JPS58135939A - Concentration measurement of inpurity in semiconductor - Google Patents

Concentration measurement of inpurity in semiconductor

Info

Publication number
JPS58135939A
JPS58135939A JP57019072A JP1907282A JPS58135939A JP S58135939 A JPS58135939 A JP S58135939A JP 57019072 A JP57019072 A JP 57019072A JP 1907282 A JP1907282 A JP 1907282A JP S58135939 A JPS58135939 A JP S58135939A
Authority
JP
Japan
Prior art keywords
silicon wafer
measured
cooled
carbon
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57019072A
Other languages
Japanese (ja)
Inventor
Koichiro Honda
耕一郎 本田
Akira Osawa
大沢 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57019072A priority Critical patent/JPS58135939A/en
Publication of JPS58135939A publication Critical patent/JPS58135939A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable the inspection of carbon concentration easily and at a high accuracy by cooling a standard silicon wafer and a silicon wafer to be measured below a specified temperature when the concentration of carbon in the silicon wafer is measured employing infrared rays. CONSTITUTION:A liquid helium is cooled in a cylindrica inner cylinder 1 while an outer cylinder 2 with an upper cylindrical part and a lower square part is made vacuum inside to an extent of 10-3Torr. A standard silicon wafer 5 and a silicon wafer 6 to be measured are retained separately at tips of two supporting bars 8 while both 5 and 6 are cooled below 80 deg.K so that infrared rays irradiate in the direction of the arrow to transmit them. A double transmission window 7 comprising quartz and potassium is formed between the outer cylinder 2 and the outside air to enable the measurement of the standard silicon wafer and the silicon wafer being measured as cooled to a specific temperature from outside. The installation of such a cooling equipment can more than double the measuring accuracy of the carbon concentration by cooling them below 80 deg.K.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は半導体中の不純物濃度画定方法、更に特定すれ
ば、赤外線を用いてシリコンウニへ−中の炭素濃度を測
定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for determining impurity concentrations in semiconductors, and more particularly to a method for measuring carbon concentrations in silicon sea urchins using infrared radiation.

(1))  技術の背景 シリコンデバイスoiarm度化、大規模集積化に伴な
いシリコンウェハー中の結晶欠陥が素子の特性や歩留に
及ぼす影響はますます大きくなっている。この結晶欠陥
を誘起する原因となる不純物として、酸票、炭素などが
挙げられる。
(1)) Background of the Technology As silicon devices become more advanced and integrated on a larger scale, crystal defects in silicon wafers are having an increasingly large effect on device characteristics and yield. Impurities that cause crystal defects include acid residue, carbon, and the like.

そのため、シリコン紡孔中の酸素1炭素を知ることが大
切で、このような不純物濃度の定量方法には放射化分析
法、赤外吸収測定法などがあるが。
Therefore, it is important to know the oxygen-1-carbon content in silicon pores, and methods for quantifying the concentration of such impurities include activation analysis and infrared absorption measurement.

そのうち赤外吸収測定法は赤外線の吸収スペクト〃を観
察し、その吸収波長と吸収強度より不純物を同定し、濃
度を算定する方法であり、簡便で定量的測定として知ら
れている。
Among them, infrared absorption measurement is a method of observing the absorption spectrum of infrared rays, identifying impurities based on the absorption wavelength and absorption intensity, and calculating the concentration, and is known as a simple and quantitative measurement method.

((1)  従来技術と問題点 かような赤外吸収法は、2〜8種類の異なる測定法があ
り、細かい点で測定仕様が異なるものの、原理的には何
れも比較測定で、そのうち、被測定不純物を含まないg
1*試料と測定試料とに交互に赤外光を照射し、その透
過光を比較検出する方法が、精度的に最もすぐれている
とされている。
((1) Problems with conventional technology The infrared absorption method described above has 2 to 8 different measurement methods, and although the measurement specifications differ in details, in principle they are all comparative measurements, and among them, g without measuring impurities
1* The method of alternately irradiating the sample and the measurement sample with infrared light and comparing and detecting the transmitted light is said to be the most accurate method.

