JPH037722B2 - - Google Patents

Info

Publication number
JPH037722B2
JPH037722B2 JP1890882A JP1890882A JPH037722B2 JP H037722 B2 JPH037722 B2 JP H037722B2 JP 1890882 A JP1890882 A JP 1890882A JP 1890882 A JP1890882 A JP 1890882A JP H037722 B2 JPH037722 B2 JP H037722B2
Authority
JP
Japan
Prior art keywords
furnace
particle size
raw material
charging
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1890882A
Other languages
Japanese (ja)
Other versions
JPS58136704A (en
Inventor
Tsutomu Fujita
Yasuo Tanaka
Takeshi Fukutake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1890882A priority Critical patent/JPS58136704A/en
Publication of JPS58136704A publication Critical patent/JPS58136704A/en
Publication of JPH037722B2 publication Critical patent/JPH037722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 この発明は高炉の原料装入方法に関するもので
あり、とくに炉内状況に応じた炉半径方向の最適
粒度分布を得るのに好適な装入方法について提案
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for charging raw materials into a blast furnace, and particularly proposes a charging method suitable for obtaining an optimum particle size distribution in the radial direction of the furnace depending on the conditions inside the furnace.

高炉の操業において、炉頂における装入物(鉱
石類、コークス)の半径方向の分布は、炉況、焼
料比などの操業成積を直接的に支配する主要な要
因の一つである。従来公知の装入物分布の調節
は、主として半径方向のコークス層厚さと鉱石層
厚さの関係を調節することで行つていた。
In the operation of a blast furnace, the radial distribution of the charges (ores, coke) at the top of the furnace is one of the main factors that directly controls the operating conditions such as furnace conditions and firing ratio. Conventionally known adjustments to the charge distribution have been carried out primarily by adjusting the relationship between the coke layer thickness and the ore layer thickness in the radial direction.

例えば、炉頂に原料の一時貯蔵用の槽(炉頂バ
ンカー)を持ち、そのバンカーから旋回シユート
を通じて炉内に装入物を分配するベルレス式装入
装置による高炉の装入物分布調節を例にとると、
シユートを通して排出した原料の量、排出し始め
てからの時間、あるいは旋回数を基準として旋回
シユートの傾きを変えることにより、該旋回シユ
ートから炉内に落下する原料の堆積した装入物層
表面への倒達位置を変えて、鉄鉱石類とコークス
の層の厚さを調節していくという方法であつた。
An example is the control of charge distribution in a blast furnace using a bellless charging device that has a tank for temporary storage of raw materials (top bunker) at the top of the furnace and distributes the charge from the bunker into the furnace through a rotating chute. If you take it into account,
By changing the inclination of the rotating chute based on the amount of raw material discharged through the chute, the time since the start of discharge, or the number of turns, the material falling from the rotating chute into the furnace can be applied to the surface of the accumulated charge layer. The method was to adjust the thickness of the iron ore and coke layer by changing the landing position.

一般に高炉の炉頂における半径方向の装入物分
布は、炉内をほぼ垂直に上昇するガス流の半径方
向の流量分布を支配すると考えられている。した
がつて、適正な炉半径方向のガス流分布を得るた
めには、ガス利用率、送風圧力、燃料比などの高
炉操業成積、炉頂またはシヤフト部で測定された
半径方向のガス組成やガス温度などの諸情報をも
とに、上述の方法により層厚比を変化させて装入
物分布の調節を行つていた。
It is generally believed that the radial charge distribution at the top of a blast furnace governs the radial flow rate distribution of the gas flow that ascends approximately vertically within the furnace. Therefore, in order to obtain an appropriate gas flow distribution in the radial direction of the furnace, it is necessary to take into account the operating conditions of the blast furnace, such as the gas utilization rate, blowing pressure, and fuel ratio, the radial gas composition measured at the top of the furnace or the shaft, etc. Based on various information such as gas temperature, the charge distribution was adjusted by changing the layer thickness ratio using the method described above.

ところで、炉頂内の装入物層表面に落下した原
料は、通常の操業をしている高炉では装入物層表
面の形状が、逆円錐面を成しているので中心部へ
向つてすべりまたはころがつて移動する傾向があ
る。なかでも、コークスや焼結鉱の場合、粒度範
囲が大きいため、細かい粒子ほど落下点近くに集
積し、粗粒は中心の谷部に向つてころがり集積す
る挙動になるから、移動方向(半径方向)に粒度
偏析が発生する。
By the way, in a normally operated blast furnace, the raw material that falls onto the surface of the charge layer inside the furnace top slides toward the center because the shape of the surface of the charge layer is an inverted conical surface. or have a tendency to roll and move. In particular, in the case of coke and sintered ore, the particle size range is large, so the finer particles accumulate near the falling point, and the coarser particles roll and accumulate towards the central valley. ) grain size segregation occurs.

勿論こうした現象については既に知られている
ことであるが、原料の通気性は、その原料の平均
粒度と粒度分布により決まるのであるから、層厚
分布とともに上記粒度偏析を考慮した装入物分布
調節が不可欠である。
Of course, this phenomenon is already known, but since the permeability of a raw material is determined by the average particle size and particle size distribution of the raw material, it is necessary to adjust the charge distribution by taking into account the above particle size segregation as well as the layer thickness distribution. is essential.

