JPS58135648A - Manufacture of copper-carbon fiber compound material - Google Patents

Manufacture of copper-carbon fiber compound material

Info

Publication number
JPS58135648A
JPS58135648A JP1755082A JP1755082A JPS58135648A JP S58135648 A JPS58135648 A JP S58135648A JP 1755082 A JP1755082 A JP 1755082A JP 1755082 A JP1755082 A JP 1755082A JP S58135648 A JPS58135648 A JP S58135648A
Authority
JP
Japan
Prior art keywords
carbon fibers
copper
center part
carbon fiber
laminated adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1755082A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
建治 鈴木
Mitsuru Suzuki
充 鈴木
Kazutoyo Narita
成田 一豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1755082A priority Critical patent/JPS58135648A/en
Publication of JPS58135648A publication Critical patent/JPS58135648A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To accomplish the manufacturing method for a Cu-C compound material generating no difference in the coefficient of thermal expansion between the center part and the circumference of the material by a method wherein, even in the case of carbon fibers which are spirally embedded, the carbon fibers are wound as far as to the center part. CONSTITUTION:The copper-plated layer and the copper powder of each conical body 13 are formed in a copper matrix state, and they function as copper matrix leaving no boundary by applying heat and pressure even when they are used for a laminated adhesive material 17. In other words, in this laminated adhesive material 17, a plurality of carbon fibers are conically wound around in buried form in the copper matrix. Then, said laminated adhesive material 17 is cut into the prescribed size as shown by the dotted lines in the diagram. The carbon fibers are cut too together with the laminated adhesive material 17, but as the carbon fibers are wound and buried in layer form between the center part and the circumference of the Cu-C compound material 18 after cutting, the coefficient of thermal expansion of the carbon fibers can be brought close to that of the semiconductor substrate. Also, as the carbon fibers were wound around and buried as far as the center part in the stage of a conical body 13, the carbon fiber layer is extended to the center part of the Cu-C compound material as well.

Description

【発明の詳細な説明】 本発aAは銅−炭素繊維複合材の製造方法、特に半導体
装置の電極材として好適な鋼マトリクス中に炭素−維を
埋設した鋼−炭素繊維複合材の製造方法に関するもので
ある二 鋼−炭素繊維複合材(以下Cu−C複合材と略記する−
)は鋼の持つ導電性、導熱性、炭素繊維の持つ低熱膨張
性を活かし、組成比により、自由に特性を変え得る点で
有効であり、特に半導体装置において半導体基体を支持
する電極材として用いた場合に効力を発揮する。
DETAILED DESCRIPTION OF THE INVENTION The present invention aA relates to a method of manufacturing a copper-carbon fiber composite material, particularly a method of manufacturing a steel-carbon fiber composite material in which carbon fibers are embedded in a steel matrix suitable as an electrode material for a semiconductor device. Two steel-carbon fiber composite materials (hereinafter abbreviated as Cu-C composite materials)
) is effective in that its properties can be freely changed by changing the composition ratio by taking advantage of the electrical conductivity and heat conductivity of steel and the low thermal expansion of carbon fiber, and it is particularly useful as an electrode material that supports the semiconductor substrate in semiconductor devices. It will be effective if

第1図はこのC’u−C複合材を用い九半導体装置1を
示しており、半導体基体2はP口接合Jを有し、その端
部Fi#13に露屈している。溝3にはガラス4が表面
安定化材として焼付けられている。
FIG. 1 shows a semiconductor device 1 using this C'u-C composite material, in which a semiconductor substrate 2 has a P-joint J and is exposed at its end Fi#13. Glass 4 is baked into the groove 3 as a surface stabilizing material.

半導体基体2の上下主表面にはろう材5.6を介してa
n−c1合材で形成した電極材7.8が固着されている
。半導体基体2の周囲はシリコーンゴム9を介して、両
電極材7.8にかけて風ボキシ樹脂10によりモールド
されている。
A is applied to the upper and lower main surfaces of the semiconductor substrate 2 through a brazing material 5.6.
An electrode material 7.8 made of n-c1 composite material is fixed. The periphery of the semiconductor substrate 2 is molded with a wind box resin 10 through a silicone rubber 9 and over both electrode materials 7 and 8.

