JPS58136704A - Charging method of raw material to blast furnace - Google Patents

Charging method of raw material to blast furnace

Info

Publication number
JPS58136704A
JPS58136704A JP1890882A JP1890882A JPS58136704A JP S58136704 A JPS58136704 A JP S58136704A JP 1890882 A JP1890882 A JP 1890882A JP 1890882 A JP1890882 A JP 1890882A JP S58136704 A JPS58136704 A JP S58136704A
Authority
JP
Japan
Prior art keywords
furnace
charging
particle size
raw material
bunker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1890882A
Other languages
Japanese (ja)
Other versions
JPH037722B2 (en
Inventor
Tsutomu Fujita
勉 藤田
Yasuo Tanaka
康雄 田中
Takeshi Fukutake
福武 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1890882A priority Critical patent/JPS58136704A/en
Publication of JPS58136704A publication Critical patent/JPS58136704A/en
Publication of JPH037722B2 publication Critical patent/JPH037722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Abstract

PURPOSE:To control the grain size distributions of the raw materials to be supplied into a blast furnace as desired and to stabilize the operations of the furnace over a long period of time by regulating the depositing states of the raw materials in a relay storage tank and the bunker at the furnace top and discharging sequence with prescribed means. CONSTITUTION:In the stage of storing the charging raw materials to be discharged from plural raw material storage tanks 1 and a relay storage tank 3 into a bunker 6 at the furnace top with a charging conveyor 4, the depositing states of the charging raw materials in the tank 3 are regulated. Thereafter, depositing and/or discharging sequence is regulated with the flow regulating means on the bunker 6. The depositing states of the charging raw materials in the bunker 6 are regulated to the optimum grain size distributions in the radial direction of the furnace selected according to furnace conditions. Thus, the blast furnace is operated stably over a long period of time.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は高炉の原料装入方法に関するものであり、と
くに炉内状況に応じた炉半径方向の最適粒度分布を得る
のに好適な装入方法について提案する。 高炉の操業において、炉頂における装入物(鉱石類、コ
ークス)の半径方向の分布は、炉況、燃・・・料比など
の操業成績を直接的に支配する主要な要因の一つである
。従来公知の装入物分布の調節は、主として半径方向の
コークス層厚さと鉱石層厚さの関係を調節することで行
っていた。 例えば、炉頂に原料の一時貯蔵用の槽(炉頂バンカー)
を持ち、そのバンカーから旋回シュートを通じて炉内に
装入物を分配するペルレス式装入装置による高炉の装入
物分布に同筒を例にとると、シュートを通して排出した
原料の量、排出し始めてからの時間、あるいは旋回数を
基準として旋回シュートの傾きを使えることにより、該
旋回シュートから炉内に落下する原料の堆積した装入物
層表面への到達位置を変えて、鉄鉱石類とコークスの層
の厚さを調節していくという方法であった。 一般に高炉の炉頂における半径方向の装入物分布は、炉
内をほぼ垂直に上昇するガス流の半径方向の離漿分布を
支配すると考えられているoしたがって、適正な炉半径
方向のガス流分布を得るためには、ガス利用率、送風圧
力、燃料比などの高炉操業成績、炉頂またはシャフト部
で測定された半径方向のガス組成やガス温度などの諸情
報をもとに、上述の方法により層厚比を変化させて装入
物分布の調節を行っていた。 ところで、炉頂内の装入物層表面に落下した原料は、通
常の操業をしている高炉では装入物層表面の形状が、逆
円錐面を成しているので中心部へ向ってすべりまたはこ
ろがって移動する傾向がある。なかでも、コークスや焼
結鉱の場合、粒度範囲が大きいため、細かい粒子はど落
下点近くに集積し、粗粒は中心の谷部に向ってころがシ
集積する挙動になるから、移動方向(半径方向)に粒度
偏析が発生する。 勿論こうした現象については既に知られていることであ
るが、原料の通気性は、その原料の平均粒度と粒度分布
により決まるのであるから、層厚分布とともに上記粒度
偏析を考慮した装入物分布調節が不可欠である。 しかしながら、従来半径方向の粒度偏析が装入物分布調
整上重要な因子の一つであると認識されているにもかか
わらず、かかる粒度偏析は萼えら・・・れたものとして
、層厚分布のみの変更を主体に装入物分布が制御され、
積極的に粒度偏析を調節することは成されていなかった
。 従来、原料貯槽から排出される原料の粒度は、1日に1
〜数回原料貯槽下側の排出口よシ作業員がサンプリング
し、粒度分析を行っているのが通例である。しかも、1
20〜170回/日程度の装入物が装入される高炉にお
いては4〜lO槽位ある原料貯槽の検量の粒度のばらつ
きが大きく、ま之同一槽内での粒度のばらつきも大きい
ため、上記のサンプリングは高炉操業に殆んど役立たな
かった。・加えてその炉頂での半径方向の粒度偏析は、
従来知られている半径方向の層厚分布調整と同様に重要
であることの認識が弱いことも原因となっていた。 本発明は、実高炉における操業試験と各種の調査をした
結果より、従来の鉱石類、コークスの半径方向の層厚分
布の調整のみでは、必ずしも最良の操業成績を得ること
はできないという知見とともに、炉頂バンカーから排出
される焼結鉱等装入物の経時的な(排出順)粒度変化を
調整すると、よい操業成績が得られたことにもとづいて
開発した技術である。 即ち、従来確立されている炉半径方向の層厚分布制御に
加えて、中継貯槽または炉頂バンカーの原料堆積状態ま
たは排出状態を炉況に応じた望ましい炉内半径方向の粒
度分布となるような装入を行うのに都合のよい状態に維
持していくことで、上記の粒度偏析制御を最適なものに
するという要請に応えんとする技術である。 上述の要請に応え得る本発明の要旨とする構成□は、複
数の原料貯槽、中継貯槽から構成される装入原料を、装
入コンベヤを介して−H炉頂バンカー内に貯留した後に
炉内に装入するに当り、少なくとも炉頂バンカー内にお
ける上記装入原料の堆積状態を、炉況に応じて選ばれる
炉半径方向の最適粒度分布にするために必要な形態で貯
留しておくことを特徴とする高炉の原料装入方法にある
。 第1図はベルレス装入装置を備える高炉の原料装入系統
を示す図である。複数設置の原料貯槽11・・・・・か
ら焼結鉱等の鉱石類またはコークスを集合ベルトコンベ
ヤ2上に定量切出し、輸送途中一旦、中継貯槽8内に貯
える。この際該中継貯檜8内では粒状原料を供給、排出
する際によく見られる粒度偏析の現象が生じるのが普通
である。第2図は・原料貯槽lから排出される焼結鉱の
粒度変動についてのサンプリング測定結果の一例を示す
。 通常高炉操業においては、8〜lO槽の原料貯槽l・・
・群から排出された装入原料は、中継貯槽3内に供給さ
れるが、各原料貯槽1・・・群ではその槽内の残量レベ
ルや堆積状態をも加味して通常5〜50闘の粒子径範囲
内のものに管理されてはいるが、排出時に経時的に変化
(排出順による差)することによね、中継貯槽8へ供給
される原料の粒度は第8図の(イ)や(ロ)で示すよう
に変化する。その結果、中継貯槽8から排出される原料
の排出711の粒度変動も同様に変動していく。従って
、高炉へ向う装入コンベヤ4で搬送され炉頂バンカー6
に供給された該装入原料が炉内に装入される時は、上述
したそれまでに生じている粒度変動の直接的な影響を受
けるから、安定した高炉操業の維持を困難にするのであ
る。 こうした現象を回避する上で本発明者達は興味深く、か
つ重大な高炉の操業現象に遭遇した。それは、第4図の
(イ)、(ロ)に示されるように炉頂バンカー6内に設
けである衝突板7が(ロ)で示す落下位置の直下にある
場合と、(イ)で示すその位置から外れている場合゛と
で原料の堆積状態や排出状態が変り操業成績に明らかな
差異が生じていたという現象を経験した。 衝突板7が第4図の(イ)、(ロ)に示される位置にあ
る場合を、それぞれ(イ)を1期、(ロ)を1期として
、各時期の高炉操業成績として炉頂ガス成分分布を第6
図に示した1、1期の方が1期操業に比べ、炉中心〜炉
中間部にかけてガス利用率(CO2/(CO+CO□)
X100(%))が良好であシ、結果として低燃料比操
業を行うことができた。このときの炉頂バンカー6から
構成される装入原料の粒度変化を調査するため、模型実
験を行ったがその結果第6図に示すように排出順の・違
いで粒度変動に差異を生ずることを見出した。 以上のような結果から、炉頂バンカー6から炉頂へ装入
される装入原料の粒度は、時間の経過とともに常に変動
し、炉頂バンカー6内で堆積時に形成された粒度分布と
排出時の貯槽内の原料の移動状態によシ決まる一定のパ
ターンで変化することが判った。 そこで本発明者達は、特開昭56−108808号とし
て開示されたバンカー内の堆積状態や排出状態を調整す
