradually pushed up within the riser pipe section.

この第二実施例では放熱器6が循環管路5の上方横行管
部に設けられているので放熱器6内で熱輸送流体の流速
が遅くなる反面、下降管部には何の流動障害物もないの
で、下降管部では熱輸送流体の降下速度が早くなり、従
って下降管部における位置のエネルギーを上昇管部にお
ける押上げエネルギーとして利用する率が高くなる。ま
た、循環管路5の熱交換部nと日射熱吸熱部4とを接続
する熱輸送体%としてヒートパイプを用いると熱輸送効
率も高く、構造も簡単になる。
In this second embodiment, since the radiator 6 is provided in the upper transverse pipe section of the circulation pipe 5, the flow velocity of the heat transport fluid within the radiator 6 is slowed down, but on the other hand, there are no flow obstacles in the descending pipe section. Therefore, the descending speed of the heat transport fluid in the downcomer pipe section becomes faster, and therefore, the rate at which potential energy in the downcomer pipe section is utilized as push-up energy in the riser pipe section increases. Furthermore, if a heat pipe is used as the heat transporter connecting the heat exchange part n of the circulation pipe 5 and the solar heat absorption part 4, the heat transport efficiency will be high and the structure will be simple.

第5図の実施例は、前記実施例に於て日陰側の室内温度
が27℃(これは主として夏季の温度である)以上にな
った時に外部に廃棄していた熱を冷房用等に利用するよ
うにしたものである。第5図に於て、路は吸収式冷凍機
の発生器や給湯器に接続された加熱水供給管であり、該
加熱水供給管路には熱交換器四が設けられ、該熱交換器
四には切換弁26f:介して加熱空気管送の分岐管刃が
接続されている(切換弁26及びその他の部分は第4図
の実施例と同一である。)。従って、日陰側の室内温度
が27℃以上になる夏季や、或いは日照面側の室内温度
と日陰側の室内温度とが等しくなった場合には、切換弁
あが放熱器6と熱交換器四とを連通ずるように切換え操
作されて放熱器6から発生した加熱空気が熱交換器四に
入り、該加熱水供給管y中に流れる水を加熱する。この
ため、日照面側の窓2に於て吸収された余剰の太陽熱は
吸収式冷凍機の運転エネルキー及び給湯用温水として利
用されるので、建物内の温度分布の均一化ばかりでなく
、その他の面におけるエネルギー節約としても大きな効
用をもたらすことになる。
The embodiment shown in Figure 5 utilizes the heat that was discarded outside when the indoor temperature on the shaded side in the previous embodiment exceeds 27°C (this is mainly the temperature in summer) for cooling purposes, etc. It was designed to do so. In FIG. 5, the line is a heated water supply pipe connected to the generator of the absorption chiller and the water heater, and the heated water supply line is provided with a heat exchanger 4, and the heat exchanger 4 is connected to a branch pipe blade for heating air pipe feeding through a switching valve 26f (the switching valve 26 and other parts are the same as the embodiment shown in FIG. 4). Therefore, in the summer when the indoor temperature on the shaded side is 27°C or higher, or when the indoor temperature on the sunny side and the indoor temperature on the shaded side become equal, the switching valve is turned off and the radiator 6 and heat exchanger 4 are turned off. The heated air generated from the radiator 6 enters the heat exchanger 4 and heats the water flowing into the heated water supply pipe y. Therefore, the excess solar heat absorbed by the window 2 on the sunny side is used as the operational energy key for the absorption refrigerator and as hot water for hot water supply, which not only equalizes the temperature distribution within the building but also contributes to other This will also bring great benefits in terms of energy savings.

