JPS58136219A - Power cable forcibly cooling facility - Google Patents

Power cable forcibly cooling facility

Info

Publication number
JPS58136219A
JPS58136219A JP1594082A JP1594082A JPS58136219A JP S58136219 A JPS58136219 A JP S58136219A JP 1594082 A JP1594082 A JP 1594082A JP 1594082 A JP1594082 A JP 1594082A JP S58136219 A JPS58136219 A JP S58136219A
Authority
JP
Japan
Prior art keywords
power cable
temperature
cooling
heat storage
storage body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1594082A
Other languages
Japanese (ja)
Inventor
深沢 正名
林田 克哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1594082A priority Critical patent/JPS58136219A/en
Publication of JPS58136219A publication Critical patent/JPS58136219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電カケープル設備に係り、特に、電カケープル
に対する通電負荷の変動に応じて強制的に冷却作用が働
くように構成されている電カケープル強制冷却設備に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to power cable equipment, and in particular to power cable forced cooling equipment configured to forcibly apply a cooling action in response to fluctuations in the energized load on the power cable. .

従来、この種の電カケープル強制冷却設備は、そのほと
んどが、電カケープルの内部、捷たは、外部の長手方向
に空気、水、または油などの冷媒を流し、電カケープル
の通電負荷時の発熱を直接あるりは間接的に除去するよ
うに構成されていて、次の欠点を有している。
Conventionally, most of this type of power cable forced cooling equipment flows a refrigerant such as air, water, or oil in the longitudinal direction of the power cable inside, through, or outside, to reduce the heat generated when the power cable is energized. It is designed to remove directly or indirectly, and has the following drawbacks.

(1)冷媒を流し始めても、冷媒が出口または折り返し
点に到達してはじめて、全長にわたり冷却効果が期待で
きるので、所期の冷却効果を得るまでには時間の遅れを
伴う。この時間の遅れは冷却区間の長さや冷媒量に依存
するが、数分から数時間を要する。
(1) Even if the refrigerant starts flowing, a cooling effect can be expected over the entire length only after the refrigerant reaches the exit or turning point, so there is a time delay before the desired cooling effect is achieved. This time delay depends on the length of the cooling section and the amount of refrigerant, but it takes from several minutes to several hours.

(2)従って、負荷変動に即応して冷媒の温度、流量等
を制御することは困難であり、通常は、何時最大負荷の
通電があっても電カケープルが許容温度以下になるよう
に運転する必要があるため、常時、亀カケープル系統は
その最高許容温度に対して余裕を見込んだ低い温度で運
転されている。すなわち、必要以上の冷却が行われてい
る。
(2) Therefore, it is difficult to control the temperature, flow rate, etc. of the refrigerant in response to load fluctuations, and normally the power cable is operated so that the temperature is below the allowable temperature no matter when the maximum load is applied. Because of this necessity, the Kamikapuru system is always operated at a low temperature that allows for a margin above the maximum allowable temperature. In other words, more cooling than necessary is being performed.

(3)冷凍機も、最大負荷の通電が連続しても対応でき
る容量になっていて大型化している。
(3) Refrigerators are also becoming larger and have a capacity that can handle continuous energization at maximum load.

このような冷凍機に対して、常時の運転は通電負荷が小
さいため、小容量通電運転か、断続運転など、効率の低
い運転が行なわれている。
For such refrigerators, since the energizing load is small during normal operation, low-efficiency operations such as small-capacity energizing operation or intermittent operation are performed.

本発明の目的は、上記欠点を除去し、小容量で冷却効率
の良い運転ができる電カケープルの冷却方式を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cooling method for a power cable that eliminates the above-mentioned drawbacks and can operate with a small capacity and high cooling efficiency.