る方法を提案したが、その調整手段をさらに具体的に明
らかにするため、各種の実験を行い、その調整手段をこ
こに確立することができた。 次に、このことを具体的に171Oの縮尺模型を用いた
実験で説明する。その実験の結果を第8.9図に示す。 第7図は、中継貯槽8から炉頂バンカー6へ搬送する段
階での、該中継貯槽8内の樋状の逆V字形シュート8の
有無と、炉頂バンカー6内の整流板7の有無、大きさの
別による堆積状態の違いを示す。なお、シュート8は装
入された原料がこのシュート8を通過(矢印方向)しな
がらその両端から落下して槽内に堆積していくように形
成したものである。このシュート8を使うと槽内堆積物
プロフィルは中央部がくぼむ逆円錐状に堆積する0炉頂
バンカー6内の排出口上方に設胃する整流板7は2枚を
一組として用いたもので、面積が変更できるよう重ね合
わせが可能にしであるO さて、中継貯槽8から排出される原料排出時の粒度変化
を、第7図(イ)、(ロ)K当るA、 Eと対応させて
示すと、第8図の如くであシ、両者□の間では排出初期
、中期、末期と全体的に変動の差異が顕著である。これ
はAとEとで中継貯槽6内での原料積み付は状態が異っ
ていることによっている。 例えばAの場合であれば、搬送された装入原料は装入時
に中央が高い山型に堆積する。そのとき檜下方には平均
的な粒径のものが位置するのに対し中央部には細粒のも
のが、また槽壁側には粗粒のものが堆積するといったよ
うになる。 このことを更に詳述すると、上記のような堆積状態のも
のを該中継貯槽8下に排出したとすると、装入コンベヤ
4上での排出時の経時変化に伴う粒度の変化は、第8図
(インの状態に示す如くであシ、排出初期は平均粒径の
ものが切出されやがて中程1には中央部の細粒のものが
排出され、末期になると槽壁側にある粗粒のものが排出
されることになる〇 一方、中央がくぼんだ第7図(ロ)の場合(E)であれ
ば、これを装入コンベヤ4上に排出したとすると排出初
期は中央部の粗粒のものが優先的に切出され、やがて中
程に至って槽壁I11!1の細粒が続き、次第に平均粒
径のものが、そして最後に最上層に薄く堆積している粗
粒が排出される順番になっている。このように槽内での
堆積状態を変化させれば、その排出順の粒度変化を自動
的に調整することができるのであり、本発明は将にこの
点に着目したものである。 なお堆積状態を調整するにあたっては、他にも例えば第
10図に示すような逆V字状のシュート9のその中央部
に落し口9aを設けたものを用い、その上方に旋回可能
な衝突板10を設け、その衝突板lOに原料を尚ててか
らシュート9上に供給したり、第11図に示すように衝
突板lOを退避させ、原料の大部分を中央の落し口9a
部から落下させて、従来と同じ堆積状態にすることもで
きる。また、第12図、第18図に示すように炉頂バン
カー6上方にスライド可能に横架したストーンボックス
を形成する衝突板11を前記旋回に代えて行うこともで
きる。 1 本発明は上述したように槽内堆積状態を調節し□ておく
ことで、排出後の次の堆積層の粒度分布をコントロール
できることに着目し、これを炉頂バンカー6に適用して
、装入物粒度分布調節を行うようKした方法である。 第9図のB−Hは、前記中継貯槽8における原料の堆積
状態を変え、これを普通に切出して炉頂バンカー6に装
入し堆積させ、その面積を変化させて排出装入の際の調
整をするようにした。但し、実験例D1Hについては、
再度堆積状態を第7図・・・の(E)のように変えて、
かつ整流板フをC,Gの如くにした例である。 これらの結果かられかるように、整流板りの形状の違い
バンカー内での堆積状態の違いによシ、細粒、粗粒の排
出状況が変化するのがわかる。例1えばBの状態に例を
とると、バンカー内堆積は前述した中継貯槽8の排出順
で堆積し、これが排出されるときは先ず整流板7下の平
均粒径のものが、次に整流板7近傍の細粒が、やがて次
第に檜上方の粗粒が排出される。このように少なくとも
貯槽。 112   慟 内の堆積状態を調整するか或は整流板の設置を単独もし
くは適宜組み合わせて用いれば高炉内装入物の粒度分布
を調整することが容易である。 なお、実際の高炉操業に際しては操業状態に応じて第7
図に示されるような手段を用いて排出粒度変動のパター
ンを安定操業を得るために変化させようとする場合、中
継貯槽8の出側、または炉頂バンカー6の入側で装入原
料のバンカー6に装入される順にもとづく粒度変化を予
め把握する必要がある。このため、中継貯槽8から排出
された原料は非接触式原料粒度測定製電により、その粒
度測定を行う。この測定法はTVカメラ等で直接原料層
表面を撮影し、撮像し友ものを画像処理装置により画像
処理して行う方法、 また塾は装入ベルトコンベアに原料が供給される箇所、
あるいは排出される箇所で原料を一部サンプリング採取
し、これを別のコンベア等の移送手段で移送し、適当な
原料落下箇所を設け、原料粒子群が重ならない独立した
状態でTVカメラ等で撮影し、画像処理装置で画像処理
して粒度測定を行う方法、 さらにまた、装入コンベア4上にレーザー発信受信器を
設けて、レーザー発信器〜受信器間の距離を測定する方
法を使う。 以上のようにして、中継貯槽8から構成される装入原料
の粒子径変化を非接触法で測定し、その値をもとに中継
貯槽8または炉頂バンカー6内に設けられた整流板7ま
たは逆Vシュート8.9を使って炉頂バンカー6内の装
入原料堆積状態を炉内に装入したときに望ましい炉半径
方向の粒度を呈するように装入する之めの準備をするこ
とができるのである。 なお、この発明の延長にあるものとして、上記粒子径変
化の測定を原料貯槽後の集合コンベヤ2で行い、中継貯
槽8内装久原料の堆積状態を調節しておいても、最終的
な炉内での粒度分布調整装入が可能であるが、この方法
は炉頂バンカ−6内堆積状態調節に合わせて行うと効果
が顕著である0実施例 高炉容積的4500m8、中継貯槽の容積および炉頂バ
ンカー6の容積的100771’(鉱石装入量的140
t)のベルレス高炉において、粒子径が5〜50朋の鉱
石を装入して操業したときの実施例を以下に示す。 中継貯槽内が!11図
This invention relates to a method for charging raw materials into a blast furnace, and particularly proposes a charging method suitable for obtaining an optimal particle size distribution in the radial direction of the furnace depending on the conditions inside the furnace. In the operation of a blast furnace, the radial distribution of the charges (ores, coke) at the top of the furnace is one of the main factors that directly controls the operating performance, such as furnace conditions and fuel ratio. be. Conventionally known adjustments to the charge distribution have been carried out mainly by adjusting the relationship between the coke layer thickness and the ore layer thickness in the radial direction. For example, a tank for temporary storage of raw materials at the top of the furnace (top bunker)
Using the same cylinder as an example, the amount of raw material discharged through the chute, the amount of raw material discharged from the beginning of discharge, By using the inclination of the rotating chute based on the time from The method was to adjust the thickness of the layer. It is generally believed that the radial charge distribution at the top of the blast furnace governs the radial syneresis distribution of the gas flow that ascends almost vertically within the furnace. In order to obtain the distribution, based on various information such as blast furnace operating results such as gas utilization rate, blowing pressure, and fuel ratio, as well as radial gas composition and gas temperature measured at the furnace top or shaft, the above-mentioned The charge distribution was controlled by changing the layer thickness ratio depending on the method. By the way, in a normally operated blast furnace, the raw material that falls onto the surface of the charge layer inside the furnace top slides toward the center because the shape of the surface of the charge layer is an inverted conical surface. Or have a tendency to roll and move. In particular, in the case of coke and sintered ore, the particle size range is large, so fine particles accumulate near the falling point, and coarse particles accumulate toward the central valley, so the movement direction Particle size segregation occurs in the (radial direction). Of course, this phenomenon is already known, but since the permeability of a raw material is determined by the average particle size and particle size distribution of the raw material, it is necessary to adjust the charge distribution by taking into account the above particle size segregation as well as the layer thickness distribution. is essential. However, although grain size segregation in the radial direction has been recognized as one of the important factors in adjusting the burden distribution, such grain size segregation is considered to be a calyx, and the layer thickness distribution is The charge distribution is controlled mainly by changing the
