JPS58135684A - Hybrid type solar energy collector - Google Patents
Hybrid type solar energy collectorInfo
- Publication number
- JPS58135684A JPS58135684A JP57017652A JP1765282A JPS58135684A JP S58135684 A JPS58135684 A JP S58135684A JP 57017652 A JP57017652 A JP 57017652A JP 1765282 A JP1765282 A JP 1765282A JP S58135684 A JPS58135684 A JP S58135684A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- heat
- solar
- receiving surface
- solar energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 230000005855 radiation Effects 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 abstract description 6
- 238000004544 sputter deposition Methods 0.000 abstract description 3
- 238000001771 vacuum deposition Methods 0.000 abstract description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 abstract description 2
- 238000004528 spin coating Methods 0.000 abstract 1
- 238000005507 spraying Methods 0.000 abstract 1
- 239000012528 membrane Substances 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000006059 cover glass Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 210000002429 large intestine Anatomy 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/052—Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
発明の技術分野
本発明は、太陽電池セルと集熱コレクタとを組み会わせ
ることにより、太陽エネルギーを電気エネルギーと熱エ
ネルギーとして有効に利用するハイブリッド型太陽エネ
ルギー・コレクタに関するものである。DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a hybrid solar energy collector that effectively utilizes solar energy as electrical energy and thermal energy by combining a solar cell and a heat collector. It is something.
発明の技術的背景とその問題点
太陽エネルギーを利用する装置の1つとして太陽電池が
ある。しかし現在量産されている太陽電池セルの充電変
換効率は賂10〜1s%程度であり、残りは島となって
エネルギーとして利用されていなかった。そこで太陽エ
ネルギーを有効に用いる方法として、集熱コレクタと太
陽電池とを鳳み合わせたへイブリッド型太陽エネルギー
・コレクタが提案されている。例えば、特開昭56−2
11750号公報に太陽電池セルの背面に集熱コレクタ
を設けたハイブリッド型太陽エネルギー−コレクタが開
示されている。これによると熱がカバー・ガラスを通し
て外部に逃げるのを防止する為、太陽電池セルにおける
光電変換に有効な波長域の太陽光線を透過し、逆に熱放
射を極カ押える酸化インジウムc以下I!1,0.と称
する】や酸化スズc以下8nO,j称する)から成る選
択透過膜で表面処理された透過体を大腸電池セルの表面
に具備している。しかし、透過体並びに透過体と太陽電
池セルの受光面とを固定する接着剤により、太陽電池セ
ルにおいて光電変換に有効な波長域の大腸光線の透過率
が低下する欠点があった。Technical background of the invention and its problems Solar cells are one of the devices that utilize solar energy. However, the charging conversion efficiency of currently mass-produced solar cells is about 10 to 1 s%, and the rest is left unused as energy. Therefore, as a method for effectively using solar energy, a hybrid solar energy collector that combines a heat collector and a solar cell has been proposed. For example, JP-A-56-2
Japanese Patent No. 11750 discloses a hybrid solar energy collector in which a heat collector is provided on the back side of a solar cell. According to this, in order to prevent heat from escaping to the outside through the cover glass, indium oxide below I! transmits sunlight in the wavelength range that is effective for photoelectric conversion in solar cells, and conversely suppresses heat radiation to an extremely large extent. 1,0. The surface of the large intestine battery cell is provided with a permeable body whose surface is treated with a selectively permeable membrane made of tin oxide (hereinafter referred to as C) and tin oxide (hereinafter referred to as 8nO, J). However, there is a drawback that the transmittance of large intestine light in the wavelength range effective for photoelectric conversion in the solar cell is reduced due to the transparent body and the adhesive that fixes the transparent body and the light-receiving surface of the solar cell.
発明の目的
本発明は上述のことを鑑みて、分光スペクトルの赤外領
域での高い反射率を維持しつつ外部への熱放散を防ぎ、
さらに太陽電池セルにおいて光電変換に有効な波長域の
太陽光線を効率良く利用できるへイブリッド型太陽エネ
ルギー・コレクタを提供することを目的とする。Purpose of the Invention In view of the above, the present invention has been developed to prevent heat dissipation to the outside while maintaining high reflectance in the infrared region of the spectrum.
Another object of the present invention is to provide a hybrid solar energy collector that can efficiently utilize sunlight in a wavelength range that is effective for photoelectric conversion in solar cells.