このような構造の半導体装置lはボタン型と称せられ、
両電極板7.8に図示していない冷却体が押圧されて使
用されることが多い。
A semiconductor device l having such a structure is called a button type.
A cooling body (not shown) is often pressed against both electrode plates 7.8.

両電極板7.8はCu−C複合材であり、その組成比に
より、半導体基体2と熱膨張係数を極めて近付け□るこ
とができるので、半導体基体2には熱応力が加わらず、
従って、半導体基体2は破壊しない筈である。
Both electrode plates 7.8 are made of a Cu-C composite material, and their composition ratio allows them to have a thermal expansion coefficient extremely close to that of the semiconductor substrate 2, so that no thermal stress is applied to the semiconductor substrate 2.
Therefore, the semiconductor substrate 2 should not be destroyed.

しかしながら、半導体基体2がほぼ中央から周辺に向う
1袈を生じて破壊することが確認された。
However, it was confirmed that the semiconductor substrate 2 was broken with a curve extending from the center toward the periphery.

そこで、その原因を究明したところ、CU−C複合材の
製造に問題があるのではないかと考えるに−到った。
After investigating the cause, we came to the conclusion that there may be a problem in the production of the CU-C composite material.

破壊を生じたものは、炭素繊維が半導体基体2の主表面
と平行に渦巻状に巻かれ大もので、その中央には、芯材
を抜いた後に銅粉を詰め、焼結してあった。
The one that caused the destruction was a large one made of carbon fibers wound in a spiral parallel to the main surface of the semiconductor substrate 2, and the center of the fiber was filled with copper powder and sintered after the core material had been removed. .

つまり、周囲はCU−C複合材となっていても、中央は
鋼そのもので、熱膨張量が異なり、そこで、冷却体から
押圧力を受けているため、半導体基体2の中央部に過荷
重が加わって中央かる周辺に向う亀裂を生じたと推定さ
れる。
In other words, even though the surrounding area is made of CU-C composite material, the center is made of steel itself, which has a different amount of thermal expansion, and is subjected to pressing force from the cooling body, resulting in an overload in the center of the semiconductor substrate 2. It is estimated that this caused cracks to appear from the center to the periphery.

それ故、本発明の目的は炭素繊維が渦巻状に堀込まれた
ものであっても、中央部にまで充分巻込まれており、従
って、中央と周辺で熱膨張係数に差を生じないCU−C
複合材の製造方法を提供するにある。
Therefore, the object of the present invention is to ensure that even if the carbon fibers are spirally wound, they are sufficiently wound up to the center, so that there is no difference in the coefficient of thermal expansion between the center and the periphery.
The present invention provides a method for manufacturing a composite material.

炭素繊維を渦巻状に堀込むことは、平面方向でみた時、
熱膨張係数が半径方向、および円周方向の全てにおいて
等しくなるため、半導体基体との熱膨張係数の一致を考
えると、有効な埋設形態である。しかし、芯材を用いる
ことは避ける必要がある。
Digging carbon fiber in a spiral shape means that when viewed in a plane direction,
Since the coefficient of thermal expansion is the same in both the radial direction and the circumferential direction, this is an effective buried form when considering the matching of the coefficient of thermal expansion with the semiconductor substrate. However, it is necessary to avoid using core materials.

そこで零発−では、鋼被覆炭素繊維を錐形に巻回し、一
旦固めておいて、これを複数値用意し、積、lして、加
熱加圧して一体化し、しかる後、所要の大きさに切断す
ることにより、CU−C複合材を得ることを特徴とする
Therefore, in Zero-Hatsu, steel-coated carbon fiber is wound into a conical shape, and once it is hardened, multiple values are prepared, multiplied, and heated and pressurized to integrate. A CU-C composite material is obtained by cutting the CU-C composite material.