第6図の実施例は、循環管路を省略して日射熱吸熱部4
と放熱器6とをヒートパイプ31で接続して構成したも
のである(その他の部分は第5図の実施例に示した部分
と同一であるから説明を省略する。)。従って、この実
施例では前記諸実施例にくらべて更に簡単な構成となる
。なお、ヒートパイプ31は日照面側に於て低く、日陰
側で高くなるように敷設すると放熱器6で液化した冷媒
が吸熱部側へ戻りやすくなる。
In the embodiment shown in FIG. 6, the circulation pipe is omitted and the solar heat absorption section 4 is
and a radiator 6 are connected by a heat pipe 31 (the other parts are the same as those shown in the embodiment of FIG. 5, so the explanation will be omitted). Therefore, this embodiment has a simpler configuration than the previous embodiments. Note that if the heat pipe 31 is laid so that it is lower on the sunny side and higher on the shaded side, the refrigerant liquefied in the radiator 6 will easily return to the heat absorption part side.

第7図の実施例は、天井面に沿って平面的に循環管路5
を構成し、該循環管路5の両端に第6図の実施例と同じ
く日射熱吸熱部4と放熱器6とを接続したものである。
In the embodiment shown in FIG.
A solar heat absorption section 4 and a radiator 6 are connected to both ends of the circulation pipe 5, as in the embodiment shown in FIG.

この実施例では前記の実施例のヒートパイプ31に代え
て冷媒もしくはプラインの循環管路5を採用したもので
あるから、その作動は第6図の実施例と同じである。(
なお、図に於て第1図乃至第6図と同一符号で表示され
た部分は第1図乃至第6図と同じ部分である。)第8図
の実施例は第7図の変形実施例であり、建物1の外壁も
しくは屋根上に設置した太陽熱コレクタ32が前記の加
熱水供給管路に接続されている場合の実施例である。太
陽熱コレクタ32を屋根上に設置した場合、ビル等に於
ては温水温度があまり高くならないので、日射熱、吸熱
部4に於て吸収した熱で該温水を更に加熱することによ
り給湯用水を更に高温にできるとともに冷凍機により多
くの運転エネルギーを供給することができる。なお、第
8図の実施例の作動は第7図の実施例及び第5図の実施
例とはソ同じであるため、説明を省略する。
In this embodiment, a refrigerant or pline circulation pipe 5 is used in place of the heat pipe 31 of the previous embodiment, so its operation is the same as that of the embodiment shown in FIG. (
Note that in the figures, parts indicated by the same reference numerals as in FIGS. 1 to 6 are the same parts as in FIGS. 1 to 6. ) The embodiment shown in FIG. 8 is a modified embodiment of FIG. 7, and is an embodiment in which a solar heat collector 32 installed on the outer wall or roof of the building 1 is connected to the heated water supply pipe. . When the solar heat collector 32 is installed on the roof, since the hot water temperature does not become very high in buildings etc., the hot water is further heated using solar radiation heat and the heat absorbed in the heat absorbing section 4, thereby further increasing the amount of water for hot water supply. It can reach high temperatures and supply more operating energy to the refrigerator. The operation of the embodiment shown in FIG. 8 is the same as that of the embodiment shown in FIG. 7 and the embodiment shown in FIG. 5, so a description thereof will be omitted.

以上のように、この発明によれば、従来、建物内の温度
分布を偏らせる原因となっていた窓への日射熱を利用す
ることによって建物内の温度分布の偏りを是正し、日陰
側の室の居住性を向上させるとともに空調エネルギー等
の節約をすることのできる新規な建物内温度平衡方法及
び装置が提供される。
As described above, according to the present invention, the uneven temperature distribution inside the building can be corrected by utilizing solar heat from the windows, which conventionally caused uneven temperature distribution inside the building. A novel method and apparatus for temperature balancing in a building is provided that can improve the livability of a room and save on air conditioning energy and the like.