発明の概要
本発明は集熱コレクタと集熱フレフタ上に配−された太
陽電池セルとを備えたへイブリッド型太陽エネルギー・
コレクタにおいて、太陽電池セル受光面上に太陽電池セ
ルの充電変換に有効な波長域の太陽光線な効率良く透過
する選択透過膜を具備したものである。その為、分光ス
ペクトルの赤外領域での高い反射率を維持しつつ外部へ
の熱放散を防ぎさらに太陽電池セルにおいて光電変換に
有効な波長域の太陽光線を効率良く透過させることがで
きる。Summary of the Invention The present invention provides a hybrid solar energy system comprising a heat collector and a solar cell arranged on a heat collector.
The collector is provided with a selective transmission film on the light-receiving surface of the solar cell, which efficiently transmits sunlight in a wavelength range effective for charge conversion of the solar cell. Therefore, it is possible to prevent heat dissipation to the outside while maintaining high reflectance in the infrared region of the optical spectrum, and to efficiently transmit sunlight in the wavelength range effective for photoelectric conversion in the solar cell.
発明の実施例
実施例1゜
第1図に本発明の一実施例のへイブリッド型太陽エネル
ギー・コレクタの断面図が示される。W4体(1)とガ
ラス板等の透過体(2)から形成された容器億)内部の
底面の方に断熱材(6)が配置されている。Embodiments of the Invention Embodiment 1 FIG. 1 shows a sectional view of a hybrid solar energy collector according to an embodiment of the present invention. A heat insulating material (6) is arranged at the bottom of the inside of the container formed from the W4 body (1) and the transparent body (2) such as a glass plate.
さらに断熱材(6)の上部には、底部に循環パイプ(7
)を配置した集熱コレクタ(4)が設置されている。こ
の集熱コレクタ((転)と太陽電池セル(5)とは、絶
縁板(8)を介して取り付けられている。そして、太陽
電池セル(5)が取り付けられていない集熱コレクタ(
4)上に、選択吸収膜(9)が形成されている。また太
陽 (電池セル(5)の受光面上は、In、O,や8
nO,から成る選択透過膜α・で表面処理され【いる。Furthermore, a circulation pipe (7) is installed at the bottom of the upper part of the insulation material (6).
) is installed. This heat collecting collector ((transfer)) and the solar cell (5) are attached via an insulating plate (8).
4) A selective absorption film (9) is formed thereon. In addition, the sun (In, O, and 8 on the light-receiving surface of the battery cell (5)
The surface is treated with a selectively permeable membrane α consisting of nO.
以丁1図面を参照して一実施例を詳細に説明する。第2
図は第1図の要部断面図である。なお、第1図と同じ部
分□には同じ符号を付しである。One embodiment will be described in detail below with reference to the drawings. Second
The figure is a sectional view of the main part of FIG. 1. Note that the same parts □ as in FIG. 1 are given the same reference numerals.
”xOs t タハ8nO,を例えば真空蒸着法、スパ
ッタリング法、スプレー法、あるいはスピンコード法等
で太陽電池セル(5)の受光面上にII接影形成れる。"xOs t 8nO" is formed on the light-receiving surface of the solar cell (5) by, for example, a vacuum evaporation method, a sputtering method, a spray method, or a spin code method.
さて、選択透過膜d・を通過した太陽光線は、一部が太
陽電池セル(5)内で光電変換され、また残りは太陽電
池セル(5)内部で熱に変換される。この熱は選択透過
膜部で太陽電池セル(5)の受光面から外部に放射され
るのを防止され集熱−コレクタ(4)に伝わり、この熱
が循環パイプ(7)で外部に取り出される。ま起、選択
吸収膜(91を通して集熱コレクタ(4)で集められた
熱も同じ様に循環パイプ(7)で外部に取り出される。Now, a portion of the sunlight that has passed through the selectively permeable membrane d is converted into electricity within the solar cell (5), and the rest is converted into heat within the solar cell (5). This heat is prevented from being radiated to the outside from the light-receiving surface of the solar cell (5) by the selectively permeable membrane, and is transmitted to the heat collector (4), where this heat is taken out to the outside through the circulation pipe (7). . The heat collected by the heat collector (4) through the selective absorption membrane (91) is also taken out to the outside through the circulation pipe (7).