No efforts have been made to actively control grain size segregation. Conventionally, the particle size of the raw material discharged from the raw material storage tank was 1 per day.
It is customary for workers to take samples from the outlet at the bottom of the raw material storage tank several times and perform particle size analysis. Moreover, 1
In blast furnaces where charges are charged about 20 to 170 times/day, there is a large variation in the particle size of the calibration of the raw material storage tank, which has about 4 to 10 tanks, and there is also a large variation in particle size within the same tank. The above sampling was of little use in blast furnace operations.・In addition, the radial grain size segregation at the top of the furnace is
Another cause was a lack of recognition that it is as important as the conventionally known adjustment of layer thickness distribution in the radial direction. Based on the results of operational tests and various investigations in actual blast furnaces, the present invention is based on the knowledge that it is not necessarily possible to obtain the best operational results only by adjusting the radial layer thickness distribution of conventional ores and coke. This technology was developed based on the fact that good operational results were obtained by adjusting the grain size changes over time (in the order of discharge) of charges such as sintered ore discharged from the furnace top bunker. In other words, in addition to the conventionally established layer thickness distribution control in the radial direction of the furnace, the material accumulation state or discharge state in the relay storage tank or the top bunker can be adjusted to achieve the desired particle size distribution in the radial direction within the furnace according to the furnace conditions. This technology aims to meet the demand for optimal particle size segregation control by maintaining conditions convenient for charging. The configuration □, which is the gist of the present invention that can meet the above-mentioned demands, stores the charging material consisting of a plurality of raw material storage tanks and relay storage tanks in the -H furnace top bunker via the charging conveyor, and then stores it inside the furnace. When charging, it is important to store the above-mentioned charging material in the form necessary to achieve the optimum particle size distribution in the radial direction of the furnace, which is selected according to the furnace conditions, at least in the piled state of the charged material in the top bunker. The main feature lies in the method of charging raw materials into the blast furnace. FIG. 1 is a diagram showing a raw material charging system of a blast furnace equipped with a bellless charging device. A fixed amount of ores such as sinter or coke is cut out onto a collection belt conveyor 2 from a plurality of raw material storage tanks 11, and is temporarily stored in a relay storage tank 8 during transportation. At this time, within the relay storage barrel 8, a phenomenon of particle size segregation, which is often observed when supplying and discharging granular raw materials, usually occurs. FIG. 2 shows an example of sampling measurement results regarding particle size fluctuations of sintered ore discharged from raw material storage tank l. In normal blast furnace operation, 8 to 10 tanks of raw material storage tank l...
- The charged raw material discharged from the group is supplied into the relay storage tank 3, but each raw material storage tank 1... usually takes into consideration the remaining amount level and accumulation state in the tank, and 5 to 50 tons of raw materials are discharged from the group. Although the particle size of the raw material supplied to the relay storage tank 8 changes over time during discharge (differences due to the order of discharge), the particle size of the raw material supplied to the relay storage tank 8 is controlled to be within the particle size range shown in Figure 8 (a). It changes as shown by and (b). As a result, the particle size of the raw material discharge 711 discharged from the relay storage tank 8 also fluctuates. Therefore, it is transported by the charging conveyor 4 toward the blast furnace and placed in the furnace top bunker 6.