なお、日射熱吸熱部の構成は図示実施例以外にも種々の
変形が可能であり、本発明がこの実施例の構造のみに限
定されるものではない。また、循環管路における流速を
増大させるために、該管路にポンプを設けてもよい。
Note that the structure of the solar heat absorbing section can be modified in various ways other than the illustrated embodiment, and the present invention is not limited to the structure of this embodiment. A pump may also be provided in the circulation line to increase the flow rate in the line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一実施例の概略図、第2図は第1図
の一部の実施例の拡大縦断面図、第3図は第2図の左側
から見た正面図、第4図乃至第8図は本発明の他の実施
例の概略図、である。 1・・・建物、2・・・日照面側の窓、3・・・日陰側
の窓、4・・・日射熱吸熱部、5・・・循環管路、6・
・・放熱器、7・・・逆上弁、8・・・外面ガラス、9
・・・熱線吸収ガラス、10・・・内面ガラス、11・
・上部枠、12・・・下部枠、13・・・側部枠、22
・・・熱交換部、n・・・熱輸送体、24・・・加熱空
気管、5・・・室内吹出し口、26・・・切換弁、加、
27・・・排気管、あ・・・加熱水供給管、29・・・
熱交換器、凹・・・(加熱空気管の)分岐管、31・・
・ヒートパイプ、32・・・太陽熱コレクタ。 第2図 1818
FIG. 1 is a schematic diagram of a first embodiment of the present invention, FIG. 2 is an enlarged vertical sectional view of a part of the embodiment shown in FIG. 1, FIG. 3 is a front view seen from the left side of FIG. 4 to 8 are schematic diagrams of other embodiments of the present invention. DESCRIPTION OF SYMBOLS 1...Building, 2...Window on the sunny side, 3...Window on the shaded side, 4...Solar heat absorption section, 5...Circulation pipe, 6.
... Heat sink, 7... Reverse valve, 8... External glass, 9
...Heat ray absorbing glass, 10...Inner surface glass, 11.
・Top frame, 12...Lower frame, 13...Side frame, 22
...Heat exchange part, n...Heat transporter, 24...Heated air pipe, 5...Indoor outlet, 26...Switching valve,
27...exhaust pipe, ah...heated water supply pipe, 29...
Heat exchanger, concave...branch pipe (of heated air pipe), 31...
・Heat pipe, 32...Solar heat collector. Figure 2 1818

Claims (8)

