JPS581355B2 - Shaft kiln furnace condition control method - Google Patents

Shaft kiln furnace condition control method

Info

Publication number
JPS581355B2
JPS581355B2 JP10620178A JP10620178A JPS581355B2 JP S581355 B2 JPS581355 B2 JP S581355B2 JP 10620178 A JP10620178 A JP 10620178A JP 10620178 A JP10620178 A JP 10620178A JP S581355 B2 JPS581355 B2 JP S581355B2
Authority
JP
Japan
Prior art keywords
furnace
amount
temperature
shaft kiln
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10620178A
Other languages
Japanese (ja)
Other versions
JPS5533531A (en
Inventor
亀井博志
佐賀淳一
太田一身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP10620178A priority Critical patent/JPS581355B2/en
Publication of JPS5533531A publication Critical patent/JPS5533531A/en
Publication of JPS581355B2 publication Critical patent/JPS581355B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【発明の詳細な説明】 本発明はシャフトキルンの操業において適当な給鉱量を
設定管理することにより、シャフトキルンの炉況を制御
する方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling the furnace condition of a shaft kiln by setting and managing an appropriate amount of ore feed during operation of the shaft kiln.

近年製鉄原料の貧鉱化に伴い、原料の予備処理が盛に行
はれているが、その1方法としてペレタイジングがある
In recent years, due to the poor mineralization of raw materials for steel manufacturing, preliminary treatment of raw materials has become popular, and one method for this is pelletizing.

このペレタイズされた原料は高温度で焼成され、その性
状を高めて供用されるが,その焼成炉としてはロータリ
ーキルンやシャフトキルンが用いられる。
This pelletized raw material is fired at high temperature to improve its properties and then put into use, and a rotary kiln or a shaft kiln is used as the firing furnace.

上記シャフトキルンの1つの型式として第1図に示され
る如きものがある。
One type of shaft kiln is shown in FIG.

このキルンは内筒1と外筒2の二重の円筒型の炉壁で囲
まれた環状の空間3にペレットを装入するようになって
おり、フィーダー4によって装入されたペレットは前記
空間(炉内)を満して円形の炉床5によって下方から支
持される。
In this kiln, pellets are charged into an annular space 3 surrounded by double cylindrical furnace walls of an inner cylinder 1 and an outer cylinder 2, and the pellets charged by a feeder 4 are charged into the space. (inside the furnace) and is supported from below by a circular hearth 5.

炉床5には排出口6が設けられているが、その径か円筒
の径よりも小さいために、ペレットは排出口の縁から内
筒の壁(内壁)の下端にかけて安息角傾斜をなして逆円
錐状のペレット焼成面を形成する。
The hearth 5 is provided with a discharge port 6, but since its diameter is smaller than the diameter of the cylinder, the pellets form an angle of repose slope from the edge of the discharge port to the lower end of the inner cylinder wall (inner wall). Forms an inverted conical pellet firing surface.

排出口6は内外筒の軸と偏心しており、炉床5を低速で
回転させるに伴い、ペレットを裾の方から排出し、排出
された分だけ(安息角をなすまで)炉内から焼成ペレッ
トが流出し、このようにして順次連続的にペレットの排
出が行はれるようになっている。
The discharge port 6 is eccentric to the axis of the inner and outer cylinders, and as the hearth 5 rotates at low speed, the pellets are discharged from the bottom, and the fired pellets are removed from the furnace by the amount discharged (until the angle of repose is reached). flows out, and in this way the pellets are sequentially and continuously discharged.

ペレット焼成用の燃焼ガスは、炉床の下方に設けられた
バーナー(図示せず)によってつくられ、排出される焼
成ペレットの落下と逆行して上昇して炉内に入り、ペレ
ットを焼成しながら炉内を上昇後排気フード(図示せず
)を経て炉外に導き出される。
Combustion gas for pellet firing is produced by a burner (not shown) installed below the hearth, rises against the falling of the fired pellets, enters the furnace, and burns the pellets. After rising inside the furnace, it is guided out of the furnace through an exhaust hood (not shown).

上記のような機構を有するシャフトキルンのペレットは
圧縮荷重をうけ、粉化や棚吊り現象を生じやすいこと、
及びガス流の偏流によってペレットの焼成むらが発生し
やすいこと等の欠点があるので、これらを避けるように
炉況を制御することが必要である。
The pellets of the shaft kiln with the above-mentioned mechanism are subject to compressive loads and are susceptible to pulverization and shelf-hanging phenomena;
Also, there are drawbacks such as uneven firing of pellets due to uneven gas flow, so it is necessary to control the furnace conditions to avoid these problems.