第2図、縞3図は本発明の一実施例を示している。2 and 3 show an embodiment of the present invention.

第2図では矢印に示す方向に回転する円錐形の頭数を有
する巻合11に鋼被覆炭素繊維を中央から周辺に向けて
、例えば、独楽にひもを巻付ける要領の如く巻付は錐形
体12を得る状態を示している。
In Fig. 2, the steel-coated carbon fiber is wound around the conical body 12, rotating in the direction shown by the arrow, with the steel-coated carbon fiber directed from the center to the periphery. This shows the state in which you can obtain .

銅被覆炭素繊維とは炭素繊維に銅めつ自層を設けこれを
束ねて銅粉スラリーを含浸させえものを″・1″′−中
・ol)″”ゝ“6・“        1、要に応じ
て加熱加圧して錐形体とする。この状態では錐形体の中
央先端部まで充分炭素繊維が巻回埋込まれている。
Copper-coated carbon fiber is carbon fiber with a copper layer, which is bundled and impregnated with copper powder slurry. Heat and press as necessary to form a cone-shaped body. In this state, the carbon fibers are sufficiently wound and embedded up to the central tip of the cone.

#E3図では、このような複数個の錐形体13を筒状の
鋳型14、両端部の鋳型1.5.16の間に積層し、そ
のまま加熱加圧してCU−C複合材の積層接着体17を
得た状態を示している。各錐形体13の銅めつき層や銅
粉は鋼マトリクスとなっており、積層接着体17におい
ても加熱加圧により、境界を残さず、−鋼マトリクスと
して働く。
In Figure #E3, a plurality of such conical bodies 13 are laminated between a cylindrical mold 14 and molds 1.5.16 at both ends, and heated and pressed as they are to form a laminated bonded body of CU-C composite material. 17 is shown. The copper plating layer and copper powder of each pyramidal body 13 form a steel matrix, and the laminated adhesive body 17 also functions as a -steel matrix by heating and pressing without leaving any boundaries.

すなわち、この積層接着体17では鋼マトリクス中に複
数本の炭素繊維が各々円錐形に巻回属地まれているもの
と云える。
In other words, it can be said that in this laminated adhesive body 17, a plurality of carbon fibers are each wound in a conical shape in a steel matrix.

次にこの積層接着体17は点線で示すように、所要の大
きさに切断される。切断によって炭素繊維も切断される
が、切断後のCu−C複合材18中では炭素繊維が中央
から周辺の間で層状に巻回埋設されているので、熱膨張
係数は半導体基体2と充分近付けることができる。
Next, this laminated adhesive body 17 is cut into a required size as shown by the dotted line. Although the carbon fibers are also cut by cutting, the carbon fibers are wrapped and buried in layers between the center and the periphery in the Cu-C composite material 18 after cutting, so that the coefficient of thermal expansion is sufficiently close to that of the semiconductor substrate 2. be able to.

また、中央部では錐形体130段階で既に中央部まで炭
素繊維が巻回堀設されているのでCu−C複合材18で
も同様に中央部まで炭素繊維が存在しているう 従って、中央の周辺で厚さ方向において中央部と周辺部
で熱膨張係数に差がない。
In addition, in the central part, carbon fibers have already been wound and dug up to the central part at the pyramid-shaped body 130 stage, so in the Cu-C composite material 18, carbon fibers are similarly present up to the central part. There is no difference in the coefficient of thermal expansion between the center and the periphery in the thickness direction.

このようなCu−C複合材18を第1図に示す電極板7
.8に適用し、冷却体から押圧力を加えても、実使用時
に1平均的に膨張収縮するので、半導体基体2の一部に
過荷重が加わることはなく、従って、半導体基体が破壊
することはない。
Such a Cu-C composite material 18 is used as an electrode plate 7 shown in FIG.
.. 8, and even if a pressing force is applied from the cooling body, it will expand and contract on average during actual use, so no overload will be applied to a part of the semiconductor substrate 2, and therefore the semiconductor substrate will not be destroyed. There isn't.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はcu−c4@合材を電極板として用いた半導体
装置の断面図、112図、第3図は本発明製造方法を工
橿毎に示すCu=C複合材の#?面図である。
Fig. 1 is a cross-sectional view of a semiconductor device using cu-c4@composite material as an electrode plate, Fig. 112, and Fig. 3 show the manufacturing method of the present invention for each piece. It is a front view.