なおal)は太陽電池セルの電機がらの配線である。第
3図は縦軸に太陽光線及び熱放射の単位面積あたりのエ
ネルギー(wscx−” −’横軸に波長Cμm)を
示した特性図である。Qllは太陽光放射スペクトルの
特性曲線を示し、凶は地上に到達する太陽光スペクトル
の特性曲線である。そして、実際に太陽電池セルが光電
変換に有効に利用する波長域は有効範囲Gの部分である
。さらに、ハイブリッド型太陽エネルギー晦コレクタに
おいて集熱に利用するのは、絶対温1!F400度の特
性曲線@と絶対湿度500にの特性曲線(ハ)である。Note that al) is the electrical wiring of the solar battery cell. FIG. 3 is a characteristic diagram in which the vertical axis shows the energy per unit area of solar rays and thermal radiation (wscx-'-' the horizontal axis shows the wavelength Cμm). Qll shows the characteristic curve of the solar radiation spectrum, The problem is the characteristic curve of the sunlight spectrum that reaches the ground.The wavelength range that solar cells actually use effectively for photoelectric conversion is the effective range G.Furthermore, in the hybrid solar energy collector, The characteristic curve @ for an absolute temperature of 1!F400 degrees and the characteristic curve (c) for an absolute humidity of 500 degrees are used for heat collection.
以上のことを踏まえて、分光反射特性を示す第4図を参
照して本発明の特性を詳細に説明する。選択透過膜で表
面処理した透明体を接着剤で太陽電池セルの受光面に貼
り付けた太陽電池セルの分光反射特性曲線01)と一実
施例の太陽電池セルの分光反射特性曲線(2)とを比較
すると、熱放射を反射さす機能は二つとも略同じである
。しかし、太陽電池セルにおいて光電変換に有効に利用
する波長域では分光反射特性曲線(至)即ち本発明の一
実施例のが光電変換に有効に利用する波長域を効率良く
透過する。Based on the above, the characteristics of the present invention will be explained in detail with reference to FIG. 4 showing the spectral reflection characteristics. Spectral reflection characteristic curve 01) of a solar cell in which a transparent body surface-treated with a selective transmission film is attached to the light-receiving surface of the solar cell with an adhesive, and a spectral reflection characteristic curve (2) of the solar cell of one example. Comparing the two, the function of reflecting thermal radiation is almost the same for both. However, in the wavelength range that is effectively used for photoelectric conversion in a solar cell, the spectral reflection characteristic curve (to), ie, the one embodiment of the present invention, efficiently transmits the wavelength range that is effectively used for photoelectric conversion.
実施例1
例えばヒlラジンを略60重量%含む水溶液な略11G
℃に加電して鏡面のシリコン基板な略8分間浸漬するテ
ケチャーーエッチングにより形成されたシリコン基板か
ら作製された太陽電池セルの略2μmの高さで略冨声醜
の底辺をもつピラミッドからなる粗面な受光面に、1謙
、0.または8aO,を真空蒸着法、スパッタリング法
、スプレー法、スピンコード法等を用いて選択透過膜と
して形成した。すると第4図において他の実施例の太陽
電池セルの分光反射特性−線(2)に示す通り、充電変
換に有効に利用する波長域を一実施例に比べ極めて効率
良く透過し、さらに一実施例に比べ熱放射も非常に高い
効率で反射させた。また、太陽電池セルの受光面のピラ
ミッドの大きさ及び間隔はエツチング時の温!、時間、
エツチング液の種類により制御出来る。要するにピラミ
ッドの大きさは鴎数10μm〜1μm、密度は賂1G’
31″〜l Q’ aa=程度ならばよい。Example 1 For example, approximately 11G of an aqueous solution containing approximately 60% by weight of hilazine.
A solar cell fabricated from a silicon substrate was formed by applying an electric current to ℃ and dipping the mirror-like silicon substrate for about 8 minutes.The pyramid was made from a silicon substrate with a height of about 2 μm and a base of about 300 cm thick. On the rough light-receiving surface, 1cm, 0. or 8aO, was formed as a selectively permeable film using a vacuum evaporation method, a sputtering method, a spray method, a spin code method, or the like. Then, as shown in Figure 4, the spectral reflection characteristics of the solar cell of the other embodiment - line (2), the wavelength range that is effectively used for charge conversion is transmitted much more efficiently than that of the first embodiment, Thermal radiation was also reflected with much higher efficiency than in the previous example. Also, the size and spacing of the pyramids on the light-receiving surface of the solar cell are determined by the temperature at the time of etching. ,time,
It can be controlled by the type of etching solution. In short, the size of the pyramid is 10 μm to 1 μm, and the density is 1 G'
It is sufficient if it is about 31'' to lQ'aa=.