本発明は、通電負荷の変動に応じて強制的に冷却作用が
働くように構成されている電カケープル設備において、
前記電カケープルに沿って、平常の通電時の温度では固
体状態を維持口火負荷通電時の温度で融解する物質を充
填した蓄熱体が添設されていることを特徴とするもので
ある。
The present invention provides power cable equipment that is configured to forcibly perform a cooling action in response to fluctuations in the energized load.
A heat storage body filled with a substance that maintains a solid state at normal energizing temperatures and melts at a pilot load energizing temperature is attached along the power cable.

以下、本発明の一実施例を図面に基づいて説明する。第
1図は本発明による電カケープルの冷却設備の横断面図
で、1はトラフ、2は電カケープル、3は冷却水を流通
させる冷却管、4はトラフ1内部の空間部、5は管状の
蓄熱体、6は帰路管であり、電カケープル2の通電負荷
の変動に応じて強制的に冷却作用が働くように冷却管6
を設けた構成になっていて、しかも、電カケープル2に
沿って、平常の通電時の温度では固体状態を維持し、大
負荷通電時の温度で融解する物質にζラフイン)を充填
した蓄熱体5が添設された設備である。
Hereinafter, one embodiment of the present invention will be described based on the drawings. FIG. 1 is a cross-sectional view of a cooling equipment for a power cable according to the present invention, in which 1 is a trough, 2 is a power cable, 3 is a cooling pipe through which cooling water flows, 4 is a space inside the trough 1, and 5 is a tubular section. The heat storage body, 6 is a return pipe, and the cooling pipe 6 is configured so that a cooling effect is forcibly activated in response to fluctuations in the energizing load of the power cable 2.
Moreover, along the power cable 2, there is a heat storage body filled with ζ rough-in, which is a substance that maintains a solid state at normal energizing temperatures and melts at large load energizing temperatures. 5 is the attached equipment.

以下、この実施例について、従来のものと比較して具体
的に説明する。ここで比較に用いた従来のものは、 (1)FRP防災トラフ内に275ivX1600−の
OFケーブル2が3条俵積みに布設され、内径aOS+
厚さ8■の冷却管6が2本収容されている。
Hereinafter, this embodiment will be specifically explained in comparison with the conventional one. The conventional cables used for comparison here are as follows: (1) OF cables 2 of 275iv x 1600- are laid in three bales in an FRP disaster prevention trough, and the inner diameter is aOS+
Two cooling pipes 6 with a thickness of 8 cm are accommodated.

(2)冷却区長さは2.5Km1冷却水入口温度は10
℃、二次系発生損は2 w/cmである。
(2) The length of the cooling section is 2.5km1, and the cooling water inlet temperature is 10
°C, the secondary system generated loss is 2 w/cm.

(3)洞道め深さは20m1大きさは直径6m、風冷の
風速は2 m/5llICである。
(3) The depth of the tunnel is 20 m, the size is 6 m in diameter, and the wind cooling speed is 2 m/5ll IC.

(4)電カケープル203回線布設に対して、内径15
0咽厚さ15咽の帰路管6を2本設けている。(蓄熱体
5を添設しない状態。) この比較例の場合、電カケープル2の平常最大通電容量
を460MVA/act、過負荷通電容量を1.5倍の
680 MVA/cctとし、夏季日中の大気温度を3
2°Cとみたした場合、電カケープル2の導体温度およ
びトラフ空間部4の最高温度は第2図に示すようになる
。すなわち、平常の通電時に対する冷却水流量は2t/
−・cctでも導体温度は平常許容温度(85℃と仮定
)に比べてかなりの余裕があるが、過負荷通電時には、
短時間許容温度(95℃と仮定)を大幅に越えるため、
何時、過負荷通電状態になっても許容温度範囲内に保つ
ためには6t/ec−CCt程度の冷却水流量が必要で
ある。
(4) For power cable 203 line installation, inner diameter 15
Two return pipes 6 with a thickness of 15 mm are provided. (The state where the heat storage body 5 is not attached.) In the case of this comparative example, the normal maximum current carrying capacity of the power cable 2 is 460 MVA/act, the overload current carrying capacity is 1.5 times 680 MVA/cct, and the atmospheric temperature 3
When the temperature is assumed to be 2°C, the conductor temperature of the power cable 2 and the maximum temperature of the trough space 4 are as shown in FIG. In other words, the cooling water flow rate during normal energization is 2t/
-・cct also has a considerable margin of conductor temperature compared to the normal allowable temperature (assumed to be 85℃), but when overload current is applied,
Because the temperature significantly exceeds the short-term allowable temperature (assumed to be 95℃),
A cooling water flow rate of about 6 t/ec-CCt is required in order to maintain the temperature within the permissible range even if an overload energization state occurs.