Claims (1)

【特許請求の範囲】[Claims] 1、鋼被覆炭素繊維を錐形に巻き固め走錨形体を得る1
鵬、複数個の錐形体の積層し加熱加圧により一体化し九
積層接着体を得る工程、および仁の積層接着体を所要の
大きさに切断する工程とからなる鋼マトリクス中に炭素
繊維を埋設し大綱−炭素繊維複合材の製造方法つ
1. Obtain a dragging anchor shape by rolling and solidifying steel-coated carbon fiber into a conical shape 1
Embed carbon fibers in a steel matrix, which consists of the steps of laminating multiple conical bodies and integrating them by heating and pressing to obtain a nine-layer adhesive, and cutting the laminated adhesive into the required size. Outline - Manufacturing method of carbon fiber composite materials
JP1755082A 1982-02-08 1982-02-08 Manufacture of copper-carbon fiber compound material Pending JPS58135648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1755082A JPS58135648A (en) 1982-02-08 1982-02-08 Manufacture of copper-carbon fiber compound material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1755082A JPS58135648A (en) 1982-02-08 1982-02-08 Manufacture of copper-carbon fiber compound material

Publications (1)

Publication Number Publication Date
JPS58135648A true JPS58135648A (en) 1983-08-12

Family

ID=11947019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1755082A Pending JPS58135648A (en) 1982-02-08 1982-02-08 Manufacture of copper-carbon fiber compound material

Country Status (1)

Country Link
JP (1) JPS58135648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618590A (en) * 1991-09-20 1997-04-08 Teikoku Piston Ring Co., Ltd. Process for manufacturing a piston ring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618590A (en) * 1991-09-20 1997-04-08 Teikoku Piston Ring Co., Ltd. Process for manufacturing a piston ring

Similar Documents

Publication Publication Date Title
US4670074A (en) Piezoelectric polymer transducer and process of manufacturing the same
US6805763B2 (en) Stacked ceramic body and production method thereof
JPS63186434A (en) Method of fixing electronic device to board
SE439894B (en) SET UP DIFFUSION BINDING THROUGH THERMOCOMPRESSION
JPS6336136B2 (en)
US4115611A (en) Selectively bonded composite tape
EP0828333A3 (en) Method for making a current limiter with a high Tc superconductor and current limiter
JPS58135648A (en) Manufacture of copper-carbon fiber compound material
JPS6323618B2 (en)
KR960015611A (en) Superconducting Coil and Manufacturing Method Thereof
JP2003326622A (en) High heat conduction honeycomb sandwich panel and panel loaded with equipment for artificial satellite provided with the sandwich panel
JPWO2015170389A1 (en) Power cable clamp
JP2000353772A5 (en)
US5790011A (en) Positive characteristics thermistor device with a porosity occupying rate in an outer region higher than that of an inner region
JP5766064B2 (en) Die manufacturing method and hot press apparatus equipped with a die
JPH02186575A (en) Junction of oxide superconductor
JPH0312607A (en) Method of bundling optical fiber strand
TW201320414A (en) Component and method for producing the same
US4267953A (en) Method for alleviating thermal stress damage in laminates
JPS58135647A (en) Manufacture of copper-carbon fiber compound material
JP2523075B2 (en) Diamond grindstone and manufacturing method thereof
JPH01196113A (en) Sintered body for composite electronic part
Jackson et al. The fabrication of components from aluminium reinforced with silica fibres
JP2019040703A5 (en)
EP1078454B1 (en) Planar resist structure, especially an encapsulation for electric components and a thermomechanical method for the production thereof