When the charging material supplied to the blast furnace is charged into the furnace, it is directly affected by the particle size fluctuations that have occurred up to that point, which makes it difficult to maintain stable blast furnace operation. . In order to avoid such phenomena, the present inventors encountered an interesting and significant blast furnace operation phenomenon. As shown in (a) and (b) of Fig. 4, the collision plate 7 installed in the top bunker 6 is located directly below the falling position shown in (b), and the other is as shown in (a). I experienced a phenomenon in which the deposition and discharge conditions of raw materials changed depending on the location, and there was a clear difference in operational performance. When the collision plate 7 is in the position shown in (a) and (b) of Fig. 4, (a) is defined as the 1st period and (b) is the 1st period, and the furnace top gas is calculated as the blast furnace operating results for each period. The component distribution is the sixth
The gas utilization rate (CO2/(CO+CO□)
X100 (%)) was good, and as a result, low fuel ratio operation could be performed. In order to investigate the change in particle size of the charging material made up of the top bunker 6 at this time, a model experiment was conducted, and the results showed that, as shown in Figure 6, there were differences in particle size fluctuation depending on the order of discharge. I found out. From the above results, the particle size of the charging material charged from the top bunker 6 to the top of the furnace constantly changes over time, and the particle size distribution formed during deposition in the top bunker 6 and the time of discharge It was found that the temperature changes in a certain pattern depending on the movement state of the raw material in the storage tank. Therefore, the present inventors proposed a method for adjusting the deposition state and discharge state in the bunker, which was disclosed in Japanese Patent Application Laid-Open No. 56-108808. We conducted an experiment and were able to establish a means of adjustment here. Next, this will be specifically explained through an experiment using a scale model of 171O. The results of the experiment are shown in Figure 8.9. FIG. 7 shows the presence or absence of a gutter-like inverted V-shaped chute 8 in the relay storage tank 8 and the presence or absence of a rectifier plate 7 in the furnace top bunker 6 at the stage of conveying from the relay storage tank 8 to the furnace top bunker 6. This shows the difference in the state of accumulation depending on the size. Note that the chute 8 is formed so that the charged raw material passes through the chute 8 (in the direction of the arrow), falls from both ends thereof, and is deposited in the tank. When this chute 8 is used, the sediment profile in the tank is deposited in an inverted conical shape with a concave center.The rectifying plate 7 installed above the outlet in the furnace top bunker 6 is a set of two plates. Now, the change in particle size when the raw material is discharged from the relay storage tank 8 is made to correspond to A and E corresponding to K in Fig. 7 (a) and (b). As shown in FIG. 8, there is a significant difference in overall fluctuations between the two □ at the initial, middle, and final stages of discharge. This is because the conditions of raw material loading in the relay storage tank 6 are different between A and E. For example, in case A, the transported raw materials are piled up in a mountain shape with a high center at the time of charging. At this time, grains of average size are located at the bottom of the cypress, while fine grains are deposited in the center, and coarse grains are deposited on the tank wall side. To explain this in more detail, if the particles in the above-mentioned piled state are discharged to the bottom of the relay storage tank 8, the change in particle size over time during discharge on the charging conveyor 4 is as shown in Fig. 8. (As shown in the figure below, at the beginning of the discharge, particles with an average diameter are cut out, then in the middle stage 1, the fine particles in the center are discharged, and at the end, the coarse particles on the side of the tank wall are cut out.) 〇On the other hand, in the case (E) of Fig. 7 (B) where the center is concave, if this is discharged onto the charging conveyor 4, the initial stage of discharge is Coarse grains are preferentially cut out, followed by fine grains on the tank wall I11!1 in the middle, then gradually average-sized grains, and finally coarse grains thinly deposited on the top layer. By changing the deposition state in the tank in this way, it is possible to automatically adjust the particle size change in the order of discharge, and the present invention will eventually address this point. In addition, in order to adjust the deposition state, for example, an inverted V-shaped chute 9 as shown in FIG. A rotatable collision plate 10 is provided at the collision plate 10, and the raw material is placed on the collision plate 10 before being supplied onto the chute 9, or the collision plate 10 is retracted as shown in FIG. Drop port 9a