しかしながら、従来半径方向の粒度偏析が装入
物分布調整上重要な因子の一つであると認識され
ているにもかかわらず、かかる粒度偏析は与えら
れたものとして、層厚分布のみの変更を主体に装
入物分布が制御され、積極的に粒度偏析を調節す
ることは成されていなかつた。
However, although it has been conventionally recognized that grain size segregation in the radial direction is one of the important factors in adjusting the burden distribution, it is assumed that such grain size segregation is a given, and only the layer thickness distribution can be changed. The charge distribution was mainly controlled, and particle size segregation was not actively controlled.

従来、原料貯槽から排出される原料の粒度は、
1日に1〜数回原料貯槽下側の排出口より作業員
がサンプリングし、粒度分析を行つているのが通
例である。しかも、120〜170回/日程度の装入物
が装入される高炉においては4〜10槽位ある原料
貯槽の槽間の粒度のばらつきが大きく、また同一
槽内での粒度のばらつきも大きいため、上記のサ
ンプリングは高炉操業に殆んど役立たなかつた。
加えてその炉頂での半径方向の粒度偏析は、従来
知られている半径方向の層厚分布調整と同様に重
要であることの認識が弱いことも原因となつてい
た。
Conventionally, the particle size of the raw material discharged from the raw material storage tank is
It is customary for workers to take samples from the outlet at the bottom of the raw material storage tank once or several times a day and perform particle size analysis. Moreover, in a blast furnace where the charge is charged 120 to 170 times/day, there are 4 to 10 raw material storage tanks, and there are large variations in particle size between tanks, and there is also a large variation in particle size within the same tank. Therefore, the above sampling was of little use for blast furnace operation.
In addition, there was a lack of recognition that radial grain size segregation at the top of the furnace is as important as the conventionally known adjustment of radial layer thickness distribution.

本発明は、実高炉における操業試験と各種の調
査をした結果より、従来の鉱石類、コークスの半
径方向の層厚分布の調整のみでは、必ずしも最良
の操業成積を得ることはできないという知見とと
もに、炉頂バンカーから排出される焼結鉱等装入
物の経時的な(排出順)粒度変化を調整すると、
よい操業成積が得られたことにもとづいて開発し
た技術である。
The present invention was developed based on the results of operational tests and various investigations in actual blast furnaces, and based on the knowledge that it is not necessarily possible to obtain the best operational results only by adjusting the radial layer thickness distribution of conventional ores and coke. , by adjusting the particle size change over time (in the order of discharge) of charges such as sintered ore discharged from the furnace top bunker,
This technology was developed based on good operational results.

即ち、従来確立されている炉半径方向の層厚分
布制御に加えて、中継貯槽または炉頂バンカーの
原料堆積状態または排出状態を炉況に応じた望ま
しい炉内半径方向の粒度分布となるような装入を
行うのに都合のよい状態に維持していくことで、
上記の粒度偏析制御を最適なものにするという要
請に応えんとする技術である。
In other words, in addition to the conventionally established layer thickness distribution control in the radial direction of the furnace, the material accumulation state or discharge state in the relay storage tank or the top bunker can be adjusted to achieve the desired particle size distribution in the radial direction within the furnace according to the furnace conditions. By maintaining conditions convenient for charging,
This technology is intended to meet the demand for optimal particle size segregation control as described above.

上述の要請に応え得る本発明の要旨とする構成
は、複数の原料貯槽、中継貯槽から排出される装
入原料を、装入コンベヤを介して一旦炉頂バンカ
ー内に貯留した後に炉内に装入するに当り、少な
くとも炉頂バンカー内における上記装入原料の堆
積状態を、炉況に応じて選ばれる炉半径方向の最
適流度分布にするために必要な形態で貯留してお
くことを特徴とする高炉の原料装入方法にある。
The configuration of the present invention that can meet the above-mentioned demands is such that charging raw materials discharged from a plurality of raw material storage tanks and relay storage tanks are stored in a furnace top bunker via a charging conveyor and then loaded into a furnace. The charging material is stored at least in the form necessary to achieve the optimum flow rate distribution in the radial direction of the furnace, which is selected according to the furnace conditions, at least in the top bunker. There is a method for charging raw materials into a blast furnace.

第1図は、ベルレス装入装置を備える高炉の原
料装入系統を示す図である。複数設置の原料貯槽
1…から焼結鉱等の鉱石類またはコークスを集合
ベルトコンベヤ2上に定量切出し、輪送途中一
旦、中継貯槽3内に貯える。この際該中継貯槽3
内では粒状原料を供給、排出する際によく見られ
る粒度偏析の現象が生じるのが普通である。第2
図は原料貯槽1から排出される焼結鉱の粒度変動
についてのサンプリング測定結果の一例を示す。
FIG. 1 is a diagram showing a raw material charging system of a blast furnace equipped with a bellless charging device. A fixed amount of ores such as sinter or coke is cut out from a plurality of raw material storage tanks 1 onto a collecting belt conveyor 2, and temporarily stored in a relay storage tank 3 during conveyance. At this time, the relay storage tank 3
The phenomenon of particle size segregation, which is often seen when feeding and discharging granular raw materials, usually occurs within the reactor. Second
The figure shows an example of sampling measurement results regarding particle size fluctuations of sintered ore discharged from the raw material storage tank 1.