良質のペレットを得るには、焼成時ペレットを充分に高
温の燃焼ガスに接触させることが必要であるが、それが
過熱焼成になるとペレットがスラゲ化し(焼結現象)、
炉内でブリッジを形成し、以後の操業を不可能にする。
In order to obtain high-quality pellets, it is necessary to bring the pellets into contact with combustion gas at a sufficiently high temperature during calcination, but if the calcination is overheated, the pellets will turn into sludge (sintering phenomenon).
Forms a bridge within the furnace, making further operations impossible.

又、被熱量が少ないとペレットが強度の小さい状態でキ
ルン下部まで降下するために、下部での圧縮荷重に耐え
ず割れを生じ、それが原因となってガスの流れを阻害し
、炉況を悪化させる。
In addition, if the amount of heat received is small, the pellets will fall to the bottom of the kiln in a weak state, and will not be able to withstand the compressive load at the bottom, causing cracks, which will obstruct the flow of gas and deteriorate the furnace condition. make worse.

更に、過剰熱量を与えて高温域を炉頂部まで高めると、
その域の乾燥速度が速くなり、ペレット内の水分の急激
な逸脱により破裂現象を生じてペレットを粉化させる。
Furthermore, if excess heat is given to raise the high temperature region to the top of the furnace,
The drying speed in that area becomes faster, and the rapid release of moisture within the pellet causes a bursting phenomenon, causing the pellet to become powder.

従って、安定した炉況を維持し、良品質のべレソトを得
るためには、各ペレット原料の性質に適合した熱流比(
固体−ガスの熱容量比)の下で操業し、安定した乾燥、
予熱、焼成帯を形成することが肝要である。
Therefore, in order to maintain stable furnace conditions and obtain high-quality beresoto, it is necessary to adjust the heat flow ratio (
solid-gas heat capacity ratio), stable drying,
It is important to preheat and form a firing zone.

従来のシャフトキルンの炉況制御においては、上記の概
念は十分に理解しながらも、炉況を端的に示す指標を見
出し得ないことから、もっぱら排気フードの出口温度、
キルン内の圧損及び排出ペレットの5mm篩下発生率(
粉率)等を綜合勘案して炉況を判断し、その制御を行っ
ていたものである。
In conventional shaft kiln furnace condition control, even though the above concept is well understood, it is not possible to find an index that directly indicates the furnace condition, so the temperature at the outlet of the exhaust hood,
Pressure drop in the kiln and rate of occurrence of discharged pellets below 5mm sieve (
The condition of the furnace was determined and controlled by taking into account factors such as powder rate).

然しなから、これらの指標には、(1)フード出口温度
や圧損の変化は小さく且応答が鈍いこと、(2)粉率は
よく炉況判断の指標となり得るが、その結果は焼成ペレ
ットを一旦冷却した後篩別測定されるものであり、又排
出過程でクーラー等を通過する場合そのロスタイムが長
いので、結果を見てからアクションを起しても効果が薄
いこと、等の欠点がある。
However, these indicators include: (1) changes in hood outlet temperature and pressure drop are small and the response is slow; (2) powder ratio can often be used as an indicator to judge furnace conditions; It is measured by sieving after cooling, and there is a long loss time when passing through a cooler etc. during the discharge process, so there are disadvantages such as the lack of effectiveness even if you take action after seeing the results. .

そのために、操業者の勘、こつに頼った操業管理になる
ことが多く、更に敏速に炉況を判断し得るような適切な
指標によって炉況の制御を行うことが望まれていた。
For this reason, operational management often relies on the operator's intuition and tricks, and it has been desired to control the furnace condition using appropriate indicators that can more quickly determine the furnace condition.

本発明者らは上記問題の解決のために種々研究を重ねた
結果、シャフトキルンの外筒の壁(外壁)の特定位置に
おいて測定される温度が炉況と端的に結びついており、
炉況制御の好適な指標となることを発見した。
As a result of various studies carried out by the present inventors to solve the above-mentioned problem, it has been found that the temperature measured at a specific position on the outer cylinder wall (outer wall) of a shaft kiln is directly linked to the furnace condition.
It was discovered that this is a suitable indicator for furnace condition control.