これに対して本発明の実施例は、このような比較例の構
造の電カケープル設備に、パラフィン(炭素数が23〜
57を肩するメタン系炭化水素)を充填した管状の蓄熱
体5を電カケープル2に沿って添設したものである。
On the other hand, in the embodiment of the present invention, paraffin (having a carbon number of 23 to
A tubular heat storage body 5 filled with methane-based hydrocarbon (57) is attached along the power cable 2.

すなわち、融解点45℃〜65℃、融解熱35、I C
at/71比重0.9 t/CC(Dパラフィンヲ、内
径80mの管内に充填した蓄熱体5を2本添設しである
。そして、平常の通電時の冷却水流量を2t74代・a
ctとすればトラフ空間部4の最高温度は47℃で、蓄
熱体5内のパラフィンが融解点50℃のものを用いると
固体状態を維持している。
That is, melting point 45°C to 65°C, heat of fusion 35, I C
at/71 specific gravity 0.9 t/CC (D paraffin, two heat storage bodies 5 filled in a pipe with an inner diameter of 80 m are attached.Then, the cooling water flow rate during normal energization is 2t/74m/a)
ct, the maximum temperature of the trough space 4 is 47°C, and if the paraffin in the heat storage body 5 has a melting point of 50°C, it maintains a solid state.

この状態から過負荷通電運転に移シトラフ空間部4の温
度が50℃を越えると、パラフィンは融解する。この蓄
熱管5.2本分の蓄熱量は15506 、r、z6nで
あり、1CCt当シの平常通電時発熱量は0.960 
w/crIL、過負荷通電特発熱量は1.886vrA
であるから、約14680sec、(約41hr)の間
トラフ空間部4内の温度を約50℃に維持することがで
きる。従って、電カケープル2の導体温度を90℃以下
に保ち得る。
When the temperature in the sit trough space 4 exceeds 50° C. from this state to overload energization operation, the paraffin melts. The amount of heat stored for 5.2 of these heat storage tubes is 15506, r, z6n, and the amount of heat generated during normal energization per CCt is 0.960.
w/crIL, overload energization characteristic heat generation is 1.886vrA
Therefore, the temperature in the trough space 4 can be maintained at about 50° C. for about 14,680 seconds (about 41 hours). Therefore, the temperature of the conductor of the power cable 2 can be maintained at 90° C. or lower.

従って、この実施例のように蓄熱体5を電カケープル2
に沿って添設することにより小容量の冷却水流量により
過負荷通電時にも対応できる。
Therefore, as in this embodiment, the heat storage body 5 is connected to the power cable 2.
By attaching it along the line, a small flow rate of cooling water can be used to cope with overload energization.

すなわち、トラフ空間部4の冷却水のみによる間接冷却
に対して蓄熱体5を併用した場合の電カケープル2の導
体温度の変化は第3および第4図・に示すようになる。
That is, the change in the conductor temperature of the power cable 2 when the heat storage body 5 is used in combination with indirect cooling using only the cooling water in the trough space 4 is as shown in FIGS. 3 and 4.