It is also possible to drop it from a section to create the same piled state as before. Furthermore, as shown in FIGS. 12 and 18, the collision plate 11 forming a stone box that is slidably suspended horizontally above the furnace top bunker 6 may be used in place of the above-mentioned rotation. 1 The present invention focuses on the fact that by adjusting the deposition state in the tank as described above, the particle size distribution of the next deposited layer after discharge can be controlled, and this is applied to the furnace top bunker 6. This method is designed to control the particle size distribution of the incoming material. B-H in Fig. 9 shows that the stacking state of the raw material in the relay storage tank 8 is changed, the raw material is cut out normally and charged into the furnace top bunker 6 and deposited, and its area is changed to improve the I made some adjustments. However, for Experimental Example D1H,
Change the deposition state again as shown in Figure 7 (E),
This is an example in which the rectifying plates are arranged as shown in C and G. As can be seen from these results, it can be seen that the discharge status of fine particles and coarse particles changes depending on the shape of the rectifying plate and the accumulation state within the bunker. For example, if we take condition B as an example, the deposits inside the bunker will accumulate in the order of discharge from the relay storage tank 8 mentioned above, and when this is discharged, particles with an average diameter under the rectifying plate 7 will be deposited first, and then the particles with an average diameter under the rectifying plate will be The fine grains near the plate 7 are gradually discharged, and then the coarse grains above the cypress are gradually discharged. At least a storage tank like this. 112 It is easy to adjust the particle size distribution of the contents in the blast furnace by adjusting the deposition state in the basin or by installing a current plate either alone or in an appropriate combination. In addition, during actual blast furnace operation, the seventh
When attempting to change the pattern of discharge particle size fluctuation in order to obtain stable operation using the means shown in the figure, the charge material bunker is placed on the outlet side of the relay storage tank 8 or the inlet side of the top bunker 6. It is necessary to know in advance the change in particle size based on the order in which the particles are charged. For this reason, the particle size of the raw material discharged from the relay storage tank 8 is measured using a non-contact raw material particle size measurement method. This measurement method is performed by directly photographing the surface of the raw material layer with a TV camera, etc., and processing the image using an image processing device.
Alternatively, take a sample of a part of the raw material at the point where it is discharged, transfer it using another conveyor or other transport means, set up an appropriate place for the raw material to fall, and photograph the raw material particles with a TV camera or the like in an independent state without overlapping. However, a method is used in which the particle size is measured by image processing using an image processing device, and a method in which a laser transmitter/receiver is provided on the charging conveyor 4 and the distance between the laser transmitter and the receiver is measured. As described above, the change in the particle size of the charging raw material made up of the relay storage tank 8 is measured by a non-contact method, and based on the value, the current plate 7 installed in the relay storage tank 8 or the furnace top bunker 6 is Alternatively, use the inverted V chute 8.9 to prepare for charging so that the stacked state of charging material in the furnace top bunker 6 exhibits a desired grain size in the furnace radial direction when it is charged into the furnace. This is possible. As an extension of the present invention, even if the measurement of the particle size change is carried out on the collection conveyor 2 after the raw material storage tank and the accumulation state of the built-in raw material in the relay storage tank 8 is adjusted, the change in the particle size in the final furnace Although it is possible to adjust the particle size distribution at the top of the furnace, this method is most effective when carried out in conjunction with the adjustment of the deposition conditions in the top bunker 6. Bunker 6 volumetrically 100,771' (ore charge volume 140
An example is shown below in which the bellless blast furnace of t) was operated with ore having a particle size of 5 to 50 mm charged therein. Inside the relay storage tank! Figure 11