【特許請求の範囲】[Claims] (1)建物の日照面側の窓に入射する太陽熱によって熱
輸送流体に移動エネルギーを生ぜしめ、該熱輸送流体の
移動エネルギーを利用して該窓に入射した太陽熱を該建
物の日陰部分もしくは低温部に輸送することにより該建
物内の温度分布を均一化させることを特徴とする建物内
温度平衡方法。
(1) The solar heat incident on the window on the sunny side of the building generates transfer energy in the heat transport fluid, and the transfer energy of the heat transfer fluid is used to transfer the solar heat incident on the window to the shaded area of the building or at a low temperature. 1. A method for temperature balancing in a building, characterized in that the temperature distribution within the building is made uniform by transporting the temperature to the building.
(2)建物の日照面側の窓に設けた日射熱吸熱部と、該
建物の日照面側と日陰側とを循環するように設けられた
循環管路と、該循環管路に設けられるとともに該建物の
日照面側の位置に設けられた熱交換部と、該日射−吸熱
部と該熱交換部とを接続する熱輸送体と、該循環管路に
設けられるとともに該、建物の日陰側の位置もしくは冷
所に設置された放熱器と、から成る建物内温度平衡装置
(2) A solar heat absorbing section provided in a window on the sunny side of the building, a circulation pipe provided to circulate between the sunny side and the shaded side of the building, and a circulation pipe provided in the circulation pipe a heat exchange section provided on the sunny side of the building; a heat transporter connecting the solar radiation-endothermic section and the heat exchange section; A building temperature balancing device consisting of a radiator installed in a cold location or in a cold area.
(3)特許請求の範囲第(2)項に於て、該熱輸送体が
管路として構成され、該管路の中を熱輸送流体が流れる
ように構成されている、建物内温度平衡装置。
(3) In claim (2), there is provided an in-building temperature balancing device, wherein the heat transport body is configured as a pipe, and the heat transport fluid is configured to flow through the pipe. .
(4)特許請求の範囲第(2)項に於て、該熱輸送体が
ヒートパイプであり、該熱交換部がヒートパイプのヒー
トシンクとなっていることを特徴とする、建物内温度平
衡装置。
(4) An in-building temperature balancing device according to claim (2), characterized in that the heat transport body is a heat pipe, and the heat exchange section is a heat sink of the heat pipe. .
(5)建物の日照面側の窓に設けた日射熱吸熱部と、該
建物の日陰側の室もしくは冷所に設置された放熱器と、
該日射熱吸熱部と該放熱器とを接続する循環管路と、か
ら成る建物内温度平衡装置。
(5) A solar heat absorbing part installed in a window on the sunny side of a building, and a radiator installed in a room or cold area on the shaded side of the building,
An in-building temperature balance device comprising a circulation pipe connecting the solar heat absorbing section and the radiator.
(6)特許請求の範囲第(5)項に於て、該放熱器には
該建物の外側に開いた排気管が設けられていることを特
徴とする、建物内温度平衡装置。
(6) The in-building temperature balancing device according to claim (5), wherein the radiator is provided with an exhaust pipe that opens to the outside of the building.
(7)建物の日照面側の窓に設けた日射熱吸熱部と、該
建物の日陰側の室もしくは冷所に設けた放熱器と、該日
射熱吸熱部と該放熱器とを接続するヒートパイプと、か
ら成る建物内温度平衡装置。
(7) A solar heat absorbing section installed in a window on the sunny side of a building, a radiator installed in a room or cold area on the shade side of the building, and a heat source connecting the solar heat absorbing section and the radiator. A building temperature equalization device consisting of a pipe.
(8)建物の日照面側の窓に設けた日射熱吸熱部と、該
建物の日陰側の室もしくは冷所に設置された放熱器と、
該日射熱吸熱部で吸収した熱を該放熱器に輸送する熱輸
送流体の管路と、該建物内で使用する吸収式冷凍機及び
給湯器等に接続された加熱水供給管と、該日陰側の室も
しくは冷所の温度が所定値以上になった時に該放熱器に
放出される熱を該加熱水供給管中に放出させる装置と、
から成る建物内温度平衡装置。 器と、該日射熱吸熱部で吸収した熱を該放熱器に輸送す
る熱輸送流体の管路と、該建物の外面等に設置された太
陽熱コレクタに接続されるとともに該建物内で使用する
吸収式冷凍機及び給湯器等に接続された加熱水供給管と
、該日陰側の室もしくは冷所の温度が所定値以上になっ
た時に該放熱器に放出された熱を該加熱水供給管中に放
出させる装置と、から成る建物内温度分布装@。
(8) A solar heat absorption part installed in a window on the sunny side of a building, and a radiator installed in a room or cold area on the shaded side of the building,
A heat transport fluid pipe that transports the heat absorbed by the solar radiation heat absorption part to the radiator, a heated water supply pipe connected to an absorption refrigerator, a water heater, etc. used in the building, and the shade. A device that releases heat released into the radiator into the heated water supply pipe when the temperature of a side room or cold place exceeds a predetermined value;
A building temperature equalization device consisting of: a heat-transporting fluid conduit that transports the heat absorbed by the solar heat absorption section to the radiator; When the temperature of the heated water supply pipe connected to a type refrigerator, water heater, etc. and the shaded room or cold place reaches a predetermined value or higher, the heat released to the radiator is transferred into the heated water supply pipe. An in-building temperature distribution system consisting of a device that releases heat to
JP57017240A 1982-02-05 1982-02-05 Method and device for obtaining equilibrium in temperature in building Granted JPS58136946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57017240A JPS58136946A (en) 1982-02-05 1982-02-05 Method and device for obtaining equilibrium in temperature in building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57017240A JPS58136946A (en) 1982-02-05 1982-02-05 Method and device for obtaining equilibrium in temperature in building