シャフトキルンの温度測定は単なるライニング管理の目
的で従来より実施されているが、本発明における温度測
定はそれと明かに目的を異にし、更に高度の目的を有す
るものである。
Temperature measurement of shaft kilns has conventionally been carried out simply for the purpose of lining management, but the purpose of temperature measurement in the present invention is clearly different from that and has a more advanced purpose.

本発明においては、キルン内の装入原料の頂部から、原
料装入高さの0.4〜0.7の間におけるキルン外壁の
内側の温度(以下T−Aと称す)が、明瞭に且応答速度
も早く炉内の状況に応答するという本発明者らの発見し
た事実に基き、この温度及びその変化量に応じた給鉱量
を設定して給鉱することによって、炉況を最適に制御す
るものである。
In the present invention, the temperature inside the outer wall of the kiln (hereinafter referred to as T-A) between 0.4 and 0.7 of the material charging height from the top of the charged material in the kiln is clearly and Based on the fact discovered by the present inventors that the response speed is fast and it responds to the situation inside the furnace, the furnace condition can be optimized by setting the amount of ore feeding according to this temperature and its amount of change. It is something to control.

以下に本発明の基礎となった上記研究の結果を説明する
The results of the above research that formed the basis of the present invention will be explained below.

本発明者らは、第2図に示す如き、外筒径7.OOOm
m,環状空間の幅700mm、外筒高さ3,700mm
のシャフトキルンのペレット充填層内に6筒の熱電対を
挿入し、その温度を集電リング及びトロリーダクト方式
で連続測定し、個々の温度推移と操業との関連性につい
て研究した。
The present inventors have developed an outer cylinder with a diameter of 7. OOOm
m, width of annular space 700mm, height of outer cylinder 3,700mm
Six thermocouples were inserted into the pellet packed bed of a shaft kiln, and the temperature was continuously measured using a current collecting ring and trolley duct method, and the relationship between individual temperature changes and operation was studied.

(図において1はシャフトキルンの内筒、2は外筒、5
は炉床、Iは温度記録計、A−Fは夫々測定個所を示し
、0.4H及び0.7Hは夫々装入原料頂部から装入物
層の高さHの0.4倍及び0.7倍の位置を示す。
(In the figure, 1 is the inner cylinder of the shaft kiln, 2 is the outer cylinder, and 5 is the inner cylinder of the shaft kiln.
indicates the hearth, I indicates the temperature recorder, A-F indicates the measurement points, and 0.4H and 0.7H indicate the height H of the charge layer from the top of the charge material, respectively. Shows the 7x position.

)この研究の結果第3図及び第4図に示す如く、A点に
おける温度即ちT−Aと従来から操業管理の指標であっ
た粉率及びキルン内圧損とが強度の関連を有することを
見出した。
) As a result of this research, as shown in Figures 3 and 4, it was discovered that the temperature at point A, that is, T-A, and the powder ratio and kiln internal pressure drop, which have traditionally been indicators of operational management, have a relationship with strength. Ta.

即ち第3図及び第4図の粉率もキルン内圧損もT−Aに
関して近似した傾向を示し、T−Aを適切に管理するこ
とによって、それらを共に良好な状態にあるように制御
することが可能であることを示している。
In other words, both the powder ratio and the kiln internal pressure drop in Figures 3 and 4 show similar trends with respect to T-A, and by appropriately managing T-A, it is possible to control both of them so that they are in good condition. This shows that it is possible.

然し、其他の測定位置における温度と前記粉率及びキル
ン内圧損との関連は殆ど認め得なかった。
However, there was almost no correlation between the temperature at other measurement positions and the powder ratio and kiln internal pressure drop.

即ち、キルン内壁部の測定点D,E,Fにおいては、ガ
スの抵抗が小さいために通気性がたえず確保されて、全
体的な炉況の好不調に関係しないために、D−F測定点
の温度には殆ど変化がみられない。
That is, at measurement points D, E, and F on the inner wall of the kiln, gas resistance is small, so ventilation is constantly ensured, and the measurement points D-F are not related to the overall furnace condition. There is almost no change in the temperature.

又外壁下端部B及びCの測定点の領域においては、第5
図に示す如く、粉率が偏って高く、一種のデッドスペー
スを形成しているためにガスの流れが悪く、その温度変
化が小さく且応答速度が遅い。
In addition, in the area of the measurement points of the lower ends B and C of the outer wall, the fifth
As shown in the figure, the powder ratio is unevenly high and a kind of dead space is formed, resulting in poor gas flow, resulting in small temperature changes and slow response speed.