【イ】に示すような堆積状態であ
るときに排出した場合の装入コンベアー上の粒径変化を
、レーザーを使う非接触式粒度測定装置により測定した
ところ、第14図のBIIwの状態であった。そして炉
頂バンカー内を第7図Cのように整流板を小面積として
原料の排出をした。そのときの粒径変化は第15図の8
1 @で示すようになり、細粒が虐壁側粗粒が炉中心側
に分配された。そのときのガス分布は第16図のBl線
に示すような分布となって、高炉の操業状態は中心流が
強過ぎ不安定の状態であった。 そこで中継貯槽での堆積状態を第11図のように衝突板
10を移動させて原料を排出した。このとき排出原料の
粒子径変化は第14図のB!縁のように々シ、第7図G
のような堆積状態になったCそして、炉頂バンカーから
排出される粒子径変化は、第15図のBs @のように
なった。その結果炉壁側において前者に比べ粒子径がや
や大きくなシ、炉中心側において前者に比べ粒子径がや
や小さくなシ、この状態におけるガス分布は第16図の
BfA I!@!に示すような分布となって、高炉の操
業状態が安定してきた。 しかし、その後中継貯槽排出側原料の粒子径が小さくな
ってきた。このときの炉頂ガス分布は第16図の88線
に示すようになったので、排出粒子径変化は、第14図
のBa’線になるから、炉頂バンカーの整流板を第7図
Fのように大面積として排出した。このときの粒度変化
は、第15図のBa 線のようになシ、以前の状態に比
べ炉壁側にやや粗粒、炉中心側にもやや粗粒が分配され
、ガス分布は第16図のBg 線に示すような分布とな
って長期に高炉の操業状態を安定させることができた。 このように本発明は中継貯槽的装入原料の堆積状態を調
整し、ひきつづき排出後のコンベアー上における粒度を
非接触式測定手段で測定し、炉頂イ15) バンカーにおける装入原料の堆積状態が前記粒度測定結
果と炉内ガス分布の挙動にもとづいて選ばれる炉半径方
向の最適粒度分布にするために必要な形態になるように
、バンカー内の整流手段で堆積および/もしくは排出順
を肖周整し、排出時の経時的な粒径変化を調整しながら
装入を行うものである。 なお前記実施例では主として中継貯槽の出側の粒度を測
定して堆積状態の調整や炉頂バンカーの排出順の調整を
する方法について述べたが、原料貯槽群、中継貯槽、炉
頂貯槽などの各種貯槽の堆積状態、排出順の調整、粒度
測定などを任意に組合わせて行えばさらにきめ細かな原
料の装入あるいは操業ができるのは言うまでもない。 以上説明したように本発明によれば、中継貯槽あるいは
炉頂バンカー内原料の堆積状態と、排出順の調整を行う
ことによって、炉内に供給される原料の粒度分布を操業
状態に応じ次任意のものに調整することができ、高炉操
業を長期に安定させるのに有効である。しかも、そのと
きの社会経済(l 6 ) 情勢に応じて採用される低燃料比操業や高出銑比操業な
ど各種の操業志向′め変化に即応した装入方法に変える
ことができるし、こうした操業志向が変化しても安定し
た高炉操業を行うことが可能である。 更にまた、本発明はコンベヤー上で予め粒度測定を行う
から、その測定結果を原料の整流工程にフィードバック
し、原料貯槽lに供給される原料の粒度を操業に適した
範囲に任意に調整することができる。従って、安定した
高炉操業を長期に維持することが容易となる。
When the particle size change on the charging conveyor was measured using a non-contact particle size measuring device using a laser when the particles were discharged in the accumulated state shown in [A], it was found that they were in the BIIw state shown in Fig. 14. Ta. Then, the raw material was discharged inside the furnace top bunker by using a rectifier plate with a small area as shown in FIG. 7C. The particle size change at that time is 8 in Figure 15.
1 As shown by @, the fine grains were distributed toward the wall and the coarse grains were distributed toward the center of the furnace. At that time, the gas distribution was as shown by the Bl line in FIG. 16, and the operating condition of the blast furnace was such that the central flow was too strong and unstable. Therefore, the material was discharged by moving the collision plate 10 to change the deposition state in the relay storage tank as shown in FIG. 11. At this time, the particle size change of the discharged raw material is B! in Figure 14! Like a border, Figure 7 G
The particle size of the particles discharged from the furnace top bunker changed as shown in Bs@ in Fig. 15. As a result, the particle size on the furnace wall side is slightly larger than the former, and the particle size on the furnace center side is slightly smaller than the former.The gas distribution in this state is BfA I! in Figure 16. @! The operating conditions of the blast furnace have become stable, with the distribution shown in the figure below. However, after that, the particle size of the raw material on the discharge side of the relay storage tank became smaller. At this time, the furnace top gas distribution became as shown by line 88 in Figure 16, and the change in exhaust particle size became line Ba' in Figure 14. It was discharged as a large area like this. The particle size change at this time is as shown in the Ba line in Figure 15. Compared to the previous state, slightly coarser grains are distributed on the furnace wall side and slightly coarser grains are also distributed on the furnace center side, and the gas distribution is as shown in Figure 16. As a result, the operating conditions of the blast furnace could be stabilized over a long period of time with a distribution as shown in the Bg line. In this way, the present invention adjusts the stacking state of the charging raw material in the relay storage tank, and subsequently measures the particle size on the conveyor after discharge using a non-contact measuring means, and determines the stacking state of the charging raw material in the furnace top (15) bunker. The deposition and/or discharge order is controlled by rectifying means in the bunker so that the particles have the required form to achieve the optimum particle size distribution in the radial direction of the furnace, which is selected based on the particle size measurement results and the behavior of the gas distribution in the furnace. Charging is carried out while adjusting the circumference and adjusting the change in particle size over time during discharge. In the above example, the method of measuring the particle size on the outlet side of the relay storage tank to adjust the deposition condition and the order of discharge from the furnace top bunker was mainly described. Needless to say, even more fine-grained raw material charging and operation can be achieved by arbitrarily combining various storage tank accumulation conditions, adjustment of discharge order, particle size measurement, etc. As explained above, according to the present invention, the particle size distribution of the raw material supplied into the furnace can be adjusted to any level according to the operating conditions by adjusting the accumulation state of the raw material in the relay storage tank or the furnace top bunker and the discharge order. It is effective in stabilizing blast furnace operation over a long period of time. Moreover, it is possible to change the charging method in response to changes in various operational orientations, such as low fuel ratio operation and high iron output ratio operation, which are adopted depending on the socio-economic (16) situation at the time. It is possible to perform stable blast furnace operation even if the operating orientation changes. Furthermore, since the present invention measures the particle size in advance on the conveyor, the measurement results can be fed back to the raw material rectification process to arbitrarily adjust the particle size of the raw material supplied to the raw material storage tank l to a range suitable for the operation. I can do it. Therefore, it becomes easy to maintain stable blast furnace operation for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はベルレス装入装置を有する原料装入設備の路線
図、 第2図は原料排出時の粒度分布を示すグラフ、第8図(
イ)、(ロ)は中継貯槽へ供給する原料の粒子径分布と
排出順の粒子径変化を示すグラフ、 第4図(イ)、(ロ)は衝突板位置による原料落下の模
様を示す路線図、 第6図は炉頂ガス成分分布のグラフ、 第6図は炉頂バンカー排出時の粒子径変化の模様を示す
グラフ、 第7図(イ)、(ロ)は中継貯槽と炉頂バンカーにおけ
る各種原料堆積状態の例を示す路線図、第8図(イ〕、
(ロ)は中継貯槽排出粒子の粒子径変化グラフ、 第9図(イ)、(ロ)は炉頂バンカー排出粒子の粒子径
変化のグラフ、 第1O図および第11図の(イ)、(ロ)は、それぞれ
貯槽内シュートと原料流れ、堆積状態の関係を示す路線
図、 第12図および第18図の(イ)、(ロ)はそれぞれ貯
槽内シュートと原料流れ、堆積状態の関係を示す路線図
、 第14図は本発明実施例における中継貯槽排出原料の粒
子径変化のグラフ、 第15図は実施例での炉頂バンカー排出原料の粒子径変
化のグラフ、 第16図は実施例での炉頂ガス成分の分布を示すグラフ
である。 特許出願人  川崎製鉄株式会社 ゼtj保因1m伽V好士轄胴H の (%)費←憂◆ 寸 法 () ζb 区 にシ 糎 一 0 (^−に社 区 の 慨Φ唸 区 法 C訃 区 〜 法 い 第15図 ¥;      が lL:q −−−−−8゜ −・−日2 83 26−
Figure 1 is a route map of a raw material charging facility with a bellless charging device, Figure 2 is a graph showing the particle size distribution at the time of raw material discharge, and Figure 8 (
Figure 4 (a) and (b) are graphs showing the particle size distribution of raw materials supplied to the relay storage tank and the change in particle size in the order of discharge. Figure 6 is a graph of the top gas component distribution. Figure 6 is a graph showing the pattern of particle size change during discharge from the top bunker. Figures 7 (a) and (b) are the relay storage tank and the top bunker. Route map showing examples of various raw material accumulation states in Figure 8 (A),
(B) is a graph of particle size change of particles discharged from the relay storage tank. Figures 9 (A) and (B) are graphs of particle size change of particles discharged from the top bunker. Figures 1O and 11 (A), ( (b) is a route map showing the relationship between the chute in the storage tank, the raw material flow, and the deposition state, and (a) and (b) in Figures 12 and 18 respectively show the relationship between the chute in the storage tank, the raw material flow, and the deposition state. Fig. 14 is a graph of particle size change of the raw material discharged from the relay storage tank in the example of the present invention, Fig. 15 is a graph of particle size change of the raw material discharged from the furnace top bunker in the example, and Fig. 16 is the example. It is a graph showing the distribution of furnace top gas components at . Patent Applicant Kawasaki Steel Co., Ltd. Ward ~ Law Figure 15 ¥; is lL:q ------8゜-・-day 2 83 26-