第3図に示すものは通電負荷増加があ2ても冷却水流量
を一定に運転する場合で、通電負荷の増加とともにトラ
フ空間部4の温度は上昇するが、従来型ではケーブル発
生熱から決まる温度に飽和するのに対し、・本実施例の
蓄熱体5併用型では蓄熱体5内のパラフィンの融解温度
に飽和し、パラフィン全部が融解するまで温度変化がな
い。第4図は通電負荷の増加によるトラフ空間部4の温
度上昇を検知して冷却水流量を増加させた場合であり、
従来型でもトラフ空間部4の最高温度は第3図に示すも
のに比べて低くなる。
The system shown in Fig. 3 is a case where the cooling water flow rate is kept constant even if the current load increases.The temperature in the trough space 4 increases as the current load increases, but in the conventional type, it is determined from the heat generated by the cable. On the other hand, in the heat storage body 5 combination type of this embodiment, the temperature reaches saturation at the melting temperature of the paraffin in the heat storage body 5, and there is no temperature change until all the paraffin melts. Figure 4 shows a case where the temperature rise in the trough space 4 due to an increase in the energized load is detected and the cooling water flow rate is increased.
Even in the conventional type, the maximum temperature of the trough space 4 is lower than that shown in FIG.

しかし、冷却水流量増加までにある程度の時間遅れがあ
り、冷却水が折返し点に達してはじめて全長有効な冷却
を開始するので、トラフ空間部4の温度の多少のオーバ
シュートは避けられない。
However, there is a certain time delay before the cooling water flow rate increases, and effective cooling of the entire length begins only after the cooling water reaches the turning point, so some overshoot in the temperature of the trough space 4 is unavoidable.

従って、本実施例の蓄熱体5の併用によりトラフ空間部
4の温度を一定温度以下に保つことが可能なことから、
冷却水流量を変化させることなく、また、平常通電時著
しく低温度を保つ必要もなく効率的な運転が可能となる
Therefore, since it is possible to maintain the temperature of the trough space 4 below a certain temperature by using the heat storage body 5 of this embodiment,
Efficient operation is possible without changing the flow rate of cooling water and without having to maintain a significantly low temperature during normal energization.

トラフ内間接冷却においては、電カケープルの長手方向
に温度分布があり、冷却折返し点付近が最も高く、この
部分の温度により冷却条件が決まる。従って、冷却水折
返し点付近の一部に蓄熱体5を電カケープル2に沿って
添設することも有効である。
In indirect cooling in the trough, there is a temperature distribution in the longitudinal direction of the power cable, and the temperature is highest near the cooling turn point, and the cooling conditions are determined by the temperature at this part. Therefore, it is also effective to attach a heat storage body 5 along the power cable 2 in a part near the cooling water turning point.

また、洞道内に蓄熱体5と併用することができ、この場
合の蓄熱物質は洞道内許容温度に近い、融解点の低い物
質が適する。
Further, it can be used together with the heat storage body 5 inside the tunnel, and in this case, a material with a low melting point close to the permissible temperature inside the tunnel is suitable as the heat storage material.

さらに、自然冷却の電カケープルに対しても同様に用い
ることができ、蓄熱体5の形状は管状体に限定されず、
板状体、長尺体、また、小サイズのものも適用できる。
Furthermore, it can be similarly used for naturally cooled power cables, and the shape of the heat storage body 5 is not limited to a tubular body.
Platy bodies, elongated bodies, and small-sized bodies can also be applied.