通常高炉操業においては、3〜10槽の原料貯槽
1…群から排出された装入原料は、中継貯槽3内
に供給されるが、各原料貯槽1…群ではその槽内
の残量レベルや堆積状態をも加味して通常5〜50
mmの粒子径範囲内のものに管理されてはいるが、
排出時に経時的に変化(排出順による差)するこ
とにより、中継貯槽3へ供給される原料の粒度は
第3図のイやロで示すように変化する。その結
果、中継貯槽3から排出される原料の排出順の粒
度変動も同様に変動していく。従つて、高炉へ向
う装入コンベヤ4で搬送され炉頂バンカー6に供
給された該装入原料が炉内に装入される時は、上
述したそれまでに生じている粒度変動の直接的な
影響を受けるから、安定した高炉操業の維持を困
難にするのである。
In normal blast furnace operation, the charged raw material discharged from the 3 to 10 raw material storage tanks 1... group is supplied into the relay storage tank 3, but in each raw material storage tank 1... group, the remaining amount level in the tank Usually 5 to 50, taking into account the deposition condition.
Although it is controlled within the particle size range of mm,
Due to changes over time during discharge (differences depending on the order of discharge), the particle size of the raw material supplied to the relay storage tank 3 changes as shown by A and B in FIG. 3. As a result, the particle size of the raw materials discharged from the relay storage tank 3 also varies in the order of discharge. Therefore, when the charging material that has been conveyed by the charging conveyor 4 toward the blast furnace and supplied to the furnace top bunker 6 is charged into the furnace, the above-mentioned particle size fluctuation that has occurred up to that point is directly affected. This makes it difficult to maintain stable blast furnace operation.

こうした現象を回避する上で本発明者達は興味
深く、かつ重大な高炉の操業現象に遭遇した。そ
れは、第4図のイ,ロに示されるように炉頂バン
カー6内に設けてある衝突板7がロで示す落下位
置の直下にある場合と、イで示すその位置から外
れている場合とで原料の堆積状態や排出状態が変
り操業成積に明らかな差異が生じていたという現
象を経験した。
In order to avoid such phenomena, the present inventors encountered an interesting and significant blast furnace operation phenomenon. As shown in Figure 4, A and B, there are cases where the collision plate 7 installed in the top bunker 6 is directly below the falling position shown in B, and cases where it is out of the position shown in A. We experienced a phenomenon in which the deposition and discharge conditions of raw materials changed, resulting in clear differences in operational performance.

衝突板7が第4図のイ,ロに示される位置にあ
る場合を、それぞれイを期、ロを期として、
各時期の高炉操業成積として炉頂ガス成分分布を
第5図に示した。期の方が期操業に比べ、炉
中心〜炉中間部にかけてガス利用率(CO2
(CO+CO2)×100(%))が良好であり、結果とし
て低燃料比操業を行うことができた。このときの
炉頂バンカー6から排出される装入原料の粒度変
化を調査するため、模型実験を行つたがその結果
第6図に示すように排出順の違いで粒度変動に差
異を生ずることを見出した。
When the collision plate 7 is in the positions shown in A and B in Fig. 4, A and B are the periods, respectively.
Figure 5 shows the top gas component distribution as the result of blast furnace operation at each period. The gas utilization rate (CO 2 /
(CO + CO 2 ) x 100 (%)) was good, and as a result, low fuel ratio operation was possible. In order to investigate the change in particle size of the charging material discharged from the top bunker 6 at this time, a model experiment was conducted, and the results showed that the change in particle size changes depending on the order of discharge, as shown in Figure 6. I found it.

以上のような結果から、炉頂バンカー6から炉
頂へ装入される装入原料の粒度は、時間の経過と
ともに常に変動し、炉頂バンカー6内で堆積時に
形成された粒度分布と排出時の貯槽内の原料の移
動状態により決まる一定のパターンで変化するこ
とが判つた。
From the above results, the particle size of the charging material charged from the top bunker 6 to the top of the furnace constantly changes over time, and the particle size distribution formed during deposition in the top bunker 6 and the time of discharge It was found that the flow rate changes in a certain pattern determined by the movement state of the raw materials in the storage tank.

そこで本発明者達は、特開昭56−108808号とし
て開示されたバンカー内の堆積状態や排出状態を
調整する方法を提案したが、その調整手段をさら
に具体的に明らかにするため、各種の実験を行
い、その調整手段をここに確立することができ
た。
Therefore, the present inventors proposed a method of adjusting the accumulation state and discharge state in the bunker, which was disclosed in Japanese Patent Application Laid-Open No. 56-108808. We conducted an experiment and were able to establish a means of adjustment here.