(第5図においては1は内壁、2は外壁、5は炉床、カ
ツコ内の数値は粉率%を示す。
(In Fig. 5, 1 indicates the inner wall, 2 indicates the outer wall, 5 indicates the hearth, and the numerical value in the box indicates the powder percentage.

)よって、B−Fの測定点における温度は炉況制御に利
用するには不適当である。
) Therefore, the temperature at the measurement point B-F is inappropriate for use in furnace condition control.

これに対して、第2図のA測定点における熱電対は炉況
が良い場合は内壁部のF点の温度まで上昇を示し、反面
、炉況が悪化すると急速に温度低下を示し、その変化が
大きく、応答も他の測定点に比較して大きなものであっ
た。
On the other hand, the thermocouple at measurement point A in Figure 2 shows a rise in temperature to point F on the inner wall when the furnace condition is good, but on the other hand, when the furnace condition deteriorates, the temperature rapidly decreases, and the temperature changes. was large, and the response was also large compared to other measurement points.

本発明は、上記の如き研究結果に基くもので、前記T−
A及びその変化量に対応して原料ペレットの給鉱量を増
減調整することにより、キルンを一定の温度状態に維持
し、それによって良質の焼成ペレットを得ることの出来
る炉況制御方法である。
The present invention is based on the above research results, and is based on the above-mentioned T-
This is a furnace condition control method that maintains the kiln at a constant temperature by increasing or decreasing the feed amount of raw material pellets in response to A and its variation, thereby making it possible to obtain high-quality fired pellets.

(ペレットの給鉱量と焼成ペレットの排出量は炉内装入
物の表面レベルを一定に保つために自動制御され、相関
関係にあるものであるから、給鉱量の調整は即ち排出量
の調整ということでもある。
(The amount of fed pellets and the amount of fired pellets discharged are automatically controlled to maintain a constant surface level of the contents in the furnace and are correlated, so adjusting the amount of fed ore is equivalent to adjusting the discharge amount. It also means that.

)然して前記温度T−Aによって給鉱量を調節して炉況
の制御を行う場合、手動操作によっても効果は認められ
るが、きめ細い制御を行うためには自動制御が適当であ
る。
) When controlling the furnace condition by adjusting the amount of ore feed based on the temperature T-A, manual operation can be effective, but automatic control is appropriate for fine-grained control.

次に自動制御による本発明の方法の実施例を示す。Next, an example of the method of the present invention using automatic control will be shown.

第6図はそのフローチャートである。図においてkはシ
ャフトキルン、t−aは本発明による温度測定点に設け
られた熱電対、trは変換器、rは記録調節計、Cは給
鉱量制御装置、0は定量供給調節操作部、fは定量給鉱
機、lはレベル検出計、mはペレット排出用炉床回転モ
ーターである。
FIG. 6 is a flow chart thereof. In the figure, k is the shaft kiln, ta is the thermocouple installed at the temperature measurement point according to the present invention, tr is the converter, r is the recording controller, C is the ore feed amount control device, and 0 is the constant supply adjustment operation unit. , f is a quantitative ore feeder, l is a level detector, and m is a hearth rotation motor for discharging pellets.

シヤフトキルンの外壁に原料頂部から原料装入高さの0
.4〜0.7の範囲内に取付けられた、熱電対t−aの
発生する熱起電力及び起電力変化を、変換器trによっ
て電圧変換して、給鉱量制御装置Cにおいてそれに対応
するペレット給鉱量を設定し、定量供給調節操作部0に
指令して定量給鉱機fを運転し、測定炉温に対応するペ
レット量を給鉱することにより炉況制御を行なった。
The material charging height from the top of the material to the outer wall of the shaft kiln is 0.
.. The thermoelectromotive force and electromotive force change generated by the thermocouple ta, which is attached within the range of 4 to 0.7, are converted into voltage by the converter tr, and the pellets corresponding to the voltage are converted by the converter tr. The furnace condition was controlled by setting the amount of ore to be fed, instructing the quantitative feed adjustment operation unit 0 to operate the quantitative ore feeder f, and feeding the amount of pellets corresponding to the measured furnace temperature.