第1図はその原理図で、赤外光源からの強度工。Figure 1 is a diagram showing the principle of the process, which shows the intensity of light from an infrared light source.

の赤外光を照射し、厚さtのシリコンウェハーを透過さ
せると工0(1−R)”6−atの強度がえられる。
When infrared light is irradiated and transmitted through a silicon wafer with a thickness of t, an intensity of 0(1-R)''6-at is obtained.

こ−で、Rは反射%lkでR冨0.8であり、またαは
吸収係数で、例えばシリコン中の炭素であれば波長16
.47μmで吸収があられれ、炭素のない同じ厚さの試
料と比較して上記のlo(1−R)”e−”からaが求
められる。この吸収係数aより炭素含有濃度を決定する
ことができるものである(ASTM  F120−76
、P6L1$、ASTM  F12B−74゜P626
参照)・ ところで、このような不純物測定方法は、シリコン結晶
の品質向1に伴なって、不純物量が微量となり測定が困
雌となってきた。特にシリコン結晶中の炭素は、酸素と
比べてその含有量が少なく(OB  IQ18/eII
−”  ic  IQ”/eM−” )その検出が容易
ではない。
Here, R is the reflection %lk and R-thickness is 0.8, and α is the absorption coefficient. For example, if carbon in silicon has a wavelength of 16
.. Absorption occurs at 47 μm, and a is determined from the above lo(1-R)"e-" by comparing with a sample of the same thickness without carbon. The carbon content concentration can be determined from this absorption coefficient a (ASTM F120-76
, P6L1$, ASTM F12B-74°P626
By the way, as the quality of silicon crystals improves, this method of measuring impurities has become difficult to measure because the amount of impurities has become extremely small. In particular, the content of carbon in silicon crystals is lower than that of oxygen (OB IQ18/eII
-"ic IQ"/eM-") Its detection is not easy.

(d)  発明の目的 本発明はこのような測定が―しい炭素濃度の検出を容易
にし、精度良くすることを目的とするものである。
(d) Object of the Invention The object of the present invention is to facilitate the detection of carbon concentration, which is difficult to measure, and to improve the accuracy.

(θ)発明の構成 かような目的は、標準シリコンウェハーと被測定シリコ
ンウェハーを80@に以下に冷却して測定する不純物濃
度測定方決によって達成させることができ、以下5*施
例を参照して詳しく説明する。
(θ) Structure of the Invention The above object can be achieved by an impurity concentration measurement method in which a standard silicon wafer and a silicon wafer to be measured are cooled to 80@ or below and measured, see 5* Examples below. and explain in detail.

(0発明の実施例 第2図は80に以下に冷却し、低温で測定するためのク
フイオスタットの一例を示しておす、第2図■は横断面
図、第2図(至)は同図−のAA断面図である0図にお
いて、円筒形内湾体l内は液体ヘリウムを入れて冷却し
、上部円II形下部方形の外筒体2内はl 0−8TO
rr程度の真空にする。2つの支持棒8の先端部分にそ
れぞれ標準5/リコンウエハ−6と被測定シリコンウェ
ハー6とを保持し、第2図(ロ)に示す矢印方向に赤外
線を照射し透過する。外筒体2と外気との間は、石英と
臭化カリとの二重透過窓7で形成されておシ、所定温度
に冷却し九標準シリコンウェハーと被測定シリコンウェ
ハーとを外部より測定することができる装置である。
(Embodiment 0 of the Invention Figure 2 shows an example of a Kuhuiostat for measurement at low temperatures, cooled to below 80°C. Figure 2 ■ is a cross-sectional view, and Figure 2 (to) is the same. In Figure 0, which is an AA cross-sectional view of Figure 1, the inside of the cylindrical inner bay body l is cooled by putting liquid helium, and the inside of the outer cylinder body 2 with an upper circle II and a lower rectangular shape is l0-8TO.
Create a vacuum of about rr. A standard 5/recon wafer 6 and a silicon wafer 6 to be measured are held at the tips of two support rods 8, respectively, and infrared rays are irradiated and transmitted in the direction of the arrow shown in FIG. 2(b). A double transmission window 7 made of quartz and potassium bromide is formed between the outer cylinder 2 and the outside air, and the window 7 is cooled to a predetermined temperature and the nine standard silicon wafers and the silicon wafer to be measured are measured from the outside. This is a device that can.