Claims (1)

【特許請求の範囲】 1 複数の原料貯槽、中継貯槽から構成される装入原料
を、装入コンベヤを介して−は炉頂バンカー内に貯留し
た後に炉内に装入するに当シ、少なくとも炉頂バンカー
内における上記装入原料の堆積状態を、炉況に応じて選
ばれる炉半径方向の最適粒度分布にするために必要な形
態で貯留しておくことを特徴とする高炉の原料装入方法
。 & 複数の原料貯槽、中継貯槽から構成される装入原料
を装入コンベヤを介して一旦炉頂バンカー内に貯留した
後に炉内に装入する方法において、まず上記中継貯槽内
装入原料の堆積状態を調整し、ひきつづき上記炉mバン
カー内における上記装入原料の堆積状態が、炉況に応じ
て選ばれる炉半径方向の最適粒度分布にするために必要
な形態になるようにバンカー内の整流手段で堆積および
/もしくは排出順を調整し、排出時の経時的な粒径変化
を・調整しながら装入を行うことを特徴とする高炉の原
料装入方法。
[Scope of Claims] 1. When charging raw materials consisting of a plurality of raw material storage tanks and relay storage tanks is stored in a furnace top bunker via a charging conveyor and then charged into the furnace, at least Material charging for a blast furnace, characterized in that the charging material is stored in a form necessary to achieve the optimum particle size distribution in the radial direction of the furnace, which is selected according to the furnace conditions, so that the piled state of the material is stored in the top bunker of the furnace. Method. & In a method in which charging raw materials consisting of a plurality of raw material storage tanks and relay storage tanks are once stored in a top bunker via a charging conveyor and then charged into the furnace, the accumulation state of the input raw materials in the relay storage tanks is first checked. and subsequently, a rectifying means in the bunker so that the deposition state of the charged raw material in the bunker of the furnace is in the form necessary to achieve the optimum particle size distribution in the radial direction of the furnace selected according to the furnace conditions. A method for charging raw materials into a blast furnace, characterized in that charging is carried out while adjusting the order of deposition and/or discharge and adjusting the change in particle size over time during discharge.
JP1890882A 1982-02-10 1982-02-10 Charging method of raw material to blast furnace Granted JPS58136704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1890882A JPS58136704A (en) 1982-02-10 1982-02-10 Charging method of raw material to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1890882A JPS58136704A (en) 1982-02-10 1982-02-10 Charging method of raw material to blast furnace

