JPS58135939A - Concentration measurement of inpurity in semiconductor - Google Patents
Concentration measurement of inpurity in semiconductorInfo
- Publication number
- JPS58135939A JPS58135939A JP57019072A JP1907282A JPS58135939A JP S58135939 A JPS58135939 A JP S58135939A JP 57019072 A JP57019072 A JP 57019072A JP 1907282 A JP1907282 A JP 1907282A JP S58135939 A JPS58135939 A JP S58135939A
- Authority
- JP
- Japan
- Prior art keywords
- silicon wafer
- measured
- cooled
- carbon
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 12
- 239000004065 semiconductor Substances 0.000 title claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 24
- 239000010703 silicon Substances 0.000 claims abstract description 24
- 238000010521 absorption reaction Methods 0.000 claims description 18
- 235000012431 wafers Nutrition 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 10
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 13
- 238000001816 cooling Methods 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 239000001307 helium Substances 0.000 abstract description 2
- 229910052734 helium Inorganic materials 0.000 abstract description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract description 2
- 239000010453 quartz Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 abstract 1
- 238000007689 inspection Methods 0.000 abstract 1
- 238000009434 installation Methods 0.000 abstract 1
- 229910052700 potassium Inorganic materials 0.000 abstract 1
- 239000011591 potassium Substances 0.000 abstract 1
- 230000000717 retained effect Effects 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 241000257465 Echinoidea Species 0.000 description 1
- 102100038374 Pinin Human genes 0.000 description 1
- 101710173952 Pinin Proteins 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000000516 activation analysis Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明は半導体中の不純物濃度画定方法、更に特定すれ
ば、赤外線を用いてシリコンウニへ−中の炭素濃度を測
定する方法に関する。DETAILED DESCRIPTION OF THE INVENTION (a) TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for determining impurity concentrations in semiconductors, and more particularly to a method for measuring carbon concentrations in silicon sea urchins using infrared radiation.
(1)) 技術の背景
シリコンデバイスoiarm度化、大規模集積化に伴な
いシリコンウェハー中の結晶欠陥が素子の特性や歩留に
及ぼす影響はますます大きくなっている。この結晶欠陥
を誘起する原因となる不純物として、酸票、炭素などが
挙げられる。(1)) Background of the Technology As silicon devices become more advanced and integrated on a larger scale, crystal defects in silicon wafers are having an increasingly large effect on device characteristics and yield. Impurities that cause crystal defects include acid residue, carbon, and the like.
そのため、シリコン紡孔中の酸素1炭素を知ることが大
切で、このような不純物濃度の定量方法には放射化分析
法、赤外吸収測定法などがあるが。Therefore, it is important to know the oxygen-1-carbon content in silicon pores, and methods for quantifying the concentration of such impurities include activation analysis and infrared absorption measurement.
そのうち赤外吸収測定法は赤外線の吸収スペクト〃を観
察し、その吸収波長と吸収強度より不純物を同定し、濃
度を算定する方法であり、簡便で定量的測定として知ら
れている。Among them, infrared absorption measurement is a method of observing the absorption spectrum of infrared rays, identifying impurities based on the absorption wavelength and absorption intensity, and calculating the concentration, and is known as a simple and quantitative measurement method.
((1) 従来技術と問題点
かような赤外吸収法は、2〜8種類の異なる測定法があ
り、細かい点で測定仕様が異なるものの、原理的には何
れも比較測定で、そのうち、被測定不純物を含まないg
1*試料と測定試料とに交互に赤外光を照射し、その透
過光を比較検出する方法が、精度的に最もすぐれている
とされている。((1) Problems with conventional technology The infrared absorption method described above has 2 to 8 different measurement methods, and although the measurement specifications differ in details, in principle they are all comparative measurements, and among them, g without measuring impurities
1* The method of alternately irradiating the sample and the measurement sample with infrared light and comparing and detecting the transmitted light is said to be the most accurate method.
第1図はその原理図で、赤外光源からの強度工。Figure 1 is a diagram showing the principle of the process, which shows the intensity of light from an infrared light source.