変形例
この変形例はIn、O,や8nO,等からなる選択透過
膜をカバーφガラス(2)に形成したものである。Modified Example In this modified example, a selectively permeable film made of In, O, 8nO, etc. is formed on the cover φ glass (2).
これによると、カバー・ガラスに設けた選択透過膜によ
り集熱コレゲタからの熱放射を容器外部に逃げるのを防
止することができる。According to this, the selectively permeable film provided on the cover glass can prevent heat radiation from the heat collecting collector from escaping to the outside of the container.
本発明の他の変形例として、高温多湿中での水分の侵入
を防止しさらに信頼性を向上させるスーパー−ストレー
ト構造によるへイプツツド型太陽エネルギー・コレク!
がある。これは実施例で示した太陽電池セルをポリ・ビ
ニャル・ブチラールまたはエチレン・ビニル番アセテー
ト等でサンドイッチ状に挾んだものを容器内に収めたも
のである。崗この場合、カバー・ガラスの表面上に選択
透過膜を形成することにより、集熱コレクタからの熱放
射を容器外部ζ二連げるのを防止で舞る。Another variation of the present invention is a haptic solar energy collector with a super-straight structure that prevents moisture from entering in hot and humid environments and further improves reliability.
There is. This is a container in which the solar cell shown in the example is sandwiched between polyvinyl butyral or ethylene vinyl acetate. In this case, by forming a selectively permeable film on the surface of the cover glass, it is possible to prevent heat radiation from the heat collector from being transmitted to the outside of the container.
発明の効果
選択透過膜を太陽電池セル受光面に直接形成することに
より、太陽光線を吸収した太陽電池セル内で発生した熱
放射を効率よく反射させ、太陽電池セルの充電変換に有
効な波長域の太陽光線を極めて効率良く透過することが
出来る。この為、こ ・の選択透過膜が反射防止膜
の代用としての使用に耐え得る。さらに、太陽電池セル
受光面に選択透過膜を直接形成するだけであるので、従
来技術と比較して製造工程が簡易鑑:なり安価に製造出
来るようになった。Effects of the invention By directly forming a selectively transmitting film on the light-receiving surface of a solar cell, thermal radiation generated within the solar cell that absorbs sunlight is efficiently reflected, and a wavelength range that is effective for charge conversion of the solar cell is achieved. It can transmit sunlight extremely efficiently. Therefore, this selective transmission film can be used as a substitute for an antireflection film. Furthermore, since the selective transmission film is simply formed directly on the light-receiving surface of the solar cell, the manufacturing process is simplified and can be manufactured at low cost compared to conventional techniques.
第1図は一実施例のへイブリッド型太陽エネルギー・フ
レフタの断面図、第2図は第1図の要部断面図、1g3
図は一実施例の縦軸に太陽光線及び熱放射の単位面積あ
たりのエネルギーを示し横軸に光の波長を示した特性図
、第4図は従来技術と本発明とを比較する為の特性図で
ある。
(2)・・・カバー・ガラス (4)・・・集熱コレ
クタ(5)・・・太陽電池セル H・・・選択透過
膜(7317)代理人 弁理士 則 近 憲 佑(ほか
1名)
第1図
第 2 図Fig. 1 is a cross-sectional view of a hybrid solar energy frafter of one embodiment, Fig. 2 is a cross-sectional view of the main part of Fig. 1, 1g3
The figure is a characteristic diagram of one embodiment in which the vertical axis shows the energy per unit area of solar rays and thermal radiation, and the horizontal axis shows the wavelength of light. Figure 4 shows the characteristics for comparing the conventional technology and the present invention. It is a diagram. (2)...Cover glass (4)...Heat collector (5)...Solar cell H...Selective permeation membrane (7317) Agent: Kensuke Chika, patent attorney (and 1 other person) Figure 1 Figure 2
Claims (3)
れた太陽電池セルとを備え丸へイブリツF型太陽エネル
ギー・プレケタにおいて、1IlJ記太陽電池セルの受
光面に選択透過膜を真値したことを特徴とするへイブリ
ッド型太陽エネルギー・コレクタ。(1) In a Maruhiblitz F-type solar energy pre-ketator equipped with a heat collecting collector and a solar cell arranged above the heat collector, a selectively permeable film was installed on the light-receiving surface of the solar cell. A hybrid solar energy collector characterized by:
に有効な波長域の太陽光線を透過し逆に熱放射光を反射
させるこ、とを特徴とする特許請求の@8@1項記載の
ハイブリッド型太陽エネルギー・コレクタ。(2) The selectively transmitting film transmits sunlight in a wavelength range effective for photoelectric conversion in a thick battery cell, and reflects thermal radiation on the contrary. hybrid solar energy collector.