以上説明したように、本発明によれば、小容量で冷却効
率の良い運転が可能な電カケープル設備とすることがで
き工業的にすぐれた効果を奏することができる。
As explained above, according to the present invention, it is possible to provide electric cable equipment that has a small capacity and can be operated with high cooling efficiency, and can produce excellent industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の電カケープルの冷却設備の
横断面図、第2図は電カケープルの導体温度およびトラ
フ空間部の最高温度を示す線図、第3および4図は冷却
水のみによる間接冷却に対して蓄熱体を併用した場合の
電カケープルの導体温度の変化を説明する線図である。 1ニドラフ、2:電カケープル、3:冷却管、4ニドラ
フ空間部、5:蓄熱体、6:帰路管。 −1( T5 の オ 4− 口 秒遍眸同
Figure 1 is a cross-sectional view of the cooling equipment for a power cable according to an embodiment of the present invention, Figure 2 is a diagram showing the conductor temperature of the power cable and the maximum temperature in the trough space, and Figures 3 and 4 are diagrams showing cooling water. FIG. 4 is a diagram illustrating changes in the conductor temperature of the power cable when a heat storage body is used in combination with indirect cooling by cooling alone. 1 Nidraft, 2: Electric cable, 3: Cooling pipe, 4 Nidraft space, 5: Heat storage body, 6: Return pipe. -1 (T5's o 4-

Claims (1)

【特許請求の範囲】[Claims] 1、 通電負荷の変動に応じて強制的に冷却作用が働く
ように構成されている電カケープル設備において、前記
電カケープルに沿って、平常の通電時の温度では固体状
態を維持し、大負荷通電時の温度で融解する物質を充填
した蓄熱体が添設されていることを特徴とする電カケー
プル強制冷却設備。
1. In a power cable facility configured to forcibly perform a cooling action in response to fluctuations in the energized load, the power cable along the power cable maintains a solid state at normal energizing temperatures, and when large loads are energized. An electric cable forced cooling equipment characterized by being attached with a heat storage body filled with a substance that melts at a temperature of
JP1594082A 1982-02-03 1982-02-03 Power cable forcibly cooling facility Pending JPS58136219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1594082A JPS58136219A (en) 1982-02-03 1982-02-03 Power cable forcibly cooling facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1594082A JPS58136219A (en) 1982-02-03 1982-02-03 Power cable forcibly cooling facility

Publications (1)

Publication Number Publication Date
JPS58136219A true JPS58136219A (en) 1983-08-13

Family

ID=11902751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1594082A Pending JPS58136219A (en) 1982-02-03 1982-02-03 Power cable forcibly cooling facility

Country Status (1)

Country Link
JP (1) JPS58136219A (en)

Similar Documents

Publication Publication Date Title
JP6038126B2 (en) Pipe line for sending molten salt
US6564011B1 (en) Self-regulating heat source for subsea equipment
EP0400687A1 (en) Corrugated heat pipe
US4564061A (en) Cooling system for communications devices with high power losses
Ezhov et al. Independant power supply source for the station of cathodic protection of pipelines against corrosion
JPS58136219A (en) Power cable forcibly cooling facility
US3139474A (en) High temperature furnace for treating refractory materials with metals and intermetallic compounds
JPS6241567A (en) Method and device for cooling body by using superfluid helium
US3924054A (en) Current conducting system having adjustable heat dissipation capability
BR112019027490B1 (en) OFFSHORE PRODUCTION SYSTEMS WITH TOP TENSIONED TENDONS FOR SUPPORTING ELECTRICAL POWER TRANSMISSION
US1259371A (en) Cooling system.
JPH0530632A (en) Method and device for cooling feed path for cryogenic electric device
JPH0226181Y2 (en)
JPS585907A (en) Hot spot cooler for power cable
JP2002184624A (en) Self-cooling transformer
JPH0572163B2 (en)
JPH11230689A (en) Internal metal-type heat storage apparatus by phase change of material
JPS6062103A (en) Device for utilization of exhaust heat in oil-immersed electric apparatus
JPH0213219A (en) Apparatus for preventing ice and snow adhesion on power cable
JPS5911079B2 (en) Installation method for underground heater wires
JPS6346645B2 (en)
JP3336382B2 (en) Melting and coagulation equipment
JPH0472454B2 (en)
Khalil Steady state heat transfer of helium cooled cable bundles
Samorodov et al. Optimization of a independently cooled cryogenic current lead