レベル検出計lは炉内の装入物レベルを検出し、このレ
ベルを一定に保持するように炉床回転モーターmに指令
し、炉床を回転し、排出量を調整するものである。
The level detector l detects the charge level in the furnace, instructs the hearth rotating motor m to maintain this level constant, rotates the hearth, and adjusts the discharge amount.

上記の如き自動制御による本発明の方法によって、炉況
の制御を行った場合と、手動制御による場合、従来の方
法による場合の操業結果を比較したものを次表に示す。
The following table shows a comparison of the operational results when the furnace conditions were controlled by the automatic control method of the present invention as described above, by manual control, and by the conventional method.

次に、本発明の方法におけるT−Aと給鉱量の関係につ
いて説明する。
Next, the relationship between TA and the amount of ore feed in the method of the present invention will be explained.

第3,4図に示された関係及び上表の操業で得られたデ
ータから理解されるように、製品の5mm下含有率が4
〜5%の場合,T−Aと給鉱量の間には第7図に示すよ
うな関係が認められる。
As can be understood from the relationships shown in Figures 3 and 4 and the data obtained from the operations in the table above, the content of the product under 5mm is 4.
In the case of ~5%, a relationship as shown in Fig. 7 is recognized between T-A and the amount of ore supplied.

即ち、T−Aが高い程給鉱量を増しても製品の5mm下
含有量はT−Aが低く、給鉱量を下げた場合と変らない
In other words, even if the amount of ore fed is increased as the T-A is higher, the content below 5 mm of the product is lower in T-A and is the same as when the amount of ore fed is lowered.

この事実に基ずきT−Aを連続的に測定し、そのフィー
ドバックは1時間単位で前時間T1との温度差ΔTを検
出し、ΔT〉50℃以上の場合は、30分間で(T,給
鉱量±1)T/Hrの給鉱量になるように徐々に増減さ
せる。
Based on this fact, T-A is continuously measured, and the feedback is to detect the temperature difference ΔT from the previous time T1 in hourly units, and if ΔT>50°C or more, (T, Gradually increase or decrease the amount of ore supplied to ±1) T/Hr.

又ΔT−20〜49℃の場合は、30分間で(T1給鉱
量±0.5)T/Hrの給鉱量となるよう徐々に増減さ
せる。
Further, in the case of ΔT-20 to 49°C, the ore supply amount is gradually increased or decreased so that the ore supply amount becomes (T1 ore supply amount ±0.5) T/Hr in 30 minutes.

さらに、ΔT〈19℃の場合は給鉱量を増減せず1時間
継続させる。
Further, if ΔT<19°C, the supply amount is not increased or decreased and continues for 1 hour.

本来、T−Aは1時間単位で大巾に変化するものでなく
、(ΔTmax=50℃)、従って給鉱量の増減は実際
には小さいものであり、それをゆるやかに調整すること
によって炉況の安定が保たれる。
Originally, T-A does not change greatly on an hourly basis (ΔTmax = 50℃), so the increase or decrease in the amount of ore feed is actually small, and by gently adjusting it, the furnace The situation will remain stable.

上表に示される如く、本発明の方法によって自動的に装
入量を制御すれば、手動制御及び従来方法による場合に
比べて、生産性が著しく向上すると共に、製品ペレット
の特性も大幅に改善され、本発明の方法がシャフトキル
ンの操業管理のために極めて有効であることがわかる。
As shown in the table above, if the charging amount is automatically controlled by the method of the present invention, productivity will be significantly improved compared to manual control and conventional methods, and the characteristics of the product pellets will also be significantly improved. It can be seen that the method of the present invention is extremely effective for operational management of shaft kilns.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシャフトキルンの一般的な構成を示す図、第2
図はシャフトキルンの温度測定の種々の位置を示す図、
第3図は本発明による測定点における温度T−Aと粉率
との関係を示す図、第4図は同じくキルン内圧損との関
係を示す図、第5図はシャフトキルン下端域の粉率分布
を示す図、第6図は本発明の方法を示すフローチャート
である。 第7図はT−A温度と給鉱量の関係を示すグラフ図であ
る。 1;内筒、2;外筒、5;炉床、6;排出口、A−F;
温度測定位置、k;キルン、t−a;熱電対、tr:変
換器、C;給鉱量制御装置、0;定量供給調節操作部、
f;定量給鉱機、l;レベル検出計。
Figure 1 shows the general configuration of a shaft kiln, Figure 2
The figure shows the various positions of temperature measurement in the shaft kiln,
Fig. 3 is a diagram showing the relationship between the temperature TA at the measurement point according to the present invention and the powder ratio, Fig. 4 is a diagram also showing the relationship with the kiln internal pressure drop, and Fig. 5 is a diagram showing the powder ratio in the lower end region of the shaft kiln. The diagram showing the distribution, FIG. 6, is a flowchart showing the method of the invention. FIG. 7 is a graph showing the relationship between the TA temperature and the amount of ore supplied. 1; Inner cylinder, 2; Outer cylinder, 5; Hearth, 6; Outlet, A-F;
Temperature measurement position, k: kiln, ta: thermocouple, tr: converter, C: feed amount control device, 0: constant supply adjustment operation unit,
f: Quantitative ore feeder, l: Level detector.