ことを特徴とする特許請求の聰■第1項または第2項記
載のハイブリッド型太陽エネルギー・コレクタ。(3) The hybrid solar energy collector according to claim 1 or 2, wherein the light-receiving surface of the solar cell is a rough surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57017652A JPS58135684A (en) | 1982-02-08 | 1982-02-08 | Hybrid type solar energy collector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57017652A JPS58135684A (en) | 1982-02-08 | 1982-02-08 | Hybrid type solar energy collector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58135684A true JPS58135684A (en) | 1983-08-12 |
Family
ID=11949778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57017652A Pending JPS58135684A (en) | 1982-02-08 | 1982-02-08 | Hybrid type solar energy collector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58135684A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4587376A (en) * | 1983-09-13 | 1986-05-06 | Sanyo Electric Co., Ltd. | Sunlight-into-energy conversion apparatus |
JPH03263549A (en) * | 1990-03-13 | 1991-11-25 | Kyocera Corp | Solar energy collector |
US20090065045A1 (en) * | 2007-09-10 | 2009-03-12 | Zenith Solar Ltd. | Solar electricity generation system |
US9893223B2 (en) | 2010-11-16 | 2018-02-13 | Suncore Photovoltaics, Inc. | Solar electricity generation system |
-
1982
- 1982-02-08 JP JP57017652A patent/JPS58135684A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4587376A (en) * | 1983-09-13 | 1986-05-06 | Sanyo Electric Co., Ltd. | Sunlight-into-energy conversion apparatus |
JPH03263549A (en) * | 1990-03-13 | 1991-11-25 | Kyocera Corp | Solar energy collector |
US20090065045A1 (en) * | 2007-09-10 | 2009-03-12 | Zenith Solar Ltd. | Solar electricity generation system |
US9893223B2 (en) | 2010-11-16 | 2018-02-13 | Suncore Photovoltaics, Inc. | Solar electricity generation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4587376A (en) | Sunlight-into-energy conversion apparatus | |
JPH0661519A (en) | Photoelectric cell module provided with reflector | |
US8226253B2 (en) | Concentrators for solar power generating systems | |
WO2008050392A1 (en) | Concentrating photovoltaic apparatus | |
JPH08139347A (en) | Solar cell module and manufacture thereof | |
US20100059108A1 (en) | Optical system for bifacial solar cell | |
US20050022860A1 (en) | Thin-film photovoltaic module | |
JPH09162435A (en) | Filter for solar battery | |
Demichelis et al. | A solar thermophotovoltaic converter | |
US20140048117A1 (en) | Solar energy systems using external reflectors | |
JPH05259495A (en) | Solar cell element | |
JPS58135684A (en) | Hybrid type solar energy collector | |
KR101405279B1 (en) | solar cell module | |
US4246043A (en) | Yttrium oxide antireflective coating for solar cells | |
JPH05206490A (en) | Photoelectric conversion device | |
JP3558968B2 (en) | Solar power generator | |
JPS5831253A (en) | Solar-heat collecting cylinder with solar cell | |
JPH1019388A (en) | Hybrid type panel and building equipped with this hybrid type panel | |
JPH0469438B2 (en) | ||
TW201138135A (en) | Concentrating photovoltaic module | |
KR20120035294A (en) | Solar cell module | |
JPH03267655A (en) | Solar energy collector | |
JP2001077399A (en) | Solar light power generating device | |
JPS58135685A (en) | Hybrid type solar energy collector | |
JPS595807B2 (en) | Hybrid solar collector |