このような冷却装置に装着して測定した波数606”近
辺(炭素の吸収波長の逆数)Kおける吸収係数(a)×
厚さく1)の80にと室温との値の比較図表を第8図に
示す。図示のように80°Kにおける測定値は、室温の
測定値に比べ2倍以上となり、その測定値は極めて高く
なる。細かくはm温において吸収ピークは波数806=
1 に現われ、80Kにおいては吸収ピークが波数60
7″−” にあられれる相異があるが、室温では半値幅
が61−1となるのに対して、80”Kにおいては半値
幅が8″′−1となり、その分吸収ピークが高くな9、
精度は向上する。
Absorption coefficient (a) at K around 606” wave number (reciprocal of carbon absorption wavelength) measured with such a cooling device installed
A comparison chart of the values for thickness 1) 80 and room temperature is shown in FIG. As shown in the figure, the measured value at 80°K is more than twice the measured value at room temperature, and is extremely high. In detail, the absorption peak at m temperature is wavenumber 806=
1, and at 80K the absorption peak is at wave number 60.
There is a difference in the temperature at 7"-", but at room temperature the half-width is 61-1, while at 80"K the half-width is 8"-1, and the absorption peak is correspondingly higher. 9,
Accuracy improves.

(2)発明の効果 以上は実験結果による説明であるが、本発明によれば従
来の!ffi#定法を80″に以下に冷却させて、測定
することにより、炭素濃度の測定精度を2倍以上に高め
ることができる。したがって、第2図に示すようなりラ
イオスタットに装着して、標準試料と測定試料とを交互
に比較し測定する赤外吸収測定法は、結晶品質の向上に
伴なって微量となった炭素不純物濃度の測定を向上させ
、半導体装置の高品質化に極めて寄与するものである。
(2) Effects of the invention The above explanations are based on experimental results, but according to the present invention, the conventional effects! By cooling the ffi# standard method to 80" or less and measuring it, the accuracy of carbon concentration measurement can be more than doubled. Therefore, by attaching it to a lyostat as shown in Figure 2, the standard Infrared absorption measurement, which alternately compares and measures samples, improves the measurement of carbon impurity concentrations, which have become minute amounts due to improvements in crystal quality, and greatly contributes to improving the quality of semiconductor devices. It is something.

尚、試料の厚さ代)は2I1wlli度が好ましい。Note that the thickness of the sample is preferably 2I1 degrees.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は赤外吸収法の原理図、第2図(a)、 (b)
idクフイオスタットの断面図、第8図は吸収係数<A
×厚さく1)の80にと室温との比較図表である。 図中、5は標準シリコンウェハー、6は被測定シリコン
ウェハーを示す。 第1図 第2図 第3図 →−Lt    (30ぴにン
Figure 1 is a diagram of the principle of infrared absorption method, Figure 2 (a), (b)
A cross-sectional view of the id kufiostat, Figure 8 shows the absorption coefficient <A
This is a comparison chart between thickness 1) of 80 and room temperature. In the figure, 5 indicates a standard silicon wafer, and 6 indicates a silicon wafer to be measured. Figure 1 Figure 2 Figure 3 → -Lt (30 Pinin

Claims (1)

【特許請求の範囲】[Claims] 標準シリコンウェハーと被測定シリコンウェハーとく赤
外線を照射し透過せしめて、両ウェハー中の吸収波長と
吸収強度とを比較し、被測定ウェハー中O脚素濃度を測
定する方法において、上紀両ウェハーが80に以下に冷
却されて測定されることt特徴とする半導体中の不純物
濃度測定方法。
In the method of measuring the O base element concentration in the wafer to be measured by irradiating and transmitting infrared rays between the standard silicon wafer and the silicon wafer to be measured, and comparing the absorption wavelength and absorption intensity in both wafers, the two wafers are A method for measuring impurity concentration in a semiconductor, characterized in that the measurement is performed after being cooled to a temperature of 80° C. or less.
JP57019072A 1982-02-08 1982-02-08 Concentration measurement of inpurity in semiconductor Pending JPS58135939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57019072A JPS58135939A (en) 1982-02-08 1982-02-08 Concentration measurement of inpurity in semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57019072A JPS58135939A (en) 1982-02-08 1982-02-08 Concentration measurement of inpurity in semiconductor