次に、このことを具体的に1/10の縮尺模型を用
いた実験で説明する。その実験の結果を第8,9
図に示す。第7図は、中継貯槽3から炉頂バンカ
ー6へ搬送する段階での、該中継貯槽3内の樋状
の逆V字状シユート8の有無と、炉頂バンカー6
内の整流板の有無、大きさの別による堆積状態の
違いを示す。なお、シユート8は装入された原料
がこのシユート8を通過(矢印方向)しながらそ
の両端から落下して槽内に堆積していくように形
成したものである。このシユート8を使うと槽内
堆積物プロフイルは中央部がくぼむ逆円錐状に堆
積する。炉頂バンカー6内の排出口上方に設置す
る整流板7は2枚を一組として用いたもので、面
積が変更できるよう重ね合わせが可能にしてあ
る。
Next, we will specifically explain this through an experiment using a 1/10 scale model. The results of the experiment are shown in Sections 8 and 9.
As shown in the figure. FIG. 7 shows the presence or absence of a gutter-like inverted V-shaped chute 8 in the relay storage tank 3 and the top bunker 6 at the stage of conveying from the relay storage tank 3 to the top bunker 6.
This shows the difference in the state of accumulation depending on the presence or absence of a rectifying plate inside, and the size. Incidentally, the chute 8 is formed so that the charged raw material passes through the chute 8 (in the direction of the arrow), falls from both ends thereof, and is deposited in the tank. When this chute 8 is used, the sediment profile in the tank is deposited in the shape of an inverted cone with a concave center. The rectifying plates 7 installed above the discharge port in the furnace top bunker 6 are a set of two plates, which can be stacked one on top of the other so that the area can be changed.

さて、中継貯槽3から排出される原料排出時の
粒度変化を、第7図イ,ロに当るA,Eと対応さ
せて示すと、第8図の如くであり、両者の間では
排出初期、中期、末期と全体的に変動の差異が顕
著である。これはAとEとで中継貯槽6内での原
料積み付け状態が異つていることによつている。
Now, when the particle size change at the time of discharge of the raw material discharged from the relay storage tank 3 is shown in correspondence with A and E corresponding to A and B in Figure 7, it is as shown in Figure 8. There is a noticeable difference in overall fluctuations between the middle and final stages. This is due to the fact that the raw material loading conditions in the relay storage tank 6 are different between A and E.

例えばAの場合であれば、搬送された装入原料
は装入時に中央が高い山型に堆積する。そのとき
槽下方には平均的な粒径のものが位置するのに対
し中央部には細粒のものが、また槽壁側には粗粒
のものが堆積するといつたようになる。
For example, in case A, the transported raw materials are piled up in a mountain shape with a high center at the time of charging. At this time, grains of average size are located at the bottom of the tank, while fine grains are deposited in the center, and coarse grains are deposited on the wall side of the tank.

このことを更に詳述すると、上記のような堆積
状態のものを該中継貯槽3下に排出したとする
と、装入コンベヤ4上での排出時の経時変化に伴
う粒度の変化は、第8図イの状態に示す如くであ
り、排出初期は平均粒径のものが切出されやがて
中程には中央部の細粒のものが排出され、末期に
なると槽壁側にある粗粒のものが排出されること
になる。
To explain this in more detail, if the particles in the above-mentioned piled state are discharged to the bottom of the relay storage tank 3, the change in particle size over time during discharge on the charging conveyor 4 is shown in Figure 8. As shown in Figure A, at the beginning of discharge, particles of average size are cut out, then in the middle, fine particles in the center are discharged, and at the end, coarse particles on the side of the tank wall are cut out. It will be discharged.

一方、中央がくぼんだ第7図ロの場合Eであれ
ば、これを装入コンベヤ4上に排出したとすると
排出初期は中央部の粗粒のものが優先的に切出さ
れ、やがて中程に至つて槽壁側の細粒が続き、次
第に平均粒径のものが、そして最後に最上層に薄
く堆積している粗粒が排出される順番になつてい
る。このように槽内での堆積状態を変化させれ
ば、その排出順の粒度変化を自動的に調整するこ
とができるのであり、本発明は将にこの点に着目
したものである。
On the other hand, if it is E in the case shown in Fig. 7B where the center is concave, and if this is discharged onto the charging conveyor 4, the coarse grains in the center will be preferentially cut out at the beginning of discharge, and eventually the middle part will be cut out. The fine grains on the tank wall side continue, then the grains of average size are gradually discharged, and finally the coarse grains thinly deposited on the top layer are discharged. By changing the deposition state in the tank in this way, it is possible to automatically adjust the change in particle size in the order of discharge, and the present invention focuses on this point.

なお堆積状態を調整するにあつては、他にも例
えば第10図に示すような逆V字状のシユート9
のその中央部に落し口9aを設けたものを用い、
その上方に旋回可能な衝突板10を設け、その衝
突板10に原料を当ててからシユート9上に供給
したり、第11図に示すように衝突板10を退避
させ、原料の大部分を中央の落し口9a部から落
下させて、従来と同じ堆積状態にすることもでき
る。また、第12図、第13図に示すように炉頂
バンカー6上方にスライド可能に横架したストー
ンボツクスを形成する衝突板11を前記旋回に代
えて行うこともできる。
In addition, when adjusting the deposition state, it is also possible to use an inverted V-shaped chute 9 as shown in FIG. 10, for example.
Using a droplet 9a provided in the center of the
A rotatable collision plate 10 is provided above the collision plate 10, and the raw material is applied to the collision plate 10 and then supplied onto the chute 9, or the collision plate 10 is retracted as shown in FIG. It is also possible to drop it from the drop opening 9a to achieve the same deposition condition as in the past. Further, as shown in FIGS. 12 and 13, the collision plate 11 forming a stone box that is slidably suspended horizontally above the furnace top bunker 6 may be used instead of the above-mentioned rotation.