の赤外光を照射し、厚さtのシリコンウェハーを透過さ
せると工0(1−R)”6−atの強度がえられる。When infrared light is irradiated and transmitted through a silicon wafer with a thickness of t, an intensity of 0(1-R)''6-at is obtained.
こ−で、Rは反射%lkでR冨0.8であり、またαは
吸収係数で、例えばシリコン中の炭素であれば波長16
.47μmで吸収があられれ、炭素のない同じ厚さの試
料と比較して上記のlo(1−R)”e−”からaが求
められる。この吸収係数aより炭素含有濃度を決定する
ことができるものである(ASTM F120−76
、P6L1$、ASTM F12B−74゜P626
参照)・
ところで、このような不純物測定方法は、シリコン結晶
の品質向1に伴なって、不純物量が微量となり測定が困
雌となってきた。特にシリコン結晶中の炭素は、酸素と
比べてその含有量が少なく(OB IQ18/eII
−” ic IQ”/eM−” )その検出が容易
ではない。Here, R is the reflection %lk and R-thickness is 0.8, and α is the absorption coefficient. For example, if carbon in silicon has a wavelength of 16
.. Absorption occurs at 47 μm, and a is determined from the above lo(1-R)"e-" by comparing with a sample of the same thickness without carbon. The carbon content concentration can be determined from this absorption coefficient a (ASTM F120-76
, P6L1$, ASTM F12B-74°P626
By the way, as the quality of silicon crystals improves, this method of measuring impurities has become difficult to measure because the amount of impurities has become extremely small. In particular, the content of carbon in silicon crystals is lower than that of oxygen (OB IQ18/eII
-"ic IQ"/eM-") Its detection is not easy.
(d) 発明の目的
本発明はこのような測定が―しい炭素濃度の検出を容易
にし、精度良くすることを目的とするものである。(d) Object of the Invention The object of the present invention is to facilitate the detection of carbon concentration, which is difficult to measure, and to improve the accuracy.
(θ)発明の構成
かような目的は、標準シリコンウェハーと被測定シリコ
ンウェハーを80@に以下に冷却して測定する不純物濃
度測定方決によって達成させることができ、以下5*施
例を参照して詳しく説明する。(θ) Structure of the Invention The above object can be achieved by an impurity concentration measurement method in which a standard silicon wafer and a silicon wafer to be measured are cooled to 80@ or below and measured, see 5* Examples below. and explain in detail.
(0発明の実施例
第2図は80に以下に冷却し、低温で測定するためのク
フイオスタットの一例を示しておす、第2図■は横断面
図、第2図(至)は同図−のAA断面図である0図にお
いて、円筒形内湾体l内は液体ヘリウムを入れて冷却し
、上部円II形下部方形の外筒体2内はl 0−8TO
rr程度の真空にする。2つの支持棒8の先端部分にそ
れぞれ標準5/リコンウエハ−6と被測定シリコンウェ
ハー6とを保持し、第2図(ロ)に示す矢印方向に赤外
線を照射し透過する。外筒体2と外気との間は、石英と
臭化カリとの二重透過窓7で形成されておシ、所定温度
に冷却し九標準シリコンウェハーと被測定シリコンウェ
ハーとを外部より測定することができる装置である。(Embodiment 0 of the Invention Figure 2 shows an example of a Kuhuiostat for measurement at low temperatures, cooled to below 80°C. Figure 2 ■ is a cross-sectional view, and Figure 2 (to) is the same. In Figure 0, which is an AA cross-sectional view of Figure 1, the inside of the cylindrical inner bay body l is cooled by putting liquid helium, and the inside of the outer cylinder body 2 with an upper circle II and a lower rectangular shape is l0-8TO.
Create a vacuum of about rr. A standard 5/recon wafer 6 and a silicon wafer 6 to be measured are held at the tips of two support rods 8, respectively, and infrared rays are irradiated and transmitted in the direction of the arrow shown in FIG. 2(b). A double transmission window 7 made of quartz and potassium bromide is formed between the outer cylinder 2 and the outside air, and the window 7 is cooled to a predetermined temperature and the nine standard silicon wafers and the silicon wafer to be measured are measured from the outside. This is a device that can.