Publications (2)

Publication Number Publication Date
JPS58136704A true JPS58136704A (en) 1983-08-13
JPH037722B2 JPH037722B2 (en) 1991-02-04

Family

ID=11984693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1890882A Granted JPS58136704A (en) 1982-02-10 1982-02-10 Charging method of raw material to blast furnace

Country Status (1)

Country Link
JP (1) JPS58136704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053201A (en) * 2014-09-04 2016-04-14 Jfeスチール株式会社 Method for charging raw material into blast furnace
JP2021195617A (en) * 2020-06-12 2021-12-27 Jfeスチール株式会社 Furnace top bunker and raw material charging method for blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053201A (en) * 2014-09-04 2016-04-14 Jfeスチール株式会社 Method for charging raw material into blast furnace
JP2021195617A (en) * 2020-06-12 2021-12-27 Jfeスチール株式会社 Furnace top bunker and raw material charging method for blast furnace

Also Published As

Publication number Publication date
JPH037722B2 (en) 1991-02-04

Similar Documents

Publication Publication Date Title
JP5585729B2 (en) Raw material charging apparatus for blast furnace and raw material charging method using the same
JPS58136704A (en) Charging method of raw material to blast furnace
US3972411A (en) Method of feedig green pellets onto grate of pretreatment furnace in the production of reduced pellets
JPH0598322A (en) Method for controlling grain size of charging material into blast furnace
JP2828098B2 (en) How to load the bellless blast furnace charge
JP2782786B2 (en) Raw material charging apparatus and charging method for bellless blast furnace
JP3874319B2 (en) Method and apparatus for charging small amounts of charged materials into a bell-less blast furnace
JP2004346414A (en) Charging device for blast furnace
JPS61227109A (en) Charging method for blast furnace charge
JP6558518B1 (en) Raw material charging method for blast furnace
JP2018178165A (en) Blast furnace operation method
JPH05272872A (en) Control device for feed amount of sintering material
JPH0811805B2 (en) Belleless blast furnace raw material charging method
JP2754617B2 (en) Raw material charging method for bell blast furnace
JP2009293098A (en) Method for charging raw material into blast furnace
JP2847995B2 (en) Raw material charging method for bellless blast furnace
JP3526108B2 (en) Blast furnace raw material charging equipment
US3491990A (en) Apparatus and method for feeding a sinter mix onto a sinter strand
JPH02401B2 (en)
JP2023079158A (en) Raw material charging device and raw material charging method for bell-less blast furnace
JPH05179320A (en) Raw material charging method for bell-less blast furnace
JPH03153806A (en) Method for charging raw material into blast furnace
JP2847994B2 (en) Raw material charging method for bellless blast furnace
JPH01287212A (en) Method for charging raw material in blast furnace
JPS6220805A (en) Method for charging raw material to blast furnace having bell-less type charger