本発明は上述したように槽内堆積状態を調節し
ておくことで、排出後の次の堆積層の粒度分布を
コントロールできることに着目し、これを炉頂バ
ンカー6に適用して、装入物粒度分布調節を行う
ようにした方法である。
The present invention focuses on the fact that the particle size distribution of the next deposited layer after discharge can be controlled by adjusting the deposition state in the tank as described above, and applies this to the furnace top bunker 6. This method is designed to control particle size distribution.

第9図のB〜Hは、前記中継貯槽3における原
料の堆積状態を変え、これを普通に切出して炉頂
バンカー6に装入し堆積させ、その面積を変化さ
せて排出装入の際の調整をするようにした。但
し、実験例D,Hについては、再度堆積状態を第
7図Eのように変えて、かつ整流板7をC,Gの
如くにした例である。
B to H in FIG. 9 change the stacking state of the raw material in the relay storage tank 3, cut it normally, charge it to the furnace top bunker 6 and deposit it, and change its area so that it can be used for discharging and charging. I made some adjustments. However, in Experimental Examples D and H, the deposition state was again changed as shown in FIG. 7E, and the current plates 7 were changed to those shown in C and G.

これらの結果からわかるように、整流板7の形
状の違いバンカー内での堆積状態の違いにより、
細粒、粗粒の排出状況が変化するのがわかる。例
えばBの状態に例をとると、バンカー内堆積は前
述した中継貯槽3の排出順で堆積し、これが排出
されるときは先ず整流板7下の平均粒径のもの
が、次に整流板7近傍の細粒が、やがて次第に槽
上方の粗粒が排出される。このように少なくとも
貯槽内の堆積状態を調整するか或は整流板の設置
を単独もしくは適宜組み合わせて用いれば高炉内
装入物の粒度分布を調整することが容易である。
As can be seen from these results, due to the difference in the shape of the current plate 7 and the difference in the deposition state inside the bunker,
It can be seen that the discharge status of fine particles and coarse particles changes. For example, taking condition B, the deposits in the bunker are accumulated in the order in which the relay storage tank 3 is discharged as described above. The fine particles in the vicinity are gradually discharged, and then the coarse particles above the tank are gradually discharged. In this way, it is easy to adjust the particle size distribution of the contents in the blast furnace by adjusting at least the accumulation state in the storage tank or by installing a current plate alone or in an appropriate combination.

なお、実際の高炉作業に際しては操業状態に応
じて第7図に示されるような手段を用いて排出粒
度変動のパターンを安定操業を得るために変化さ
せようとする場合、中継貯槽3の出側、または炉
頂バンカー6の入側で装入原料のバンカー6に装
入される順にもとづく粒度変化を予め把握する必
要がある。このため、中継貯槽3から排出された
原料は非接触式原料粒度測定装置により、その粒
度測定を行う。この測定法はTVカメラ等で直接
原料層表面を撮影し、撮像したものを画像処理装
置により画像処理して行う方法、 または装入ベルトコンベヤに原料が供給される
箇所、あるいは排出される箇所で原料を一部サン
プリング採取し、これを別のコンベア等の移送手
段で移送し、適当な原料落下箇所を設け、原料粒
子群が重ならない独立した状態でTVカメラ等で
撮影し、画像処理装置で画像処理して粒度測定を
行う方法、 さらにまた、装入コンベヤ4上にレーザー発信
受信器を設けて、レーザー発信器〜受信器間の距
離を測定する方法を使う。
In addition, during actual blast furnace work, if the pattern of discharge particle size fluctuation is to be changed in order to obtain stable operation using the means shown in FIG. Alternatively, it is necessary to know in advance the particle size change based on the order in which the charged raw materials are charged into the bunker 6 on the entry side of the furnace top bunker 6. Therefore, the particle size of the raw material discharged from the relay storage tank 3 is measured using a non-contact type raw material particle size measuring device. This measurement method involves directly photographing the surface of the raw material layer using a TV camera, etc., and processing the captured image using an image processing device, or at the point where the raw material is supplied to the charging belt conveyor or at the point where it is discharged. A portion of the raw material is sampled, transferred using another conveyor or other transport means, an appropriate location is set for the raw material to fall, the raw material particles are photographed with a TV camera, etc. in an independent state without overlapping, and an image processing device is used to capture the raw material. A method of measuring the particle size by image processing, and a method of providing a laser transmitter/receiver on the charging conveyor 4 and measuring the distance between the laser transmitter and the receiver are used.

以上のようにして、中継貯槽3から排出される
装入原料の粒子径変化を非接触法で測定し、その
値をもとに中継貯槽3または炉頂バンカー6内に
設けられた整流板7または逆Vシユート8,9を
使つて炉頂バンカー6内の装入原料堆積状態を炉
内に装入したときに望ましい炉半径方向の粒度を
呈するように装入するための準備をすることがで
きるのである。
As described above, the particle size change of the charged material discharged from the relay storage tank 3 is measured by a non-contact method, and based on the value, the current plate 7 installed in the relay storage tank 3 or the furnace top bunker 6 Alternatively, it is possible to use the inverted V shoots 8 and 9 to prepare the charging material in the top bunker 6 so that it exhibits a desired grain size in the radial direction when it is charged into the furnace. It can be done.