このような冷却装置に装着して測定した波数606”近
辺(炭素の吸収波長の逆数)Kおける吸収係数(a)×
厚さく1)の80にと室温との値の比較図表を第8図に
示す。図示のように80°Kにおける測定値は、室温の
測定値に比べ2倍以上となり、その測定値は極めて高く
なる。細かくはm温において吸収ピークは波数806=
1 に現われ、80Kにおいては吸収ピークが波数60
7″−” にあられれる相異があるが、室温では半値幅
が61−1となるのに対して、80”Kにおいては半値
幅が8″′−1となり、その分吸収ピークが高くな9、
精度は向上する。Absorption coefficient (a) at K around 606” wave number (reciprocal of carbon absorption wavelength) measured with such a cooling device installed
A comparison chart of the values for thickness 1) 80 and room temperature is shown in FIG. As shown in the figure, the measured value at 80°K is more than twice the measured value at room temperature, and is extremely high. In detail, the absorption peak at m temperature is wavenumber 806=
1, and at 80K the absorption peak is at wave number 60.
There is a difference in the temperature at 7"-", but at room temperature the half-width is 61-1, while at 80"K the half-width is 8"-1, and the absorption peak is correspondingly higher. 9,
Accuracy improves.
(2)発明の効果
以上は実験結果による説明であるが、本発明によれば従
来の!ffi#定法を80″に以下に冷却させて、測定
することにより、炭素濃度の測定精度を2倍以上に高め
ることができる。したがって、第2図に示すようなりラ
イオスタットに装着して、標準試料と測定試料とを交互
に比較し測定する赤外吸収測定法は、結晶品質の向上に
伴なって微量となった炭素不純物濃度の測定を向上させ
、半導体装置の高品質化に極めて寄与するものである。(2) Effects of the invention The above explanations are based on experimental results, but according to the present invention, the conventional effects! By cooling the ffi# standard method to 80" or less and measuring it, the accuracy of carbon concentration measurement can be more than doubled. Therefore, by attaching it to a lyostat as shown in Figure 2, the standard Infrared absorption measurement, which alternately compares and measures samples, improves the measurement of carbon impurity concentrations, which have become minute amounts due to improvements in crystal quality, and greatly contributes to improving the quality of semiconductor devices. It is something.
尚、試料の厚さ代)は2I1wlli度が好ましい。Note that the thickness of the sample is preferably 2I1 degrees.
第1図は赤外吸収法の原理図、第2図(a)、 (b)
idクフイオスタットの断面図、第8図は吸収係数<A
×厚さく1)の80にと室温との比較図表である。
図中、5は標準シリコンウェハー、6は被測定シリコン
ウェハーを示す。
第1図
第2図
第3図
→−Lt (30ぴにンFigure 1 is a diagram of the principle of infrared absorption method, Figure 2 (a), (b)
A cross-sectional view of the id kufiostat, Figure 8 shows the absorption coefficient <A
This is a comparison chart between thickness 1) of 80 and room temperature. In the figure, 5 indicates a standard silicon wafer, and 6 indicates a silicon wafer to be measured. Figure 1 Figure 2 Figure 3 → -Lt (30 Pinin
Claims (1)
外線を照射し透過せしめて、両ウェハー中の吸収波長と
吸収強度とを比較し、被測定ウェハー中O脚素濃度を測
定する方法において、上紀両ウェハーが80に以下に冷
却されて測定されることt特徴とする半導体中の不純物
濃度測定方法。In the method of measuring the O base element concentration in the wafer to be measured by irradiating and transmitting infrared rays between the standard silicon wafer and the silicon wafer to be measured, and comparing the absorption wavelength and absorption intensity in both wafers, the two wafers are A method for measuring impurity concentration in a semiconductor, characterized in that the measurement is performed after being cooled to a temperature of 80° C. or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57019072A JPS58135939A (en) | 1982-02-08 | 1982-02-08 | Concentration measurement of inpurity in semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57019072A JPS58135939A (en) | 1982-02-08 | 1982-02-08 | Concentration measurement of inpurity in semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58135939A true JPS58135939A (en) | 1983-08-12 |
Family