Claims (1)

【特許請求の範囲】[Claims] 1 環状の原料装入部断面を有するシャフトキルンにお
いて、装入原料の頂部から原料装入高さの0,4〜0.
7の間における炉の外筒の内側の温度を連続測定し、該
温度及びその変化量に応じた給鉱量を制御装置により自
動的に設定して給鉱することを特徴とするシャフトキル
ンの炉況制御方法。
1 In a shaft kiln having an annular raw material charging section cross section, the height of the raw material charging from the top of the charged raw material is 0.4 to 0.
A shaft kiln characterized in that the temperature inside the outer cylinder of the furnace is continuously measured between 7 and 7, and the amount of ore to be fed is automatically set by a control device according to the temperature and the amount of change thereof, and the ore is fed. Furnace condition control method.
JP10620178A 1978-09-01 1978-09-01 Shaft kiln furnace condition control method Expired JPS581355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10620178A JPS581355B2 (en) 1978-09-01 1978-09-01 Shaft kiln furnace condition control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10620178A JPS581355B2 (en) 1978-09-01 1978-09-01 Shaft kiln furnace condition control method

Publications (2)

Publication Number Publication Date
JPS5533531A JPS5533531A (en) 1980-03-08
JPS581355B2 true JPS581355B2 (en) 1983-01-11

Family

ID=14427542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10620178A Expired JPS581355B2 (en) 1978-09-01 1978-09-01 Shaft kiln furnace condition control method

Country Status (1)

Country Link
JP (1) JPS581355B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383054U (en) * 1986-11-18 1988-05-31

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383054U (en) * 1986-11-18 1988-05-31

Also Published As

Publication number Publication date
JPS5533531A (en) 1980-03-08

Similar Documents

Publication Publication Date Title
US4265670A (en) Method and apparatus for the thermal treatment of fine-grained material with hot gases
CN102066587A (en) Method for producing iron ore pellets
JP6621603B2 (en) Carbonaceous particle heat treatment apparatus and method
JP3635253B2 (en) Method for producing pellet for reducing furnace, and method for reducing metal oxide
JPS581355B2 (en) Shaft kiln furnace condition control method
US2861356A (en) Apparatus for cooling granular materials
KR101630279B1 (en) Method for loading raw material into blast furnace
JP2011017032A (en) Method for operating electric furnace for smelting ferro-nickel
JPWO2020115959A1 (en) Sintered ore manufacturing method
JP3075722B1 (en) Method for adjusting supply amount of granular reduced iron raw material and supply device therefor
RU2450064C2 (en) Method to control efficiency of kiln to roast iron-ore pellets
JP3291220B2 (en) Insulation material for molten metal
JP3787240B2 (en) How to charge the blast furnace center
TW522170B (en) A method for drying a molded material containing metal oxide and a method for reducing the metal oxide and a rotary hearth type metal reduction furnace
JPH0330798B2 (en)
JP7010078B2 (en) Manufacturing method of zinc oxide complex
SU968568A1 (en) Method of determining limestone disintegration degree in multizone fluidized bed furnace
SU1145231A1 (en) Method of automatic control for process of roasting materials in tubular rotary kilns
JPH10296404A (en) Heat insulation method for molten metal
JP2679187B2 (en) Pre-reduction method for smelting reduction of iron ore
SU911116A1 (en) Method of automatic firing control in tubular rotating furnaces
SU467217A1 (en) Method for automatic control of operation of multistage rotary kiln heat exchanger
JPH06271908A (en) Method for charging raw material in multi-batches into bell-less blast furnace
JPH08127822A (en) Operation of sintering
BRPI0505675B1 (en) Method for producing a sintered agglomerate for iron production.