なお、この発明の延長にあるものとして、上記
粒子径変化の測定を原料貯槽後の集合コンベヤ2
で行い、中継貯槽3内装入原料の堆積状態を調節
しておいても、最終的な炉内での粒度分布調整装
入が可能であるが、この方法は炉頂バンカー6内
堆積状態調節に合わせて行うと効果が顕著であ
る。
In addition, as an extension of this invention, the above-mentioned change in particle size can be measured on the collection conveyor 2 after the raw material storage tank.
Although it is possible to adjust the particle size distribution in the final furnace by adjusting the deposition state of the raw material in the relay storage tank 3, this method does not allow for adjustment of the deposition state in the furnace top bunker 6. The effect is noticeable when used together.

実施例 高炉容積約4500cm3、中継貯槽の容積および炉頂
バンカー6の容積約100cm3(鉱石装入量約140t)
のベルレス高炉において、粒子径が5〜50mmの鉱
石を装入して操業したときの実施例を以下に示
す。
Example Blast furnace volume: approx. 4500 cm 3 , capacity of relay storage tank and top bunker 6: approx. 100 cm 3 (ore charge amount: approx. 140 t)
An example is shown below in which a bell-less blast furnace was operated by charging ore with a particle size of 5 to 50 mm.

中継貯槽内が第11図イに示すような堆積状態
であるときに排出した場合の装入コンベアー上の
粒径変化を、レーザーを使う非接触式粒度測定装
置により測定したところ、第14図のB1線の状
態であつた。そして炉頂バンカー内を第7図Cの
ように整流板を小面積として原料の排出をした。
そのときの粒径変化は第15図のB1線で示すよ
うになり、細粒が炉壁側粗粒が炉中心側に分配さ
れた。そのときのガス分布は第16図のB1線に
示すような分布となつて、高炉の操業状態は中心
流が強過ぎ不安定の状態であつた。
When the particle size change on the charging conveyor was measured when the relay storage tank was in a state of accumulation as shown in Figure 11A and discharged, using a non-contact particle size measuring device using a laser, the results were as shown in Figure 14. B It was in a 1 line condition. Then, the raw material was discharged inside the furnace top bunker by using a rectifier plate with a small area as shown in FIG. 7C.
The particle size change at that time was as shown by line B1 in Fig. 15, with fine particles distributed toward the furnace wall and coarse particles distributed toward the furnace center. At that time, the gas distribution was as shown in line B1 in Figure 16, and the operating conditions of the blast furnace were such that the central flow was too strong and unstable.

そこで中継貯槽での堆積状態を第11図のよう
に衝突板10を移動させて原料を排出した。この
とき排出原料の粒子径変化は第14図のB2線の
ようになり、第7図Gのような堆積状態になつ
た。そして、炉頂バンカーから排出される粒子径
変化は、第15図のB2線のようになつた。その
結果炉壁側において前者に比べ粒子径がやや大き
くなり、炉中心側において前者に比べ粒子がやや
小さくなり、この状態におけるガス分布は第16
図のB2線に示すような分布となつて、高炉の操
業状態が安定してきた。
Therefore, the material was discharged by moving the collision plate 10 to change the deposition state in the relay storage tank as shown in FIG. At this time, the particle diameter of the discharged raw material changed as shown by line B2 in FIG. 14, and the material was deposited as shown in FIG. 7G. The change in particle size discharged from the furnace top bunker was as shown by line B2 in Figure 15. As a result, the particle size on the furnace wall side becomes slightly larger than the former, and the particle size on the furnace center side becomes slightly smaller than the former, and the gas distribution in this state is
The operating conditions of the blast furnace have become stable, with the distribution shown in line B2 in the figure.

しかし、その後中継貯槽排出側原料の粒子径が
小さくなつてきた。このときの炉頂ガス分布は第
16図のB2線に示すようになつたので、排出粒
子径変化は、第14のB3′線になるから、炉頂バ
ンカーの整流板を第7図Fのように大面積として
排出した。このときの粒度変化は、第15図の
B3線のようになり、以前の状態に比べ炉壁側に
やや粗粒、炉中心側にもやや粗粒が分配され、ガ
ス分布は第16図のB2線に示すような分布とな
つて長期に高炉の操業状態を安定させることがで
きた。
However, after that, the particle size of the raw material on the discharge side of the relay storage tank became smaller. At this time, the furnace top gas distribution became as shown in the B 2 line in Figure 16, and the change in exhaust particle size was as shown in the 14th line B 3 '. It was discharged as a large area as shown in F. The particle size change at this time is shown in Figure 15.
The gas distribution becomes as shown in line B 3 in Figure 16 , with slightly coarser particles distributed toward the furnace wall and toward the center of the furnace compared to the previous state. This enabled the operating conditions of the blast furnace to be stabilized over the long term.