ID=11989223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57019072A Pending JPS58135939A (en) | 1982-02-08 | 1982-02-08 | Concentration measurement of inpurity in semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58135939A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6338140A (en) * | 1986-08-04 | 1988-02-18 | Nippon Telegr & Teleph Corp <Ntt> | Far infrared magnetic light absorption measuring instrument having high stability |
US5444246A (en) * | 1992-09-30 | 1995-08-22 | Shin-Etsu Handotai Co., Ltd. | Determining carbon concentration in silicon single crystal by FT-IR |
CN103712946A (en) * | 2014-01-14 | 2014-04-09 | 乐山乐电天威硅业科技有限责任公司 | Method for determining content of substituted carbon in monocrystal silicon through low-temperature infrared spectrum |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54158982A (en) * | 1978-06-05 | 1979-12-15 | Mitsubishi Electric Corp | Crystal evaluating method |
-
1982
- 1982-02-08 JP JP57019072A patent/JPS58135939A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54158982A (en) * | 1978-06-05 | 1979-12-15 | Mitsubishi Electric Corp | Crystal evaluating method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6338140A (en) * | 1986-08-04 | 1988-02-18 | Nippon Telegr & Teleph Corp <Ntt> | Far infrared magnetic light absorption measuring instrument having high stability |
US5444246A (en) * | 1992-09-30 | 1995-08-22 | Shin-Etsu Handotai Co., Ltd. | Determining carbon concentration in silicon single crystal by FT-IR |
CN103712946A (en) * | 2014-01-14 | 2014-04-09 | 乐山乐电天威硅业科技有限责任公司 | Method for determining content of substituted carbon in monocrystal silicon through low-temperature infrared spectrum |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fishman | Determination of mercury in water | |
WO2023051617A1 (en) | Measurement method and system for nitrogen element in nitrogen-doped monocrystalline silicon | |
JPS62197743A (en) | Infrared absorption measuring apparatus | |
JP3290982B2 (en) | Determination of inorganic electrolytes for semiconductor processing | |
JPS58135939A (en) | Concentration measurement of inpurity in semiconductor | |
Ing et al. | Gas permeation study and imperfection detection of thermally grown and deposited thin silicon dioxide films | |
JP2003045928A (en) | METHOD FOR EVALUATING Cu CONTAMINATION IN SEMICONDUCTOR SILICON WAFER | |
JPH05113416A (en) | Method of inspecting precipitation of heterogeneous phase of single crystal material | |
JPS63165754A (en) | Method for measuring lattice flaw in semiconductor | |
US10317338B2 (en) | Method and assembly for determining the carbon content in silicon | |
US5708365A (en) | Method for analysis of silicon wafers | |
JP2002340794A (en) | Method for measuring infrared absorption of semiconductor wafer | |
JP3055594B2 (en) | Evaluation method of oxygen precipitation amount in silicon crystal | |
CN108089109B (en) | Method for testing minority carrier lifetime in semiconductor silicon material | |
Ewles et al. | Luminescence and adsorption phenomena in some oxides and halides | |
JPH033946B2 (en) | ||
JP3496058B2 (en) | Semiconductor substrate surface passivation method and semiconductor substrate | |
Vertegel et al. | I127 NQR spectra of Pb1–xCdxI2 and (BiI3)(1–x)(PbI2) x of mixed layered semiconductors | |
JP2012174706A (en) | Evaluation method for metal impurity concentration of p-type silicon wafer | |
JPS6122896B2 (en) | ||
JPS6312533B2 (en) | ||
KR102196225B1 (en) | Method for measuring impurity concentration of silicon wafer | |
JPH06102214A (en) | Total reflection fluorescent x-ray analyzing apparatus | |
JP4952871B2 (en) | Silicon wafer evaluation method | |
JPH10154734A (en) | Method for evaluating semiconductor crystal |