Publications (2)

Publication Number Publication Date
JPS58136946A true JPS58136946A (en) 1983-08-15
JPS6122220B2 JPS6122220B2 (en) 1986-05-30

Family

ID=11938414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57017240A Granted JPS58136946A (en) 1982-02-05 1982-02-05 Method and device for obtaining equilibrium in temperature in building

Country Status (1)

Country Link
JP (1) JPS58136946A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140027A (en) * 1983-12-27 1985-07-24 Agency Of Ind Science & Technol Inter-rooms heat transferring device utilizing heat pipe
WO2002004873A1 (en) * 2000-07-10 2002-01-17 Frederick Brian Mckee Method and apparatus for controlling an internal environment
JP2011162984A (en) * 2010-02-08 2011-08-25 Toyota Home Kk Solar heat collector of building
JP2012057827A (en) * 2010-09-06 2012-03-22 Mitsubishi Electric Building Techno Service Co Ltd Heat exchange system
CN109357340A (en) * 2018-09-14 2019-02-19 济南工程职业技术学院 A kind of air-conditioning and construction system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140027A (en) * 1983-12-27 1985-07-24 Agency Of Ind Science & Technol Inter-rooms heat transferring device utilizing heat pipe
JPH0113013B2 (en) * 1983-12-27 1989-03-03 Kogyo Gijutsuin
WO2002004873A1 (en) * 2000-07-10 2002-01-17 Frederick Brian Mckee Method and apparatus for controlling an internal environment
JP2011162984A (en) * 2010-02-08 2011-08-25 Toyota Home Kk Solar heat collector of building
JP2012057827A (en) * 2010-09-06 2012-03-22 Mitsubishi Electric Building Techno Service Co Ltd Heat exchange system
CN109357340A (en) * 2018-09-14 2019-02-19 济南工程职业技术学院 A kind of air-conditioning and construction system

Also Published As

Publication number Publication date
JPS6122220B2 (en) 1986-05-30

Similar Documents

Publication Publication Date Title
US4323054A (en) Solar energy collection system
US3590913A (en) Wall element having means for selective heating and cooling thereof
US9267711B1 (en) System and method for increasing the efficiency of a solar heating system
US4227515A (en) Dual phase solar water heater
CN212673417U (en) Energy-saving water flow window
US11085668B2 (en) Solar energy utilization system
CN101074792A (en) Passive cooling technology combined with earth heat source and heat pump
CN102980238A (en) Solar air-heating system and method
KR20110026394A (en) Sunlight electric heat utilization system
US4207865A (en) Passive solar heating device
KR100896385B1 (en) Solar collector having double window
JPS58136946A (en) Method and device for obtaining equilibrium in temperature in building
CN113405147A (en) Heat storage passive solar house
US4484567A (en) Heat recovery glazing
US4024726A (en) Solar heat trap for building windows
US4078603A (en) Solar collector and heating and cooling system
CN203036757U (en) Solar energy air heat collection heating system
US4398530A (en) Solar collector and heating and cooling system
CN115033041B (en) Passive room environment regulation and control system and environment regulation and control method
Choi Simulation Examination about Heat Balance of Detached House with the Air-based Solar Heating System
Bayoumi Potential of Façade-Integrated PVT With Radiant Heating and Cooling Panel Supported by a Thermal Storage for Temperature Stability and Energy Efficiency
JPS5974495A (en) Heat accumulator
Askari Anaraki et al. MODULAR SOLAR FAÇADE WITH HIGH THERMAL RESISTANCE
WO2007032723A1 (en) A device for saving energy at cool keeping of a building
CN117029127A (en) Multi-room temperature equalization system