このように本発明は中継貯槽内装入原料の堆積
状態を調整し、ひきつづき排出後のコンベアー上
における粒度を非接触式測定手段で測定し、炉頂
バンカーにおける装入原料の堆積状態が前記粒度
測定結果と炉内ガス分布の挙動にもとづいて選ば
れる炉半径方向の最適粒度分布にするために必要
な形態になるように、バンカー内の整流手段で堆
積および/もしくは排出順を調整し、排出時の経
時的な粒径変化を調整しながら装入を行うもので
ある。
In this way, the present invention adjusts the deposition state of the charging material in the relay storage tank, and subsequently measures the particle size on the conveyor after discharge using a non-contact measuring means, and the deposition state of the charging material in the furnace top bunker is determined by the particle size measurement. A rectifier in the bunker adjusts the deposition and/or discharge order to obtain the required morphology for the optimum particle size distribution in the furnace radial direction, which is selected based on the results and the behavior of the gas distribution in the furnace. Charging is carried out while adjusting the change in particle size over time.

なお前記実施例では主として中継貯槽の出側の
粒度を測定して堆積状態の調整や炉頂バンカーの
排出順の調整をする方法について述べたが、原料
貯槽群、中継貯槽、炉頂貯槽などの各種貯槽の堆
積状態、排出順の調整、粒度測定などを任意に組
合わせて行えばさらにきめ細かな原料の装入ある
いは操業ができるのは言うまでもない。
In the above example, the method of measuring the particle size on the outlet side of the relay storage tank to adjust the deposition condition and the order of discharge from the furnace top bunker was mainly described. Needless to say, even more fine-grained raw material charging and operation can be achieved by arbitrarily combining various storage tank accumulation conditions, adjustment of discharge order, particle size measurement, etc.

以上説明したように本発明によれば、中継貯槽
あるいは炉頂バンカー内の原料の堆積状態と、排
出順の調整を行うことによつて、炉内に供給され
る原料の粒度分布を操業状態に応じた任意のもの
に調整することができ、高炉操業を長期に安定さ
せるのに有効である。しかも、そのときの社会経
済情勢に応じて採用される低燃料比操業や高出銑
比操業など各種の操業志向の変化に即応した装入
方法に変えることができるし、こうした操業志向
が変化しても安定した高炉操業を行うことが可能
である。
As explained above, according to the present invention, the particle size distribution of the raw material supplied into the furnace can be adjusted to the operating state by adjusting the accumulation state of the raw material in the relay storage tank or the furnace top bunker and the discharge order. It can be adjusted to any desired value, and is effective in stabilizing blast furnace operation over a long period of time. Moreover, it is possible to change the charging method to immediately respond to changes in various operational orientations, such as low fuel ratio operation and high iron output ratio operation, which are adopted depending on the socio-economic situation at the time. It is possible to perform stable blast furnace operation even when

更にまた、本発明はコンベヤー上で予め粒度測
定を行うから、その測定結果を原料の整流工程に
フイードバツクし、原料貯槽1に供給される原料
の粒度の操業に適した範囲に任意に調整すること
ができる。従つて、安定した高炉操業を長期に維
持することが容易となる。
Furthermore, since the present invention measures the particle size in advance on the conveyor, the measurement results can be fed back to the raw material rectification process to arbitrarily adjust the particle size of the raw material supplied to the raw material storage tank 1 to a range suitable for the operation. Can be done. Therefore, it becomes easy to maintain stable blast furnace operation for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はベルレス装入装置を有する原料装入設
備の略線図、第2図は原料排出時の粒度分布を示
すグラフ、第3図イ,ロは中継貯槽へ供給する原
料の粒子径分布と排出順の粒子径変化を示すグラ
フ、第4図イ,ロは衝突板位置による原料落下の
模様を示す略線図、第5図は炉頂ガス成分分布の
グラフ、第6図は炉頂バンカー排出時の粒子径変
化の模様を示すグラフ、第7図イ,ロは中継貯槽
と炉頂バンカーにおける各種原料堆積状態の例を
示す略線図、第8図イ,ロは中継貯槽排出粒子の
粒子径変化グラフ、第9図イ,ロは炉頂バンカー
排出粒子の粒子径変化のグラフ、第10図および
第11図のイ,ロは、それぞれ貯槽内シユートと
原料流れ、堆積状態の関係を示す略線図、第12
図および第13図のイ,ロはそれぞれ貯槽内シユ
ートと原料流れ、堆積状態の関係を示す略線図、
第14図は本発明実施例における中継貯槽排出原
料の粒子径変化のグラフ、第15図は実施例での
炉頂バンカー排出原料の粒子径変化のグラフ、第
16図は実施例での炉頂ガス成分の分布を示すグ
ラフである。
Figure 1 is a schematic diagram of raw material charging equipment with a bellless charging device, Figure 2 is a graph showing the particle size distribution at the time of raw material discharge, and Figure 3 A and B are particle size distributions of raw materials supplied to the relay storage tank. and a graph showing the change in particle size in the order of discharge, Figure 4 A and B are schematic diagrams showing the pattern of material falling depending on the collision plate position, Figure 5 is a graph of the furnace top gas component distribution, and Figure 6 is the furnace top. Graph showing the pattern of particle size change during bunker discharge, Figure 7 A and B are schematic diagrams showing examples of various raw material accumulation states in the relay storage tank and the furnace top bunker, and Figure 8 A and B are the particles discharged from the relay storage tank. Figure 9 (a) and (b) are graphs of particle size changes in the particles discharged from the top bunker, and Figures (a) and (b) in Figures 10 and 11 are the relationship between the chute in the storage tank, the raw material flow, and the deposition state, respectively. Schematic diagram showing 12th
A and B in the figure and FIG.
Fig. 14 is a graph of particle size change of the raw material discharged from the relay storage tank in the example of the present invention, Fig. 15 is a graph of particle size change of the raw material discharged from the furnace top bunker in the example, and Fig. 16 is a graph of the particle size change of the raw material discharged from the furnace top bunker in the example. It is a graph showing the distribution of gas components.