Publications (1)

Publication Number Publication Date
JPS58135939A true JPS58135939A (en) 1983-08-12

Family

ID=11989223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57019072A Pending JPS58135939A (en) 1982-02-08 1982-02-08 Concentration measurement of inpurity in semiconductor

Country Status (1)

Country Link
JP (1) JPS58135939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338140A (en) * 1986-08-04 1988-02-18 Nippon Telegr & Teleph Corp <Ntt> Far infrared magnetic light absorption measuring instrument having high stability
US5444246A (en) * 1992-09-30 1995-08-22 Shin-Etsu Handotai Co., Ltd. Determining carbon concentration in silicon single crystal by FT-IR
CN103712946A (en) * 2014-01-14 2014-04-09 乐山乐电天威硅业科技有限责任公司 Method for determining content of substituted carbon in monocrystal silicon through low-temperature infrared spectrum

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158982A (en) * 1978-06-05 1979-12-15 Mitsubishi Electric Corp Crystal evaluating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158982A (en) * 1978-06-05 1979-12-15 Mitsubishi Electric Corp Crystal evaluating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338140A (en) * 1986-08-04 1988-02-18 Nippon Telegr & Teleph Corp <Ntt> Far infrared magnetic light absorption measuring instrument having high stability
US5444246A (en) * 1992-09-30 1995-08-22 Shin-Etsu Handotai Co., Ltd. Determining carbon concentration in silicon single crystal by FT-IR
CN103712946A (en) * 2014-01-14 2014-04-09 乐山乐电天威硅业科技有限责任公司 Method for determining content of substituted carbon in monocrystal silicon through low-temperature infrared spectrum

Similar Documents

Publication Publication Date Title
Fishman Determination of mercury in water
WO2023051617A1 (en) Measurement method and system for nitrogen element in nitrogen-doped monocrystalline silicon
JPS62197743A (en) Infrared absorption measuring apparatus
JP3290982B2 (en) Determination of inorganic electrolytes for semiconductor processing
JPS58135939A (en) Concentration measurement of inpurity in semiconductor
Ing et al. Gas permeation study and imperfection detection of thermally grown and deposited thin silicon dioxide films
JP2003045928A (en) METHOD FOR EVALUATING Cu CONTAMINATION IN SEMICONDUCTOR SILICON WAFER
JPH05113416A (en) Method of inspecting precipitation of heterogeneous phase of single crystal material
JPS63165754A (en) Method for measuring lattice flaw in semiconductor
US10317338B2 (en) Method and assembly for determining the carbon content in silicon
US5708365A (en) Method for analysis of silicon wafers
JP2002340794A (en) Method for measuring infrared absorption of semiconductor wafer
JP3055594B2 (en) Evaluation method of oxygen precipitation amount in silicon crystal
CN108089109B (en) Method for testing minority carrier lifetime in semiconductor silicon material
Ewles et al. Luminescence and adsorption phenomena in some oxides and halides
JPH033946B2 (en)
JP3496058B2 (en) Semiconductor substrate surface passivation method and semiconductor substrate
Vertegel et al. I127 NQR spectra of Pb1–xCdxI2 and (BiI3)(1–x)(PbI2) x of mixed layered semiconductors
JP2012174706A (en) Evaluation method for metal impurity concentration of p-type silicon wafer
JPS6122896B2 (en)
JPS6312533B2 (en)
KR102196225B1 (en) Method for measuring impurity concentration of silicon wafer
JPH06102214A (en) Total reflection fluorescent x-ray analyzing apparatus
JP4952871B2 (en) Silicon wafer evaluation method
JPH10154734A (en) Method for evaluating semiconductor crystal