Claims (1)

【特許請求の範囲】 1 複数の原料貯槽、中継貯槽から排出される装
入原料を、装入コンベヤを介して一旦炉頂バンカ
ー内に貯留した後に炉内に装入するに当り、少な
くとも炉頂バンカー内における上記装入原料の堆
積状態を、炉況に応じて選ばれる炉半径方向の最
適粒度分布にするために必要な形態で貯留してお
くことを特徴とする高炉の原料装入方法。 2 複数の原料貯槽、中継貯槽から排出される装
入原料を装入コンベヤを介して一旦炉頂バンカー
内に貯留した後に炉内に装入する方法において、
まず上記中継貯槽内装入原料の堆積状態を調整
し、ひきつづき上記炉頂バンカー内における上記
装入原料の堆積状態が、炉況に応じて選ばれる炉
半径方向の最適粒度分布にするために必要な形態
になるようにバンカー内の整流手段で堆積およ
び/もしくは排出順を調整し、排出時の経時的な
粒径変化を調整しながら装入を行うことを特徴と
する高炉の原料装入方法。
[Scope of Claims] 1. When charging materials discharged from a plurality of raw material storage tanks and relay storage tanks are stored in a furnace top bunker via a charging conveyor and then charged into a furnace, at least A method for charging raw materials for a blast furnace, characterized in that the loaded raw materials are stored in a bunker in a form necessary to achieve an optimal particle size distribution in the radial direction of the furnace selected according to furnace conditions. 2. In a method in which charging raw materials discharged from multiple raw material storage tanks and relay storage tanks are once stored in a furnace top bunker via a charging conveyor and then charged into the furnace,
First, the deposition state of the charged raw material in the relay storage tank is adjusted, and then the deposition state of the charged raw material in the furnace top bunker is adjusted to achieve the optimum particle size distribution in the furnace radial direction selected according to the furnace conditions. A method for charging raw materials into a blast furnace, characterized in that the order of deposition and/or discharge is adjusted by a rectifying means in a bunker so that the grain size is adjusted so that the grain size changes over time at the time of discharge.
JP1890882A 1982-02-10 1982-02-10 Charging method of raw material to blast furnace Granted JPS58136704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1890882A JPS58136704A (en) 1982-02-10 1982-02-10 Charging method of raw material to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1890882A JPS58136704A (en) 1982-02-10 1982-02-10 Charging method of raw material to blast furnace

Publications (2)

Publication Number Publication Date
JPS58136704A JPS58136704A (en) 1983-08-13
JPH037722B2 true JPH037722B2 (en) 1991-02-04

Family

ID=11984693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1890882A Granted JPS58136704A (en) 1982-02-10 1982-02-10 Charging method of raw material to blast furnace

Country Status (1)

Country Link
JP (1) JPS58136704A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053201A (en) * 2014-09-04 2016-04-14 Jfeスチール株式会社 Method for charging raw material into blast furnace
JP7264186B2 (en) * 2020-06-12 2023-04-25 Jfeスチール株式会社 Furnace top bunker and blast furnace raw material charging method

Also Published As

Publication number Publication date
JPS58136704A (en) 1983-08-13

Similar Documents

Publication Publication Date Title
EP0648538A2 (en) Method and apparatus for grinding material particles
CN100410397C (en) Supply system for suspension smelting furnace
JP2011163756A (en) Device for charging material into sintering machine
JP2820478B2 (en) Feeding method for bellless blast furnace
JPH037722B2 (en)
KR101642908B1 (en) Charging apparatus for raw material and charging method thereof
JPH07110194A (en) Charging unit for sintering raw material
JP2828098B2 (en) How to load the bellless blast furnace charge
JP3706468B2 (en) Method and apparatus for charging sintered raw material
JPH05272872A (en) Control device for feed amount of sintering material
JP2004346414A (en) Charging device for blast furnace
JP2782786B2 (en) Raw material charging apparatus and charging method for bellless blast furnace
KR102239242B1 (en) Charging apparatus for raw material and method thereof
JPH075941B2 (en) Blast furnace charging method
JPH11351756A (en) Sintering material loader
JP3053906B2 (en) Position control method for classifier
JP4317505B2 (en) Raw material charging method for bell-type blast furnace
JPH02401B2 (en)
JP2847995B2 (en) Raw material charging method for bellless blast furnace
JP2009293098A (en) Method for charging raw material into blast furnace
JPH0811805B2 (en) Belleless blast furnace raw material charging method
JPH05179320A (en) Raw material charging method for bell-less blast furnace
JPS62218507A (en) Raw material charging method for bell-less blast furnace
JP5369951B2 (en) Chute for charging raw material into relay hopper
JP2000144266A (en) Method for charging raw material into sintering pallet